Characterising Exotic Matter Driving Wormholes_{III} M.Chianese^{1,2}, E. Di Grezia², **M. Manfredonia**^{1,2} & G. Miele^{1,2}

[']Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Complesso Univ. di Monte S. Angelo, I-80126 Napoli, Italy.

² INFN, Sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 Napoli, Italy

ABSTRACT

We develop an iterative approach to span the whole set of exotic matter models able to drive a traversable wormhole. The method, based on a Taylor expansion of metric and stress-energy tensor components in a neighbourhood of the wormhole throat, reduces the Einstein equation to an infinite set of algebraic conditions, which can be satisfied order by order. The approach easily allows the implementation of further conditions linking the stress-energy tensor components among each other, like symmetry conditions or equations of state. The method is then applied to some relevant examples of exotic matter characterized by a constant energy density and that also show an isotropic behaviour in the stress-energy tensor or obeying to a quintessence-like equation of state.

INTRODUCTION

OUR METHOD

APPLICATION

WORMHOLES

Wormhole solutions of Einstein equations are handles connecting two regions of the space-time manifold. They can be seen as short-cuts linking together two distant places in the same universe or even a bridge between two different universes

SERIES EXPANSION OF RELEVANT QUANTITIES
ALGEBRAIC CONDITIONS ORDER BY ORDER
GENERAL SOURCE CANDIDATE COMPATIBLE

IMPLEMENTATION

EXOTIC MATTER NEAR THE

WORMHOLE THROAT

We adopt the "*proper reference frame*" associated with an observer at rest in the Schwarzschild frame (the coordinates so introduced are denoted by an hat). In this frame $G_{\mu\nu}$ and $T_{\mu\nu}$ are both diagonal.

$$\begin{split} G_{\hat{t}\hat{t}} &= \frac{b'}{r^2} \,, \\ G_{\hat{r}\hat{r}} &= -\frac{b}{r^3} + 2\left(1 - \frac{b}{r}\right)\frac{\Phi'}{r} \,, \\ G_{\hat{\theta}\hat{\theta}} &= G_{\hat{\phi}\hat{\phi}} = \left(1 - \frac{b}{r}\right)\left[\Phi'' - \frac{b'r - b}{2r(r - b)}\Phi' + (\Phi')^2 + \frac{\Phi'}{r} - \frac{b'r - b}{2r^2(r - b)}\right]. \end{split}$$

Nonvanishing components of Einstein Tensor

We perform a series expansion in a neighbourhood of the

ASYMPTHPTIC VACUUM AND TRANSITION LAYER

Far away from the wormhole throat, the metric must approach the Schwarzschild's vacuum solution. We bound the exotic matter into a finite spherical region of radius R. JUNCTION SHELL OF NON-EXOTIC MATERIAL

- Spherically Symmetric
- Radius R
- Thickness ΔR
- . Constant energy density ρ
- Constant transverse
- pressure p
- Linear decreasing τ

Transition Layer

Intra-Universe Wormhole^[2]

TRAVERSABLE WORMHOLE[3]

G.R. COMPATIBLE <=> EINSTEIN'S EQUATIONS

wormhole's throat, where b(r)=r. Then
from Einstein's equations we obtain, order
by order in the relative distance from the
throat, a set of algebraic condition

The set of equations further simplifies if one < Zero-th Order

$$\begin{split} \bar{b}_2 &= 2\bar{\rho}_0 + \bar{\rho}_1 \,, \\ \bar{\tau}_1 &= -\left(4\bar{p}_0 + \bar{\rho}_0 + 1\right) \,, \\ \bar{\Phi}_2 &= \frac{6\bar{p}_0 + 2\bar{p}_1}{3\left(1 - \bar{\rho}_0\right)} + \frac{2\bar{p}_0\left(2\bar{\rho}_0 + \bar{\rho}_1\right)}{3\left(1 - \bar{\rho}_0\right)^2} - \frac{1}{3}\left(\frac{2\bar{p}_0}{1 - \bar{\rho}_0} - 1\right)\left(\frac{4\bar{p}_0}{1 - \bar{\rho}_0} + 1\right) \,. \end{split}$$

First Order Conditions

$$\begin{split} \bar{b}_3 &= 2\bar{\rho}_0 + 4\bar{\rho}_1 + \bar{\rho}_2 \,, \\ \bar{\tau}_2 &= -4\left(1 - \bar{\rho}_0\right)\left(\bar{\Phi}_1 + \bar{\Phi}_2\right) + \bar{b}_2\left(1 + 2\bar{\Phi}_1\right) - 6\left(1 + \bar{\tau}_1\right) \,, \\ \bar{\Phi}_3 &= \left[2\bar{p}_2 + \bar{b}_2\left(2\bar{\Phi}_1^2 + 5\bar{\Phi}_1 + 4\bar{\Phi}_2 + 1\right) + \bar{b}_3\left(1 + \bar{\Phi}_1\right) + 12\left(\bar{p}_0 + \bar{p}_1\right) + \\ &- \left(1 - \bar{\rho}_0\right)\left(8\bar{\Phi}_1^2 + 8\bar{\Phi}_1\bar{\Phi}_2 + 4\bar{\Phi}_1 + 14\bar{\Phi}_2\right)\right] \frac{1}{5\left(1 - \bar{\rho}_0\right)} \end{split}$$

Second Order Conditions

$$\begin{split} & \int_{\mathbf{r}} \mathbf{r} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \\ \mathbf{F}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}} \mathbf{v}_{\mathbf{r}}$$

M.Chianese, E. Di Grezia, M. Manfredonia and G. Miele, "*Characterising exotic matter driving wormholes*", arXiv:1701.08770
 M.Visser and David Hochberg, "*Generic wormhole throats "*, Annals Israel Phys.Soc. 13 (1997) 249
 M. S. Morris and K. S. Thorne, "*Wormholes in space-time and their use for interstellar travel: A tool for teaching generalrelativity*", Am. J. Phys., vol. 56, pp. 395-412, 1988.

