

XVI Incontri di Fisica delle Alte Energie April 19 - 21, 2017 Università degli Studi di Trieste

Plasma-based Experiments at the SPARC_LAB Test Facility

<u>Enrica Chiadroni</u> (INFN-LNF) on behalf of the SPARC_LAB collaboration

Outline

Motivation and goals

SPARC

- Energy frontier accelerators
- Preservation of beam quality
- Principle of plasma acceleration
- SPARC_LAB Test Facility
 - High brightness photo-injector
- Preparation to plasma-based acceleration experiments
 - External injection of high brightness electron bunches (HBEBs) in both laser-driven and particle driven plasma wakefield (LWFA and PWFA, respectively)
 - * Active plasma lenses for final focusing
 - Preliminary results
- Conclusions

Advanced Accelerator Concepts

- Conventional RF structures reached a practical limit
 - they cannot sustain accelerating gradients larger than ~100 MV/m (X-band structures) due to breakdown on the wall surfaces
- * **Ultra-high gradients** require structures to sustain high fields
 - Plasma-filled structures

SPARC

$$E_{Max}[V/m] = \frac{m_e c \omega_p}{e} \approx 100 \sqrt{n_0 [cm^{-3}]}$$

Scale length of the plasma wake

$$\lambda_p[\mu m] \approx \frac{3.3 \ 10^4}{\sqrt{n_0[cm^{-3}]}}$$

$$n_0 = 10^{16} \div 10^{18} cm^{-3}$$

The **frontier** in modern accelerator physics is based on R&D towards **compacts accelerators**.

Goals

- Plasma-based acceleration has already proved the ability to reach ultrahigh, ~GV/m, accelerating gradients
 - * J. Rosenzweig et al., Phys. Rev. Lett. **61**, 98 (1988): *First experimental demonstration of PWFA*
 - * Mangles, Geddes, Faure et al., Nature **431**, (2004): *The dream beam*

SPARC

- * W. P. Leemans, Nature Physics vol. **2**, p.696-699 (2006): *GeV electron beams from a centimetre-scale accelerator*
- * I. Blumenfeld et al., Nature **445**, p. 741 (2007): *Doubling energy in a plasma wake*
- * P. Muggli et al, in Proc. of PAC 2011, TUOBN3: *Driving wakefields with multiple bunches*
- The next step is the extraction and transport of the beam, preserving its quality, i.e. 6D high brightness, stability and reliability to drive a plasma-based user facility (the <u>EuPRAXIA Design Study</u>* has been funded from EU)
 - * M. Litos et al., Nature **515**, 92 (2014): *High efficiency acceleration in the driver-trailing bunches*
 - * S. Steinke et al., Nature **000** (2016) doi:10.1038/nature16525: *Multi-stage coupling*

enrica.chiadroni@lnf.infn.it

*<u>http://www.eupraxia-project.eu</u>

Plasma Wakefield Acceleration

- An intense, high-energy charged particle beam (driver) drives a high-gradient wakefield as it passes through the plasma
- * The **space-charge** of the electron bunch **blows out plasma electrons**
- * Plasma electrons rush back in and overshoot setting up a plasma density oscillation

$$\omega = \omega_p = \sqrt{\frac{4\pi n_0 e^2}{m_e}}$$

* A second beam (**witness**), injected at the accelerating phase, is then accelerated by the wake

Resonant PWFA

* Bunch spacing depends on the plasma density

Driver
$$\Delta z = \lambda_p$$

 $\lambda_p(\mu m) \approx 3.3 \cdot 10^4 \ n_e^{-1/2} (cm^{-3}) = 330 \ \mu m \ @ n_e = 10^{16} \ cm^{-3}$
Witness $\Delta z' \approx \frac{\lambda_p}{2}$
 $E_z \propto \left(\frac{N}{\sigma_z}\right)^2 N_T \gtrsim GV/m$

Multi-bunch shaping is one of the most promising candidates

- * Increase in energy of a trailing particle
- * Better control of the energy spread

SPARC LAB Test Facility

Sources for Plasma Accelerators and Radiation Compton with Lasers And Beams

High Brightness Photo-Injector

M. Ferrario et al., SPARC_LAB present and future, NIM B 309, 183–188 (2013)

SPARC

High Brightness Photo-Injector

- L. Serafini and M. Ferrario, *Velocity Bunching in Photo-injectors*, Physics of, and Science with the X-Ray Free-Electron Laser, edited.by S. Chattopadhyay et al. © 2001 American Institute of Physics
- M. Ferrario et al., Experimental Demonstration of Emittance Compensation with Velocity Bunching, Phys. Rev. Lett. 104, 054801 (2010)
- **P. O. Shea et al.**, Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.
- **M. Ferrario et al.**, Int. J. of Mod. Phys. B, 2006

SPARC

Generation of multi-bunch trains

Sub-relativistic electrons ($\beta_c < 1$) injected into a traveling wave cavity at zero crossing move more slowly than the RF wave ($\beta_{RF} \sim 1$). The electron bunch slips back to an accelerating phase and becomes simultaneously accelerated and compressed.

SPARC

Start-to-End Simulation

σ_x (W)

Hybrid kinetic-fluid simulation by Architect*

9 × 10

- PIC (bunch), fluid (plasma), 3-5 hours for 3 cm
- Cross-checked with full PIC codes (ALaDyn)

SPARC

*F. Marocchino and F. Massimo, Proc. of the 2nd EAAC (2015) enrica.chiadroni@lnf.infn.it

Courtesy of A. Marocchino, A. R. Rossi

0.02

0.025

Emittance (m rad)

0.025

0.03

6 Energy Spread (%)

0.03

0.02

Active Plasma Lens

- Matching is critical for preserving beam quality, both when the bunch enters the plasma and when it leaves the interaction area
 - Discharge current in a gas-filled capillary

SPARC

The bunch is focused by the azimuthal magnetic field generated by the discharge current, according to Ampere's law

$$B_{\phi}(r) = \frac{1}{2} \int_{0}^{r} \mu_{0} J(r') dr'$$

J. Van Tilborg et al., Phys. Rev. Lett. **115**, 184802 (2015) R. Pompili et al., Appl. Phys. Lett. **110**, 104101 (2017)

Experimental Layout

SPARC

Active Plasma Lens Layout

SPARC

LAB

The arrival time of the electron beam is scanned with respect to the discharge pulse in order to change the active plasma lens focusing.

Measurements & Simulations

SPARC

Images recorded on the screen downstream the capillary with the discharge turned off ($\sigma \approx 100 \mu m$, a) and on, at ID ≈ 45 A ($\sigma \approx 24 \mu m$, b) and ID ≈ 93 A ($\sigma \approx 280 \mu m$, c). (d-f) Simulated transverse profiles obtained on the same screen with the combined use of the GPT and Architect codes.

Non-linear focusing field

The current flows mainly on the axis and thus resulting in a radially nonlinear magnetic field

Envelope scan with 1 cm capillary

Control of emittance growth

Conclusions

* Plasma-based *acceleration provides* ultra-high gradients

SPARC

- Plasma-based *accelerators demand* high brightness beams
 - Many potential applications possible for compact plasma-based accelerators, delivering ultra-short, high peak current electron beams (e.g. FEL, γ rays,...)
- SPARC_LAB is currently preparing the beam-driven plasma acceleration experiment
 - We started investigating the focusing properties of a 3 cm-long active plasma lens, "probed" with an high-brightness electron beam
 - * Full characterization of the bunch 6D phase space for the first time
 - Further investigations are ongoing since plasma-based focusing and extraction transport lines are mandatory for the proper matching to "user" beam lines

Conclusions

- Plasma-based *acceleration provides* ultra-high gradients
 - * Plasma-based *accelerators demand* high brightness beams
 - Many potential applications possible for compact plasma-based accelerators, delivering ultra-short, high peak current electron beams (e.g. FEL, γ rays,...)
- SPARC_LAB is currently preparing the beam-driven plasma acceleration experiment
 - We started investigating the focusing properties of a 3 cm-long active plasma lens, "probed" with an high-brightness electron beam
 - * The next step:

SPARC

Acknowledgements

I wish to acknowledge

*** YOU FOR THE ATTENTION**

- * all my SPARC_LAB colleagues
 - M.P. Anania, M. Bellaveglia, A. Biagioni, M. Croia, D. Di Giovenale, M. Ferrario, F. Filippi, V. Lollo, A. Marocchino, S. Pella, G. Di Pirro, R. Pompili, S. Romeo, J. Scifo, V. Shpakov, C. Vaccarezza, F. Villa (*INFN, Frascati*)
 - * A. Cianchi (INFN and Tor Vergata University of Rome)
 - * A. Giribono, A. Mostacci (Sapienza University of Rome, SBAI)
 - * A. Bacci, A.R. Rossi (INFN, Milano)
 - * A. Zigler (Hebrew University of Jerusalem)

This work has been partially supported by the EU Commission in the Seventh Framework Program, Grant Agreement <u>312453-EuCARD-2</u>, <u>H2020</u> research and innovation program under grant agreement <u>n. 653782</u>, the Italian Minister of Research in the framework of <u>FIRB</u> – Fondo per gli Investimenti della Ricerca di Base, Project <u>n. RBFR12NK5K</u> and the <u>Commissione Scientifica Nazionale V of the INFN</u> as SL_COMB.