

A New Generation Pixel Readout ASIC in 65nm CMOS for HL-LHC experiments

E. Monteil^{1,2}, L. Pacher^{1,2}, A. Paterno'^{1,3}, S. Marconi^{4,13}, F. Loddo⁵, N. Demaria¹, L. Gaioni^{6,10}, F. De Canio^{6,15}, G. Magazzu'⁷, G. Traversi^{6,10}, A. Rivetti¹, M. Da Rocha Rolo¹, G. Dellacasa¹, G. Mazza¹, F. Rotondo¹, R. Wheadon¹, C. Marzocca^{5,8}, F. Licciulli⁵, F. Ciciriello^{5,9}, V. Re^{6,10}, L. Ratti^{6,15}, P. Placidi^{4,13}, A. Stabile¹¹, S. Mattiazzo¹², C. Veri¹⁴

Introduction

Pixel detectors for HL-LHC experiments require the development of a new generation front-end chip to stand unprecedented radiation levels, very high hit rates and increased pixel granularity.

The main requirements for the HL-LHC detectors are:

- Small pixels: $50x50 \ \mu m^2$
- Trigger up to 1 MHz with 12.8 µs latency
- For innermost layer:
 - \circ Pixel hit rate up to 3 GHz/cm²
 - Radiation: 1 Grad in 10 years Ο
 - Data readout up to 4-5 Gbs/s

CHIPIX65 demonstrator

- Main aspects:
- Small and complex 64x64 pixel matrix (50x50 μ m² each) featuring new solutions compatible with RD53A
- Two analog FEs (asynch and synch) \bullet
- A novel digital architecture
- Bias network and monitoring
- Chip configuration based on SPI protocol
- Usage of CERN I/O library

Design flow:

Digital-On-Top chip assembly Top-down hierarchical flow ullet

In this context the CHIPIX65 project has been approved by INFN in fall 2013, with the goals of:

- Developing a CHIP for PIXel detectors in 65nm CMOS technology for the first time in HEP experiments
- Propagate the use of the 65nm technology inside INFN •
- 8 sections involved (Bari, Lecce, Milano, Padova, Pavia/Bergamo, Perugia, Pisa, Torino)
- Funding member of the CERN RD53 collaboration

- Pixel matrix composed of 16x16 pixel regions (master and clone)
- A pixel region contains the digital architecture and the analog FEs

- Synchronous discriminator AC coupled to the first stage
- Offset compensation done with capacitors (no trimming needed)
- Fast ToT using the latch as a local oscillator (up to 800 MHz)

	Inefficiencies (digital) @ 3 GHz/cm ²
Trigger latency	12.8 µs
Particle loss	<0.1%
Single pixel efficiency	99.9% (digitized 5-bit ToT info except for 0.4% with binary info only)
Ghosts probability	<0.03%

- Temperature range: -40°C/80°C
- Irradiated up to 800 Mrad
- Trimming can correct process and radiation-induced variations with a mismatch < 2%

¹ INFN Torino ² Università di Torino ³ Politecnico di Torino ⁴ INFN Perugia ⁵INFN Bari ⁶INFN Pavia ⁷INFN Milano ¹²Università di Padova ¹³Università di Perugia ¹⁴Università del Salento ¹⁵Università di Pavia

IFAE 2017 – XVI Incontri di Fisica delle Alte Energie – Trieste, April 19th-21st 2017