IFAE 2017 - XVI Incontri di Fisica delle Alte Energie

(Trieste, 19–21 April 2017)

The neutrino mass ordering and the JUNO experiment V. Antonelli

Dipartimento di Fisica, Università di Milano & INFN-Sezione di Milano

Abstract

The neutrino mass eigenvalues ordering (Normal or **Inverted Hierarchy)** is one of the main open issues of neutrino physics, with a significant **impact** both **on model** building and on the potentialities of present and future **experiments** (like the ones looking for neutrinoless double betha decays).

- A possibility of investigating this problem is offered by the study of the mass hierarchy dependent corrections in the antineutrino inverse β decays in medium baseline reactor experiments.

- This idea is at the basis of the research project of **JUNO**, a multipurpose underground **neutrino experiment**, that will soon become operative in the South of China. The JUNO main characteristic are discussed, together with its rich physics program and the status and perspectives of the experiment.

The neutrino mass hierarchy

From oscillation experiments

(e.g. JHEP 1701 (2017) 087;arXiv:1703.04471[hep-ph] and NPB 00 (2016) 1]

The JUNO option

JUNO (Jiangmen Underground Neutrino Observatory): multi**purpose** reactor $\overline{v_e}$ experiment, under construction near Kaiping (South China). JUNO collaboration includes more than 70 instutions spread all over 3 continents.

Baseline reactors-detector about 53 km: **optimized in the**

KamLAND

JUNO

53 km

 10^{5}

Underground

Detector

More than

700 m of rock

overburden

 10^{4}

Comparison with other experiments

Experiment	Daya	BOREXINO	KamLAND	JUNO
	вау			
LS mass	20 ton	~ 300 ton	~ 1kton	20 kton
Coverage	~ 12%	~ 34%	~ 34%	~ 80%
E resolution	$7.5\%/\sqrt{E}$	$\sim 5\%/\sqrt{E}$	$\sim 6\%/\sqrt{E}$	$\sim 3\%/\sqrt{E}$
Light yield	~ 160	~ 500	~ 250 p.e./MeV	~ 1200
	p.e./MeV	p.e./MeV		p.e./MeV

□ Milestones of the analysis

- **Global fit** and **comparison** of χ^2 best fit points for NH and DH solutions
- For E resolution equal or better than $3\%/\sqrt{E}$: hierarchy discrimination at $3-4 \sigma$ C.L.

(JUNO Yellow Book: J. of Phys. G: Nucl. Part. Phys. 43 (2016) 030401)

□ <u>Main advantages</u>

> JUNO looks at vacuum oscillations; hence it doesn't suffer the uncertainty on Earth density profile **and** the ambiguity of **CP-violating phase**.

Mass hierarchy solution **doesn't depend on** θ_{13} value (affecting only the amplitude of the corrections) and depend mildly on the 3-4 neutrino flavor scheme.

Mass hierarchy determination at JUNO Mass hierarchy sensitivity is expressed in terms of: $\Delta \chi^2_{\rm MH} = \left[\chi^2_{\rm MIN} (\rm NH) - \chi^2_{\rm MIN} (\rm IH) \right]; \quad \chi^2_{\rm Reactor} = \sum_{i=1}^{\rm N_{\rm bins}} \frac{\left[M_i - T_i \left(1 + \sum_k \alpha_{ik} \, \varepsilon_k \right) \right]^2}{M_i} + \sum_k \frac{\varepsilon_k^2}{\sigma^2}$ with: M_i = measured v events in the bin; T_i = no oscillation predicted events; σ_k =systematic uncertainty; ϵ_k =pull factor; α_{ik} =fraction of event contribution of k^{th} pull to i^{th} bin

Results of the analysis

Iso- $\Delta \chi^2_{MH}$ countour lines represent the $\Delta \chi^2_{MH}$ value as a function of luminosity (L=1 corresponds to n. of events after 6 years of JUNO data taking with nominal reactor $\overline{v_e}$ flux and 80% efficiency) and of the resolution.

Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentiality
Δm^2_{21}	2.3%	KamLAND	0.59%
$\Delta m^2 = m_3^2 - rac{1}{2} (m_1^2 + m_2^2) $	1.6%	MINOS, T2K	0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO	0.67%

 $P_{ee} = 1 - \cos^{4}(\theta_{13}) \sin^{2}(2\theta_{12}) \sin^{2}\left(\frac{\Delta m_{21}^{2}L}{4E}\right) - \sin^{2}(2\theta_{13}) \left(\cos^{2}\theta_{12}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) + \sin^{2}\theta_{12}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)\right)$ The last **term** (**sensitive to** mass **hierarchy**), can be put as: $\frac{1}{2}\sin^2(2\theta_{13}) \quad \left\{ 1 - \left[1 - \sin^2(2\theta_{12})\sin^2(\frac{\Delta m_{21}^2 L}{4 E}) \right]^{1/2} \cos\left(2 \left| \frac{\Delta m_{ee}^2 L}{4 E} \right| \pm \varphi \right) \right\},\$ where $\Delta m_{ee}^2 = (\cos^2(\hat{\theta}_{12}) \Delta m_{31}^2 + \sin^2(\theta_{12}) \Delta m_{32}^2)$ and $\sin \phi$ and $\cos \phi$ denote combinations of mass and mixing parameters of the 1-2 sector.

The sign of φ term is positive for NH and negative for IH

Fastly oscillating term, opposite for the 2 hierarchies, superimposed to the **general oscillation pattern**

Spectrum dependence upon the mass hierarchy

The JUNO experiment

 $E_{\bar{\nu}} \geq 1.8 \text{ MeV}$ • Main reaction: $\overline{\nu_e} + \mathbf{p} \rightarrow n + e^+$ Time coincidence between e^+ signal and 2.2 MeV γ emission from nuclear capture.

<u>**Reactor**</u> $\overline{v_{e}}$: E $\leq 8 \text{ MeV}$

----- Non oscillation $- \theta_{12}$ oscillation

- Normal hierarchy

Inverted hierarchy

25

5 30 L/E (km/MeV

JUNO main features

Medium baseline (53 km); high statistics required Large detector mass and proximity to several reactors ✤ Signature: position of the spectral wiggles in the spectrum **Very good E resolution** $(\frac{\sigma(E)}{\sqrt{E}} \cong 3\%)$ **Liquid scintillator** (LAB+PPO+bis-MSB) High photon yield Reduction of the cosmogenic background

Rock overburden about 720 m and a muon veto system

Other JUNO physics goals

In addition to the mass hierarchy discrimination and oscillation parameters determination, JUNO will look for:

Supernova burst & diffuse supernova neutrinos

Geoneutrinos

Solar & atmospheric **neutrino** studies

□ Other measurements: search for sterile *v* and nucleon decays; indirect dark matter searches; other exotic searches

For more details about all of these topics see the JUNO Yellow Book (Phys. G: Nucl. Part. Phys. 43 (2016) 030401) and the V. Antonelli talk at the recent **Neutrino Telescopes** Workshop (Venice March 2017)

Progress and status of the experiment

- Excavation works almost finished (vertical shaft 513 out of 630 m and slope tunnel 1030 out of 1340 m) Detector construction and assembly going on:
- <u>Central detector (huge and very thick acrylic sphere)</u>: problems of shrinkage and shape variations were resolved; radioactivity levels are under control;
- Various <u>purification</u> techniques successfully tested at a Liquid Scinitillator Pilot Plant at Daya Bay;
- 2 different kinds of 20" photomultipliers (from Hamamatsu and from a Chinese company NNVT): very good performances, mainly for quantum and relative detection efficiency \longrightarrow very good E resolution;
- Presence of a <u>double calorimetry systems</u>, made up with <u>small (3") PMTs</u> \implies systematics control, internal redundancuy and better osc. parameters determination.

For further information please contact vito.antonelli@mi.infn.it (tel. ++39/02/50317430; ++39/339/5882663)