Search for invisible decay of a dark photon in e^+e^- collisions at *BABAR*

Fabio Anulli INFN, Sezione di Roma

On behalf of the BABAR Collaboration

XVI Incontri di Fisica della Alte Energie Trieste, 19 – 21 Aprile, 2017

Motivation

- With the ~125 GeV/c² Higgs scalar, the Standard Model (SM) particle contents might be complete.
- However, big Beyond Standard Model (BSM) questions remain:
 - **Dark matter**, Neutrino masses, Baryon Asymmetry in the Universe, Inflation, Dark Energy
- There are intriguing astrophysical observations: *Pamela, Fermi, AMS2, Dama...*

Could there be a hidden sector at low energy?

- A flurry of models include: SUSY models, portals/new effective scales:
 - Vector, Scalar, Neutrino, axion-like...
- An emerging experimental field at accelerators (colliders, beam dumps)

• Search for a dark photon decaying invisibly arXiv:1702.03327

BABAR detector and collected data sample

Dark photon A'

• Dark matter models introducing a new sector with a "dark" force mediated by a light gauge boson can accomodate anomalies observed in astrophysical research

 $\chi \chi \to A'A' \to (e^+e^-)(e^+e^-)$ $m_{\chi} \sim \text{TeV}; \ m_{A'} \sim \text{MeV-GeV}$

Arkani-Hamed et al. PRD 79, 015014 (2009)

- Kinetic mixing of A' with SM γ (*vector portal*)
 - mixing strength $\varepsilon \approx 10^{-5} 10^{-2}$
- Dark photon SM fermions coupling $\alpha' = \epsilon^2 \alpha$

- A' decay modes depend on its mass and coupling, as well as on particle spectrum of the dark matter
 - if lowest DM state $2m_{\chi} > m_{A'} \Rightarrow A' \rightarrow SM$ particles (in particular lepton pairs $A' \rightarrow e^+e^-, \mu^+\mu^-$)
 - if lowest DM state $2m_{\chi} < m_{A'} \Rightarrow A' \rightarrow \text{invisible}$ is the dominant decay $(A' \rightarrow \chi \chi)$

Searches at BABAR: $e^+e^- \rightarrow \gamma A'$; $A' \rightarrow e^+e^-, \mu^+\mu^-$

In *BABAR* a dark photon can be produced in $e^+e^- \rightarrow \gamma A'; A' \rightarrow e^+e^-, \mu^+\mu^-$

with a cross section proportional to $\varepsilon^2 = \alpha'/\alpha$

- Analysis performed on the full data sample of 514 fb^{-1}
- Look for a narrow peak in the invariant mass of the lepton pair
- Scan the energy range from 20 MeV to 10.2 GeV

- No significant eccess observed
- Largest significance 3.4σ at 7.02 GeV

Limits in the ε .*vs*.m plane

After *BABAR* and NA48/2 results the preferred region of phase space to explain the muon g-2 with visible decays of a dark photon is fully ruled out

Search for invisible decays of a dark photon

Search for single-photon final states:

• assume on-shell $A' (m_{\chi} < m_{A'}/2)$, with negligible decay width w.r.t. experimental resolution

• assume that A' decays predominantly to DM

- The analysis optimized for and interpreted in terms of a dark photon decaying invisibly
- Similar signature for other modes, e.g. axion production, light Higgs boson
 - The recoiling particle can be either a vector or a scalar
- <u>Low-multiplicity final state: photon + nothing else</u>
 - Missing energy and momentum is the best signature
 - Hermeticity and efficiency of the detector are the key
 - Strategy: select single-photon events, look for a bump in the missing mass or E_{γ}^{*}
 - Main backgrounds:
 - $e^+e^- \rightarrow \gamma\gamma$: peaking at $M_x^2 \sim 0$, hard to predict with simulation
 - $e^+e^- \rightarrow e^+e^-\gamma$: continuum distribution in M_x^2
 - machine background: do not mimic signal, but can be the second photon in a signal event

2007 analysis results: $Y(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow invisible$

Preliminary results: arXiv:0808.0017

analysis optimized for search for a light CP-odd Higgs boson A0 -> invisible

Unpublished. Nevertheless >90 citations!

Results reinterpreted by theorists in terms of other NP scenarios

Search for $A' \rightarrow$ invisible: Trigger

- Two single-photon software trigger algorithms, with different ${\rm E}_{\gamma}^{\,*}$ threshold, implemented at different times for the final BABAR running period
- Trigger lines further refined by software filters
 - high-energy photon filter line: $E_{\gamma}^* > 3$ GeV, no tracks with p*>1 GeV/c
 - data set: 53 fb-1, mostly at the Y(3S) and Y (2S), with a small sample at the Y(4S)
 - low-energy photon line: E_γ*> 1.5 GeV, no tracks with p*>0.1 GeV/c, loose shower shape
 - data set: a subset of the previous one, with no Y(4S) sample
- This naturally split the selection into two broad $m_{A'}$ ranges
 - low mass (high E_{γ}^{*}): -4 < $m_{A'}$ < 36 GeV²
 - high mass (low E_{γ}^{*}): 24 < $m_{A'}$ < 69.0 GeV² for the Y(3S) data set 24 < $m_{A'}$ < 63.5 GeV² for the Y(2S) data set

Search for $A' \rightarrow$ invisible: Event selection

- Detector hermeticity is a critical issue
- Require $|\cos\theta_{\gamma}^*| < 0.6$ so that both γ 's are within EMC acceptance
- Still possible that photons escape detection in the EMC
 - azimuthal gaps between crystals aligned with collision point

 $e^+e^- \rightarrow \gamma\gamma$ event with no signal left by second photon in the EMC

- Boosted Decision Tree selector to separate signal and background, based on 12 discriminating variables, including:
 - EMC cluster shape variables => photon quality
 - extra detected energy (besides the primary photon) in the LAB system
 - kinematics of the 2nd most-energetic photon, and its angular distance from the primary photon.
 - activity in the IFR around the missing momentum direction (very effective in suppressing the $e^+e^- \rightarrow \gamma\gamma$ background)
- BDT trained separately in Low- and High-mass regions by using 3 fb⁻¹ of Y(3S) data, and simulated signal

Trieste, 19/04/2017

Search for $A' \rightarrow$ invisible: Fits to data

- Extract signal yields and ultimately set U.L. on A' coupling ε by simultaneous fits to M_{χ}^2 distributions:
 - High-mass region: Y(2S, 3S) data, with Loose BDT cut (2 data sets)
 - background dominated by radiative Bhabha, smooth in recoil mass M_x
 - Low-mass region: Y(2S, 3S, 4S) data, with non-overlapping Loose and Tight selections (6 data sets)
 - both peaking (from $e^+e^- \rightarrow \gamma\gamma$) and smooth background is present
- Perform fits for 166 mass hypothesis
- For each fit:
 - Background PDFs fixed by fitting data in the background region -0.5< BDT <0
 - Signal PDF is a Crystal Ball with parameters fixed from MC
 - Float signal (actually the coupling squared ε²), and number of background events separately for peaking and continuum

• Background-only fits show good agreement with data in all signal regions

Trieste, 19/04/2017

Search for $A' \rightarrow$ invisible: Signal extraction

• No significant signal observed => set U.L. on mixing parameter ε as a function of dark-photon mass $m_{A'}$

Search for $A' \rightarrow$ invisible: Results

• Exlcusion regions for invisible decays of a dark photon after *BABAR* results

Further DM-related searches at *BABAR*

Further analyses ongoing or planned

Trieste, 19/04/2017

Conclusions

- Light dark sectors have recently emerged as a possibility for dark matter and provide a rich phenomenology
- *BABAR* pioneered the low-energy, high-intensity collider searches putting stringent limits on the parameter space of various dark sector models
 - Direct searches: unique sensitivity to low-mass new physics in highstatistics datasets
 - Complementary to results from fixed targets experiments and hadron colliders
- *BABAR* searches for invisible decays and for $A' \rightarrow l^+l^-$ excludes the region of parameter space preferred by the $(g-2)_{\mu}$ value
- More analyses in progress at *BABAR*

Backup Slides

Expected reach in the "near" future

F. Anulli - Search for invisible decay of a dark photon

Astrophysical interest

PRD 79, 015014 (2009) Arkani-Hamed et al.

- ~TeV DM: $\chi \chi \to A'A' \to (e^+e^-)(e^+e^-)$
- Initial lack of antiproton excess
 → m_{A'} < few GeV
- Possible antiproton excess now observed:

PRL 110, 141102 (2013)