

Analisi angolare del decadimento B0->K*µµ a CMS e ATLAS

<u>Alessio Boletti</u> (INFN e Universita` di Padova)

Umberto De Sanctis (INFN e Universita` di Roma Tor Vergata)

Motivazioni

- Fenomeni di nuova fisica possono essere osservati in maniera indiretta, tramite la loro influenza su altri processi fisici
- Processi che, secondo il Modello Standard, hanno un branching ratio piccolo sono particolarmente adatti a questo tipo di ricerca
- Decadimento BO->K*µµ ottimo candidato:
 - Branching ratio ridotto (10^-6): proibito il processo a livello albero e soppresso dai coefficienti CKM
 - L'analisi angolare dello stato finale permette di misurare diversi coefficienti di Wilson della lagrangiana efficace
 - Le incertezze sulle previsioni teoriche sono sufficientemente ridotte
 - Lo stato finale con due muoni e due adroni carichi (K*->Kπ) e` sperimentalmente accessibile
- Osservazioni sperimentali [1][2] di questo canale hanno mostrato tensione con le previsioni del MS nella misura di un parametro della distribuzione angolare (P'5)

[1] LHCb collaboration, JHEP 02 (2016) 104[2] Belle-preliminary: arXiv:1612.05014

- Decadimento completamente descritto da tre variabili angolari (θ K, θ L, Φ) e il quadrato della massa invariante del sistema dimuonico (q^2)
- La distribuzione angolare e` descritta in funzione del set di parametri angolati (FL, Pi, P'i)
- Parametri Pi derivati dall'insieme originale Si e piu` puliti dalle incertezze sui fattori di forma
- Ws e` il contributo di Kπ prodotti in onda-S e dei termini di interferenza

 $\frac{1}{\Gamma_{full}'} \frac{d^4 \Gamma}{dq^2 d\cos \theta_K d\cos \theta_l d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} F_T \sin^2 \theta_K + F_L \cos^2 \theta_K + \left(\frac{1}{4} F_T \sin^2 \theta_K - F_L \cos^2 \theta_K \right) \cos 2\theta_l \right] \\ + \frac{1}{2} P_1 F_T \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + \sqrt{F_T F_L} \left(\frac{1}{2} P_4' \sin 2\theta_K \sin 2\theta_l \cos \phi + P_5' \sin 2\theta_K \sin \theta_l \cos \phi \right) \\ + 2 P_2 F_T \sin^2 \theta_K \cos \theta_l \\ - \sqrt{F_T F_L} \left(P_6' \sin 2\theta_K \sin \theta_l \sin \phi - \frac{1}{2} Q' \sin 2\theta_K \sin 2\theta_l \sin \phi \right) \\ - P_3 F_T \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \left[(1 - F_S) + \frac{1}{\Gamma_{full}'} W_S \right]$

- Lo spettro di q² e` diviso in bin, in ciascuno dei quali i parametri della distribuzione vengono estratti tramite un fit
- Per ridurre il numero di parametri da stimare in ciascun fit, vengono effettuati dei *folding* angolari, sfruttando le (a)simmetrie delle funzioni trigonometriche

Analisi CMS [CMS-PAS-BPH-15-008]

- Completo dataset 2012: 20.5/fb a sqrt(s)=8 TeV
- Selezione eventi
 - Trigger dimuonico:
 pT(μ)>3.5 GeV, pT(μμ)>6.9 GeV, displacement e qualita` del vertice
 - Selezione K*: pT(trk)>0.8 GeV, CP-state con massa piu` vicina al valore PDG, $\Phi \rightarrow$ KK veto
 - Selezione B0: pT>8 GeV, |eta|<2.2, displacement e qualita` del vertice
 - · Contaminazione di eventi da canali risonanti (Jpsi e Psi(2S)) tramite appositi tagli
- Folding angolare: doppio folding applicato ($\theta L=\pi/2, \Phi=0$)
 - 14 parametri angolari ridotti a 6, nel fit: FL, P1, P'5 (P-wave) e Fs, As, As5 (S-wave)
 - 3 parametri (FL, Fs, As) fissati al valore misurato nella precedente analisi sul medesimo dataset
 - 2 parametri estratti dal fit (P1, P'5) e uno trattato come noisance (As5)
 - Efficienza valutata su simulazione Monte Carlo
 - Descrizione completa tramite funzione 3D dipendente dalle variabili angolari
 - Numeratore e denominatore costruiti tramite Kernel Density Estimator sulle distribuzioni unbinned

Algoritmo di fit

- PDF usata:
 - Componente di segnale con CP-state corretto
 - Componente di segnale con CP-state errato
 - Componente di fondo

$$pdf(m,\theta_{\rm K},\theta_l,\phi) = Y_S^C \left[S^C(m) S^a(\theta_{\rm K},\theta_l,\phi) \epsilon^C(\theta_{\rm K},\theta_l,\phi) + \frac{f^M}{1-f^M} S^M(m) S^a(-\theta_{\rm K},-\theta_l,\phi) \epsilon^M(\theta_{\rm K},\theta_l,\phi) \right] + Y_B B^m(m) B^{\theta_{\rm K}}(\theta_{\rm K}) B^{\theta_l}(\theta_l) B^{\phi}(\phi),$$

- Unbinned Extended Maximum Likelihood fit in due stadi:
 - Fit alle sidebands con la sola PDF di fondo (parametri angolari del fondo)
 - Fit con PDF completa a tutto lo spettro di massa, con componente di fondo fissata (yield di fondo, di segnale, e parametri angolari di segnale)
- Algoritmo validato con numerosi confronti (differenze usate come incertezze):
 - Risultati su campione Monte Carlo ad elevata statistica contro i valori usati nella simulazione (syst: simulation mismodelling)
 - Risultati su 200 campioni simulati di segnale+fondo con stessa statistica presente nei dati contro i risultati ottenuti sul campione ad elevata statistica (syst: fit bias)
 - Risultati sui canali di controllo dei dati contro il valore PDG di FL (syst: efficiency)

Calcolo delle incertezze

- Incertezza statistica determinata con metodo Feldman-Cousins
- Intervalli di confidenza individuati separatamente per P1 e P'5, applicando tale metodo su percorsi monodimensionali
- Questi percorsi (mostrati in figura per P1 e P'5) seguono il profilo della likelihood 2D valutata sui dati e limitata alla regione fisicamente permessa

	CMS Preliminary			20.5 fb ⁻¹ (8 TeV)		
. 0						
^{LL} 0.4	- 10	2.2		∆LL<0.5	_	
-				0.5<∆LL<2	-	
0.2		·····	~· _	∆LL>2	-	
				Phys boundary	-	
0				Gaus2D fit Max profiled I (P'	·.p	
-				Max profiled L(P	5'' 1/⊣ :P') □	
-0.2					- <u>5</u>	
-	T				-	
-0.4					-	
			$\left\{ \left\{ i \right\} \right\}$		-	
-0.6					_	
			HHH	//////	-	
-0.8					-	
					-	
-1	<u></u>				-	
	1.00 < 0	$f^2 < 2.00 \text{ GeV}^2$, , 1	
_	1 -0 8-0 6	S-0 4-0 2 0	02	040608	τιμα λ 1	
	. 0.0 0.0	0.4 0.2 0	0.2	0.7 0.0 0.0	ρ'	
					1	

Systematic uncertainty	$P_1(10^{-3})$	$P_5'(10^{-3})$	•
Simulation mismodeling	1–33	10–23	
Fit bias	5–78	10–119	
MC statistical uncertainty	29–73	31–112	•
Efficiency	17–100	5-65	•
K π mistagging	8–110	6–66	
Background distribution	12–70	10–51	
Mass distribution	12	19	•
Feed-through background	4–12	3–24	
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0–126	0–200	
Angular resolution	2–68	0.1–12	
Total systematic uncertainty	60–220	70–230	-

- MC statistics uncertainty: deviazione dei risultati di fit sui dati con 100 efficienze ottenute da campioni MC rigenerati entro le incertezze statistiche
- **Kπ mistag**: la differenza tra frazione di eventi con errato CP-state misurata su dati e su MC viene valutata sul canale di controllo e propagata nei bin di segnale
- FL, Fs, As uncertainty propagation: utilizzando pseudo-esperimenti ad alta statistica si confronta l'incertezza statistica di P1 e P'5 ottenuta con e senza fissare questi parametri e si riproduce tale effetto sui dati tramite questa incertezza sistematica

Risultati CMS

- Incertezza statistica (barra interna) e totale (barra completa)
- Contributo statistico dominante (tranne in quinto e sesto bin)
- Risultati compatibili con quelli delle altre collaborazioni e in accordo con le predizioni teoriche
- LHCb: JHEP 02 (2016) 104
- Belle-preliminary: arXiv:1612.05014
- SM-DHMV: JHEP 01 (2013) 048, JHEP 05 (2013) 137
- SM-HEPfit: JHEP 06 (2016) 116, arXiv:1611.04338

Analisi in ATLAS [ATLAS-CONF-2017-023]

- Stessa base usata da Belle/LHCb
- Luminosita' integrata: 20.3 fb-1 a $\sqrt{s} = 8 \text{ TeV}$
- Selezione degli eventi:
 - Muoni: $PT > 3.5 \text{ GeV}, |\eta| < 2.5$
 - Tracce (K, π) with PT > 500 MeV, $|\eta| < 2.5$
 - Finestre di massa: K* (K
π) [846,946] MeV; Bd [5150,5700] MeV; q2 [0.04,6] GeV2
 - Candidato Bd: vertice X2 < 2 + significanza della vita media
o(\tau)/\tau (contro combinatorio)
- Diversi triggers basati su singolo, 2μ e 3μ sono stati usati
- Veti in massa su D* e B+ per ridurre la contaminazione da decadimenti parzialmente ricostruiti
- Efficienze calcolate usando polinomi di diverso grado per modellizzare le distribuzioni angolari del segnale in cos θ L, cos θ K e Φ

B0->K*µµ in ATLAS: distribuzioni angolari

• Fit m(Knµµ), cos θ L, cos θ K e Φ nei diversi bin di q2 per estrarre il segnale e i parametri di interesse (FL, Si)

- Proiezioni PDF di segnale (nero) e di fondo (rosso)
- Dati nell'intervallo [0.04,6.0] in q² con le proiezioni per il fit che estrae S5
- 106-128 eventi di segnale per q^2 bin da 2 GeV^2
- Risultati simili in tutti gli altri bin di q^2 e per l'estrazione degli altri parametri

B0->K*µµ in ATLAS: risultati

• Risultati sono limitati dalla statistica raccolta

$q^2 [\text{GeV}^2]$	F_L	S_3	S_4	S_5	S_7	S_8
[0.04, 2.0]	$0.44 \pm 0.08 \pm 0.07$	$-0.02\pm 0.09\pm 0.02$	$0.19 \pm 0.25 \pm 0.10$	$0.33 \pm 0.13 \pm 0.00$	$6 -0.09 \pm 0.10 \pm 0.0$	$-0.11 \pm 0.19 \pm 0.07$
[2.0, 4.0]	$0.64 \pm 0.11 \pm 0.05$	$-0.15\pm 0.10\pm 0.07$	$-0.47 \pm 0.19 \pm 0.10$	$-0.16 \pm 0.15 \pm 0.03$	$5 0.15 \pm 0.14 \pm 0.0$	$9 0.41 \pm 0.16 \pm 0.15$
[4.0, 6.0]	$0.42 \pm 0.13 \pm 0.12$	$0.00 \pm 0.12 \pm 0.07$	$0.40 \pm 0.21 \pm 0.09$	$0.13 \pm 0.18 \pm 0.07$	7 $0.03 \pm 0.13 \pm 0.0$	$-0.09 \pm 0.16 \pm 0.04$
[0.04, 4.0]	$0.52 \pm 0.07 \pm 0.06$	$-0.05\pm 0.06\pm 0.04$	$-0.19 \pm 0.16 \pm 0.09$	$0.16 \pm 0.10 \pm 0.04$	4 $0.01 \pm 0.08 \pm 0.0$	$0.15 \pm 0.13 \pm 0.10$
[1.1, 6.0]	$0.56 \pm 0.07 \pm 0.06$	$-0.04 \pm 0.07 \pm 0.03$	$0.03 \pm 0.14 \pm 0.07$	$0.00 \pm 0.10 \pm 0.03$	$0.02 \pm 0.08 \pm 0.0$	$6 0.09 \pm 0.11 \pm 0.08$
[0.04, 6.0]	$0.50 \pm 0.06 \pm 0.04$	$-0.04 \pm 0.06 \pm 0.03$	$0.03 \pm 0.13 \pm 0.07$	$0.14 \pm 0.09 \pm 0.03$	$0.02 \pm 0.07 \pm 0.0$	$0.05 \pm 0.10 \pm 0.07$
$q^2 \; [\text{GeV}^2]$	P_1	P_4'		P'_5	P_6'	P'_8
[0.04, 2.0]	$-0.06 \pm 0.30 \pm$	$= 0.10$ 0.39 ± 0.5	61 ± 0.25 0.67 :	$\pm 0.26 \pm 0.16 -0.16$	$.18 \pm 0.21 \pm 0.04$	$-0.22 \pm 0.38 \pm 0.14$
[2.0, 4.0]	$-0.78 \pm 0.51 \pm$	$= 0.42 - 0.96 \pm 0.3$	$9 \pm 0.26 -0.33 =$	$\pm 0.31 \pm 0.13$ 0.	$.31 \pm 0.28 \pm 0.19$	$0.84 \pm 0.32 \pm 0.31$
[4.0, 6.0]	$0.00 \pm 0.47 \pm$	$= 0.26$ 0.81 ± 0.4	2 ± 0.24 0.26 =	$\pm 0.35 \pm 0.17$ 0.	$.06 \pm 0.27 \pm 0.13$	$-0.19 \pm 0.33 \pm 0.07$
[0.04, 4.0]	$-0.22 \pm 0.26 \pm$	$= 0.16 -0.38 \pm 0.3$	31 ± 0.22 0.32 =	$\pm 0.21 \pm 0.10$ 0.	$.01 \pm 0.17 \pm 0.10$	$0.30 \pm 0.26 \pm 0.19$
[1.1, 6.0]	$-0.17 \pm 0.31 \pm$	$= 0.14 \qquad 0.07 \pm 0.2$	28 ± 0.18 0.01 :	$\pm 0.21 \pm 0.07$ 0.	$.03 \pm 0.17 \pm 0.11$	$0.18 \pm 0.22 \pm 0.16$
[0.04, 6.0]	$-0.15 \pm 0.23 \pm$	$= 0.10$ 0.07 ± 0.2	26 ± 0.18 0.27 =	$\pm 0.19 \pm 0.07$ 0.	$.03 \pm 0.15 \pm 0.10$	$0.11 \pm 0.21 \pm 0.14$

• Principali incertezze sistematiche arrivano dal trattramento dei fondi: in particolare decadimenti di adroni con charm parzialmente ricostruiti e combinatorio $K\pi$

B0->K*µµ in ATLAS: estrazione dei P'

- Tutti I risultati sono compatibili con le predizioni teoriche e i fit combinati
 - CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116; arXiv:1611.04338
 - DMVH: Decotes-Genon et al.; JHEP **01** (2013) 048; JHEP **05** (2013) 137; JHEP **12** (2014) 125
 - JC: Jäger-Camalich; JHEP **05** (2013) 043; Phys. Rev. **D93** (2016) 014028

Conclusioni & prospettive

- I risultati sul canale Bd → K*µµ ottenuti da ATLAS e CMS sono stati presentati
- I risultati nell'estrazione dei parametri P e P' sono compatibili tra loro (nel range di q² [0-6 GeV²]) e in accordo con le predizioni teoriche
- Tutte le misure sono ancora limitate dalla statistica raccolta
- Strategia sara' di ripetere questa misura con i dati di Run2 estraendo tutti i parametri simultaneamente
 - Combinazione con altri decadimenti legati alla transizione b→sll (e.g. B+→μμK*+, Bs→μμΦ)
 - Possibilita' di avere un binning piu' fine
 - Allargare il range in q2 per ATLAS

Conclusioni & prospettive

- Entrambi gli esperimenti raccoglieranno ~100 fb-1 nel Run2 (~5 fb-1 per LHCb)
- La sezione d'urto di produzione sara' quasi doppia ma:
 - Le soglie di trigger si alzeranno
 - Il fondo combinatorio e il pile-up aumenteranno
- ATLAS:
 - Aggiunto quarto layer (IBL) nel tracciatore interno: miglioramento in risoluzione sul parametro di impatto, precisione in vita media e b-tagging
 - Trigger topologico: riduzione della banda passante mantenendo quasi inalterata l'efficienza sul segnale (in questo canale miglioramento marginale)
 - FastTracK (FTK) (i.e. ricostruzione delle tracce tra L1 e HLT): riduzione del tempo necessario a HLT per individuare i candidati B con risoluzione simile a quella offline
- CMS:
 - Installato quarto layer del pixel detector: migliori risoluzioni su parametri d'impatto e sul displacement dei vertici
 - Trigger topologico a L1 e possibilita` di tagliare sulla massa invariante del sistema dimuonico
 - A High Level Trigger viene richiesto un vertice tra 2 muoni e una traccia

Backup

Risultati CMS

$q^2 (\text{GeV}^2)$	Signal yield	P_1	P_5'
1.00-2.00	80 ± 12	$+0.12^{+0.46}_{-0.47}\pm0.06$	$+0.10^{+0.32}_{-0.31}\pm0.12$
2.00-4.30	145 ± 16	$-0.69^{+0.58}_{-0.27}\pm0.09$	$-0.57^{+0.34}_{-0.31}\pm0.15$
4.30-6.00	119 ± 14	$+0.53^{+0.24}_{-0.33}\pm0.18$	$-0.96^{+0.22}_{-0.21}\pm0.16$
6.00-8.68	247 ± 21	$-0.47^{+0.27}_{-0.23}\pm0.13$	$-0.64^{+0.15}_{-0.19}\pm0.14$
10.09–12.86	354 ± 23	$-0.53^{+0.20}_{-0.14}\pm0.14$	$-0.69^{+0.11}_{-0.14}\pm0.23$
14.18–16.00	213 ± 17	$-0.33^{+0.24}_{-0.23}\pm0.22$	$-0.66^{+0.13}_{-0.20}\pm0.19$
16.00–19.00	239 ± 19	$-0.53^{+0.19}_{-0.19}\pm0.13$	$-0.56^{+0.12}_{-0.12}\pm0.07$

Risultati CMS: profili PDF

Risultati CMS: profili PDF

0.9

cos(θ_i)

Risultati CMS: canali di controllo

Percorsi di applicazione Feldman-Cousins in CMS

2nd q² bin

3rd q² bin

Proiezioni delle efficienze 3D in CMS

Closure-test efficienze in CMS

2nd q² bin: CP-state corretto (sopra) ed errato (sotto)

Risultati ATLAS

Risultati ATLAS: canali di controllo

