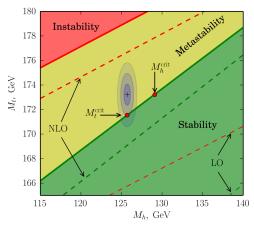
Studio di fattibilità di una misura della massa del quark top in produzione di coppie $t\bar{t}$ nel canale dileptonico ad LHC e a futuri collisionatori adronici

<u>G. Panizzo¹</u>, L. Serkin^{1 2}, M. Cobal^{1 2}


¹INFN & Università di Udine,

²ICTP

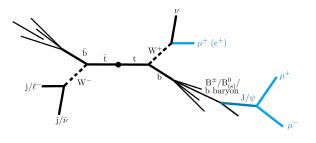
IFAE 2017 Trieste 19 Aprile 2017

Importance of a precise top mass determination

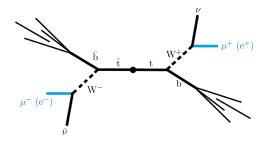
The Top Mass is a sensible parameter of the SM:

See e.g. A.V. Bednyakov,

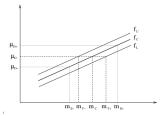
"An advanced precision analysis of the SM vacuum stability", C16-04-12.1 and references therein


Top mass measurements and theoretical biases

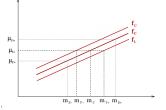
- For a review on methods of top mass measurements: A. Juste et al., Eur. Phys. J., C74, 2014, 3119
- The determination of the top quark mass m_t at hadron colliders is as much dependent on theoretical assumptions as it is on measurements:


$m_t \; (\text{GeV}/c^2)$	Source	$\int \mathcal{L}dt$	Ref. Channel
$172.99 \pm 0.48 \pm 0.78$	ATLAS	4.6	[123] <i>l</i> +jets+ <i>ll</i>
$172.04 \pm 0.19 \pm 0.75$	CMS	19.7	[124] ℓ+jets
$172.47 \pm 0.17 \pm 1.40$	CMS	19.7	[131] <i>ll</i>
$172.32 \pm 0.25 \pm 0.59$	CMS	19.7	[134] All jets
$174.34 \pm 0.37 \pm 0.52$	CDF,DØ (I+II)	≤ 9.7	[145] publ. or prelim
$173.34 \pm 0.27 \pm 0.71$	Tevatron+LHC	$\leq 8.7 + \leq 4.9$	[3] publ. or prelim

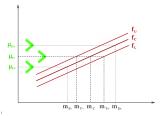
Example: J/Ψ method


- Several methods circumvent the problem studying leptonic observables, in different ways (see also De Santis in this conference): which leptons?
- Consider, *e.g.*, J/Ψ method:
 - Clean final state, only leptonic observables
 - ... but: depends on modelling of hadronisation process

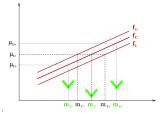
- See Frixione, S. & Mitov, A. J. High Energ. Phys. (2014), reference paper of this talk
- The idea is to study the top mass dependence on *intrinsically* leptonic observables, dilepton channel:


$$\mu^{O}_{(i)} = \frac{1}{\sigma} \int d\sigma O^{i}$$

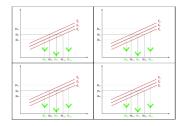
• Theoretical handle: Mellin's moments of *several* leptonic observables, combined.


$$\mu^{O}_{(i)} = \frac{1}{\sigma} \int d\sigma O^{i}$$

• Compute moments dependence on *m_t*


$$\mu^{O}_{(i)} = \frac{1}{\sigma} \int d\sigma O'$$

- Compute moments dependence on *m*_t
- Measure moments


$$\mu^{O}_{(i)} = \frac{1}{\sigma} \int d\sigma O'$$

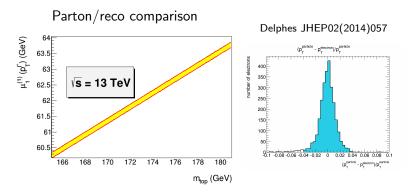
- Compute moments dependence on *m_t*
- Measure moments
- Determine corresponding m_t

$$\mu_{(i)}^{O} = \frac{1}{\sigma} \int d\sigma O^{i}$$

- Compute moments dependence on *m_t*
- Measure moments
- Determine corresponding m_t
- Repeat for different observables, and combine

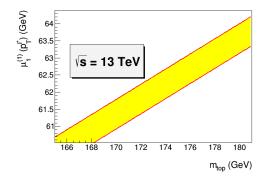
Two directions:

- Derivation of systematic uncertainties associated to the determination of m_t
 - Detector related
 - PDF set choice
- Extension of the Moments computation at Future hadronic colliders (not in this talk):
 - MadGraph_aMC@NLO + Pythia8 + Delphes within the FCCSW+Heppy framework
 - The same study can be recasted as a measurement of PDF at FCC energies
 - Same method to measure different observables at FCC-hh
 - Top partner mass ?


Process generation

- $t \overline{t}
 ightarrow b \overline{b} \mu
 u_{\mu} e
 u_{e}$, 310000 events
- Since we are interested in uncertainties estimations, we produced samples with LO accuracy

First raw selection cuts (moments depend on them):


- Leptons $p_T > 20 GeV$
- Leptons $|\eta| <$ 2.4 Computed variables, up to 4th moment:
 - $p_T^{I^+}$, $p_T(I^+I^-)$, $m_{inv}(I^+I^-)$, $p_T^{I^+} + p_T^{I^-}$, $E_{I^+} + E_{I^-}$
 - New respect to reference paper: $p_T(l^--l^-)$

Hardest lepton p_T , μ_1 , detector related effects:

Related estimated uncertainty: 0.5 GeV (before combination)

Hardest lepton p_T , μ_1 , pdf dependence:

- Related estimated uncertainty: 1.9 GeV at LO (before combination)
- Preliminary, need checks (NLO, statistics)

- Results from different observables have to be combined, taking into account correlations (24×24 matrix)
- As an example, pdf set choice systematic error is computed to be

and is dominated by more sensitive variables, e.g. $p_T^{l^+}$:

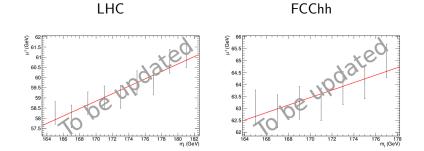
Preliminary results, somehow still affected by numerical statistical uncertainty

Idea of determining m_t using leptonic observables distributions via Mellin's moments

- We are studying systematics associated to this method:
 - First result on pdf set choice: is at the 1.5 GeV, needs checks
- Computed moments at FCChh

Future developments:

- Background effect estimation, unfolding
- Extend study of systematic uncertainties to Initial/Final State radiation and other relevant systematics


BackUp

G. Panizzo, L. Serkin, M. Cobal Report

æ

Э

Hardest lepton p_T , μ_1 , LHC vs FCChh:

Correlation matrix, first moments only

	$\mu_1^{(1)}$	$\mu_{2}^{(1)}$	$\mu_{3}^{(1)}$	$\mu_4^{(1)}$	$\mu_{5}^{(1)}$	$\mu_{6}^{(1)}$
$\mu_{1}^{(1)}$	1	0.396	0.598	0.538	0.776	0.719
$\mu_2^{(1)}$	0.396	1	0.114	0.334	0.504	0.218
$\mu_3^{(1)}$	0.598	0.114	1	0.663	0.774	0.823
$\mu_4^{(1)}$	0.538	0.334	0.663	1	0.694	0.648
$\mu_5^{(1)}$	0.776	0.504	0.774	0.694	1	0.926
$\mu_6^{(1)}$	0.719	1 0.114 0.334 0.504 0.218	0.823	0.648	0.926	1

æ

≣ ।•

2