

Search for B-meson decays to four baryons at BABAR and future prospects at Belle II Laura Zani^{1,2}

¹Università di Pisa ²INFN Sezione di Pisa laura.zani@pi.infn.it

B-meson baryonic decays: measurement of the BF($B^0(\overline{B}^0) \rightarrow p p p p)$

Motivation for baryonic decay searches

The **baryon puzzle**

Inclusive BF(B \rightarrow baryons) = (6.8 ± 0.6) %

 Σ exclusive BF(Bightarrow *baryons*) < 1 %

Peculiarities observed in baryonic decays:
 Multiplicity effect
 Weak coupling
 V_{cb}

NEW : **4-baryon** final-state, **no Upper Limit** on PDG! Start point: UL for B($\overline{B}^0 \rightarrow \Lambda_c^+$ p p p) = 2.8×10⁻⁶ @ 0.90 CL (Gruenberg et al., 2014)

Why $B \rightarrow p p p p$

Mode	$B^0 \rightarrow \Lambda_c^{+} p \overline{p} \overline{p}$	B → p p p p
Weak coupling	$V_{cb} = (41.1 \pm 1.3) \times 10^{-3}$	$V_{ub} = (4.13 \pm 0.49) \times 10^{-3}$

Investigate qq production and hadronization into harvons • Threshold enhancement	Phase space (<i>Q-value</i>) $Q(m_B - m_A - 3m_p) = 0.19 \text{ GeV/c}^2 Q(m_B - 4m_p) = 1.52 \text{ GeV/c}^2$	
PEP II and the BABAR experiment	Working hypothesis: $BF(B \rightarrow p p \overline{p} \overline{p}) = BF_{UL}(B^0 \rightarrow \Lambda_c^+ p p \overline{p}) \times V_{ub} ^2 / V_{cb} ^2 \times Q_{pppp} / Q_{\Lambda_c^+ ppp} \sim 10^{-7}$	
B-factories: dedicated experiments at e'e asymmetric colliders for the production of		
quantum coherent BB pairs $ ightarrow extbf{CPV}$ studies and $ extbf{NP}$ indirect searches.	Event Reconstruction	
$e^{+}e^{-} \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ • $\beta \gamma = 0.56$ In its 9-year operation (1999-2008): • 424 fb ⁻¹ on-peak ($\sqrt{s} = 10.58$ GeV, 471 billion BB pairs) • 44 fb ⁻¹ off-peak ($\sqrt{s} = 10.54$ GeV) u^{+} Clean environment allows outstanding tracking and	Energy differenceBeam energy substituted mass $\Delta E = E_B^* - E_{beam}^*$ * = CM frame $m_{ES} = \sqrt{(E_{beam}^*)^2 - \vec{p}_B^* ^2}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$	
$ \frac{1}{2} = 1$	Fit to common vertex + kinematic cuts	
^{0.7} [•] π ^{mis-id rate ⁻ ^{0.96} provide excellent PID performance: high efficiency with}		
^{0.6} 0 1 2 3 4 GeV/c) 0.95 pion misID below 1% at any momentum.	4 protons from the same vertex: ε ~ 40 %	

Event Selection and Validation: MC-data comparison

