

Ricerca di particelle esotiche a NA62

<u>Marco Mirra</u>

Università degli studi di Napoli Federico II e Sezione INFN Napoli

on behalf of NA62 collaboration

XVI Incontri di Fisica delle Alte Energie

19 Aprile 2017, Trieste, Italia

≻ NA62 experiment

- > Hidden sector searches in NA62
- **Expected sensitivities for the hidden sector**
- > A preliminary result on dark photon
- > Conclusions

NA62 experiment

Kaon physics at CERN:

- ✓ Fixed target experiments at CERN SPS
- ✓ Kaon decay-in-flight

Currently in NA62: ~200 participants 29 institutions from 13 countries

Main goal:

BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement with $\mathcal{O}(10\%)$ precision

SM prediction:

[Buras et al. JHEP 1511(2015)33]

BR $(K^+ \to \pi^+ \nu \overline{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$

Experimental status (E787, E949): BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) = $(17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [*Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)*]

19/04/2017 M. Mirra

Background Process	Branching ratio
$K^+ \to \pi^+ \pi^0$	0.2066
$K^+ \to \mu^+ \nu_\mu$	0.6356
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.0558

19/04/2017 M. Mirra

SPS protons:

400 GeV/c 10¹² Proton on target(PoT)/sec on spill 3.5 sec spill

 $60 \times 30 \text{ mm}^2$ $K^+(6\%)/\pi^+(70\%)/p(24\%)$ 750 MHz at GTK3

400 GeV/c 10¹² PoT/sec on spill 3.5 sec spill 75 GeV/c, 1% bite 100 μrad 60 × 30 mm² *K*⁺(6%)/π⁺(70%)/p(24%) 750 MHz at GTK3 Kaon decay region: 60 m ~5 MHz O(10⁻⁶) mbar

Performances

- ✓ Excellent time resolution O(100 ps) to match beam and daughter particle information
- ✓ **Kinematics:** rejection of main *K* modes 10⁴ via kinematics reconstruction
- ✓ PID capability: μ vs π rejection of O(10⁷) for 15 < p(π^+) < 35 GeV
- ✓ **High-efficiency veto:** 10^8 rejection of π^0 for $E(\pi^0) > 40$ GeV

NA62 timescale for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Run in 2014: pilot run

Run in 2015: commissioning run

- commissioning of L0 trigger
- run up to nominal intensity,
- 33×10^{11} PoT/spill, 3.5 s effective-length spill

Run in 2016: detector commissioning + physics run

- L1 trigger/detecotor final commissioning
- stable run at 40% of the nominal beam intensity
- the goal is to reach SM-expectation sensitivity $O(10^{-10})$

Run in 2017: physics run

• improve on present state of the art (BNL measurement) collecting 14-15 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ events

Run in 2018: physics run

• measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ at 10%

Current run

19/04/2017 M. Mirra

Ricerca di particelle esotiche a NA62 9

> NA62 experiment

> Hidden sector searches in NA62

- **Expected sensitivities for the hidden sector**
- > A preliminary result on dark photon
- > Conclusions

NA62 physics besides $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Such high-intensity, high-performance setup might be suited for other New Physics (NP) searches:

- Lepton flavour violation (LFV) and lepton number violation (LNV) studies with 10^{13} $K^+ \rightarrow$ Single event sensitivity (SES) ~ 10^{-12} , improved by ~ 10^2 on past results
- ultra-rare/forbidden π^0 decays, 10^{11} tagged $\pi^0 \rightarrow SES \ 10^{-10}$, improve by ~ 10^2 chiral perturbation theory studies from other kaon decay

Trigger bandwidth for final states other than " π^+ + E_{miss} " (used for the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$) limited

Some LFV/LNV studies can be performed because involve low-bandwidth trigger

• 3 daughter tracks at SES ~ 10⁻¹¹: $K^+ \rightarrow \pi^+ \mu^\pm e^\mp$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- e^+ e^+$, $K^+ \rightarrow \pi^\pm \mu^\mp \mu^+$

others because can be made in parasitic mode with the main trigger:

- search for heavy neutral leptons in $K^+ \to \mu^+ \nu_h, K^+ \to e^+ \nu_h$
- search for $\pi^0 \rightarrow invisible$, NA62 sensitive at 10⁻⁸ or better

NA62 physics besides $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ in dump mode

A rich field to be explored with minimal upgrades to the present setup: run in "beamdump" mode with NP searches for MeV-GeV mass hidden-sector candidates like Dark photons, Heavy neutral leptons (HNL), Axions/ALP, etc.

High-intensity 400-GeV proton beam: boost charm/beauty, other meson production 10¹⁸ PoT / nominal year: 10^{12} PoT/sec on spill, 100 days/year, 60% run efficiency 10¹⁵ D_(S), 10¹⁴ K, 10¹⁸ $\pi^0/\eta/\eta'/\Phi/\rho/\omega$ with ratios 6.4/0.68/0.07/0.03/0.94/0.95 (& B mesons, too)

NA62 timescale for exotic searches

Present setup for K^+ beam + dedicated triggers: LFV/LNV sensitivity studies based: $K^+ \rightarrow \pi^+ \mu^\pm e^\mp, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes) $\pi^0 \rightarrow \mu e, 3\gamma, 4\gamma, ee, eeee$

Year-long run in "beam-dump" mode, new program of NP searches for MeV-GeV mass hidden-sector candidates: Dark photons, Heavy neutral leptons, Axions/ALP's, etc.

19/04/2017 M. Mirra

Ricerca di particelle esotiche a NA62 13

Hidden sector motivations

If DM is a thermal relic from hot early universe, can hunt for it in particle-physics: **search for non-gravitational interactions DM-SM**

A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions; many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar.. Various experimental hints for hidden sector at MeV-GeV, e.g., a_{μ} 3.5- σ discrepancy:

Feeble interaction: ultra-suppressed production rate, **very long-lived states.** E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ - 10^{-2} s, decay length ~ 10-10000 Km at SPS energies, suppression at production 10^{-7} - 10^{-10}

- ▷ NA62 experiment
- > Hidden sector searches in NA62
- > Expected sensitivities for the hidden sector
- > A preliminary result on dark photon
- > Conclusions

Search for visible decays of long-lived A'

Assume 2×10^{18} 400-GeV PoT:

- search for displaced, dilepton decays of dark photons, $A' \rightarrow \mu\mu$, ee
- include trigger/acceptance/selection efficiency
- assume zero-background, evaluate expected 90%-CL exclusion plot

Search for visible decays of HNL

Assume 2 × 10¹⁸ 400-GeV PoT:

- search for displaced, leptonic decays HNL $\rightarrow \pi e, \pi \mu$
- include trigger/acceptance/selection efficiency
- assume zero-background, evaluate expected 90%-CL exclusion plot

Sensitivity expected to be even higher after including search for other decay channels (semileptonic, hadronic modes)

Search for visible decays of ALP

Assume 1.3×10^{16} (3.9 × 10¹⁷) PoT corresponding to 1 day (1 month) runs:

- study ALP Primakoff production [JHEP 1602 (2016) 018] at target
- search for ALP-decay to $\gamma\gamma$ in NA62 fiducial volume, account for geometrical acceptance
- assume zero-background, evaluate expected 90%-CL exclusion plot

Search for $A' \rightarrow \mu\mu$: test on 2016 data

- Statistics corresponds to ~10¹⁵ PoT
- **Track quality + acceptance cuts:** forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Search for $A' \rightarrow \mu\mu$: test on 2016 data

Statistics corresponds to ~10¹⁵ PoT

Track quality + acceptance cuts: forward detectors, CHOD, LKr, MUV3 associated to CHOD, LKr hits in time

Vertex quality: two-track distance < 1 cm

Vertex position: 105 < Z < 165 m

Test if total momentum stems from target

Further event-level veto conditions: Additional energy in the LKr < 2 GeV Veto on forward / large angle calorimeters Veto on charged anti counter

No events selected in the signal region (even with standard K^+ beam)

19/04/2017 M. Mirra

- ▷ NA62 experiment
- > Hidden sector searches in NA62
- **Expected sensitivities for the hidden sector**
- > A preliminary result on dark photon
- > Conclusions

NA62 2016 data: dark photon from π^0 decay

Decay chain: $K^+ \to \pi^+ \pi^0$, $\pi^0 \to A' \gamma$, $A' \to invisible$

> Signature:

• 1 photon + missing energy

> Selection:

- π^+ as in $K^+ \to \pi^+ \nu \bar{\nu}$
- $15 < p_{\pi^+} < 35 \text{ GeV/c}$
- 1γ in LKr
- Missing momentum in LKr
- Extra γ veto

> Background:

• Negative tail of M_{miss}^2

> Normalization:

• $K^+ \to \pi^+ \pi^0$ from minimum bias

19/04/2017 M. Mirra

NA62 2016 data: dark photon from π^0 decay

Limits observed are statistically compatible with fluctuations from the background-only hypothesis

NA62 limits in an interesting region; #K decays ~ 1.5×10^{10} (4% 2016 statistics) used

19/04/2017 M. Mirra

Ricerca di particelle esotiche a NA62 23

- ≻ NA62 experiment
- > Hidden sector searches in NA62
- **Expected sensitivities for the hidden sector**
- > A preliminary result on dark photon
- > Conclusions

Conclusions

- ✓ NA62 is officially approved to run until LS2 with the main goal of measuring the BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) with 10% accuracy;
- ✓ Before LS2 (2018) many searches in the hidden sector will be performed using the kaon beam (new limits on dark photon already investigated).

 ✓ After LS2 (2020++) there is a window of opportunity to run NA62 in beamdump mode to search for hidden particles from charm and beauty decays and pave the way for the next generation experiments (SHiP/LBNF).
✓ Preliminary studies with data taken in beam and beam-dump modes show that the background can be kept under control, further improvements in the

setup are currently under study.