

Extended Higgs sector @ LHC

Antonio Costantini

IFAE 2017

19 April 2017

Based on

arXiv:1607.01933 [hep-ph] - P. Bandyopadhyay, C. Corianò, A. C. and L. Delle Rose arXiv:1512.08651 [hep-ph] - P. Bandyopadhyay, C. Corianò and A. C. arXiv:1510.06309 [hep-ph] - P. Bandyopadhyay, C. Corianò and A. C. arXiv:1506.03634 [hep-ph] - P. Bandyopadhyay, C. Corianò and A. C.

Hidden Higgs(es)

Charged Higgs Sector

Scala Invariant Extended SM

The Superpotential

 $W_{TNMSSM} = W_{Yuk} + W_{Scal}$

The Superpotential

 $W_{TNMSSM} = W_{Yuk} + W_{Scal}$

$$W_{Yuk} = y_t \hat{U} \hat{H}_u \cdot \hat{Q} - y_b \hat{D} \hat{H}_d \cdot \hat{Q} - y_\tau \hat{E} \hat{H}_d \cdot \hat{L}$$

The Superpotential

 $W_{TNMSSM} = W_{Yuk} + W_{Scal}$

$$W_{Yuk} = y_t \hat{U} \hat{H}_u \cdot \hat{Q} - y_b \hat{D} \hat{H}_d \cdot \hat{Q} - y_\tau \hat{E} \hat{H}_d \cdot \hat{L}$$

$$W_{Scal} = \lambda_T \hat{H}_d \cdot \hat{T} \hat{H}_u + \lambda_S \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{\kappa}{3} \hat{S}^3 + \lambda_{TS} \hat{S} \operatorname{Tr}[\hat{T}^2]$$

$$\hat{T} = \begin{pmatrix} \sqrt{\frac{1}{2}} \hat{T}^0 & \hat{T}_2^+ \\ \hat{T}_1^- & -\sqrt{\frac{1}{2}} \hat{T}^0 \end{pmatrix}, \qquad \hat{H}_u = \begin{pmatrix} \hat{H}_u^+ \\ \hat{H}_u^0 \end{pmatrix}, \qquad \hat{H}_d = \begin{pmatrix} \hat{H}_d^0 \\ \hat{H}_d^- \end{pmatrix}$$

A Global U(1) Symmetry

$$V_{soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + m_T^2 |T|^2 + m_Q^2 |Q|^2 + m_U^2 |U|^2 + m_D^2 |D|^2 + (A_S SH_d.H_u + A_\kappa S^3 + A_T H_d.T.H_u + A_{TS} STr(T^2) + A_U UH_U.Q + A_D DH_D.Q + h.c)$$

A Global U(1) Symmetry

$$V_{soft} = m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + m_T^2 |T|^2 + m_Q^2 |Q|^2 + m_U^2 |U|^2 + m_D^2 |D|^2 + (A_S SH_d.H_u + A_\kappa S^3 + A_T H_d.T.H_u + A_{TS} STr(T^2) + A_U UH_U.Q + A_D DH_D.Q + h.c)$$

If the $A_i \rightarrow 0$ there is a global U(1) symmetry

$$(\hat{H}_u, \hat{H}_d, \hat{T}, \hat{S}) \rightarrow e^{i\phi}(\hat{H}_u, \hat{H}_d, \hat{T}, \hat{S})$$

Breaking softly this extra symmetry with $A_i \sim 1$ GeV we have a light pseudoscalar, $m_{a_1} \sim 10$ GeV

The Structure of the Physical Higgses

$$\begin{aligned} h_i &= \mathcal{R}_{ij}^S H_j, \quad h_i = (h_1, h_2, h_3, h_4) \quad H_i = (H_{u,r}^0, H_{d,r}^0, S_r, T_r^0) \\ a_i &= \mathcal{R}_{ij}^P A_j, \quad a_i = (a_0, a_1, a_2, a_3) \quad A_i = (H_{u,i}^0, H_{d,i}^0, S_i, T_i^0) \\ h_i^{\pm} &= \mathcal{R}_{ij}^C H_j^{\pm}, \quad h_i^{\pm} = (h_0^{\pm}, h_1^{\pm}, h_2^{\pm}, h_3^{\pm}) \quad H_i^{+} = (H_u^{+}, T_2^{+}, H_d^{-*}, T_1^{-*}) \end{aligned}$$

$$h_i|_D = (\mathcal{R}_{i,1}^S)^2 + (\mathcal{R}_{i,2}^S)^2, \ a_i|_D = (\mathcal{R}_{i,1}^P)^2 + (\mathcal{R}_{i,2}^P)^2$$

$$h_i|_S = (\mathcal{R}_{i3}^S)^2, \,\, a_i|_S = (\mathcal{R}_{i3}^P)^2$$

$$h_i|_T = (\mathcal{R}_{i4}^S)^2, \; a_i|_T = (\mathcal{R}_{i4}^P)^2$$

 $h_i^{\pm}|_D = (\mathcal{R}_{i1}^{C})^2 + (\mathcal{R}_{i3}^{C})^2, \ h_i^{\pm}|_T = (\mathcal{R}_{i2}^{C})^2 + (\mathcal{R}_{i4}^{C})^2$

A Tipical Mass Spectrum

 h_3^{\pm} h_2^{\pm} h_1^{\pm}

Pseudoscalar Pair

Gluon Fusion Production

Benchmark Points

Benchmark	BP1	BP2	BP3	
Points				
<i>m</i> _{<i>h</i>1}	~ 125	~ 125	117.73	
<i>m</i> _{<i>h</i>₂}	183.58	162.59	~ 125	
m _{a1}	20.50	57.02	36.79	

$$\mathcal{B}r(a_1 \to \bar{b}b) \sim 94\%$$
 $\mathcal{B}r(a_1 \to \bar{\tau}\tau) \sim 6\%$

Results

Number of events at 100 fb^{-1} for c.m.e. of 14 TeV.

Final states	Benchmark				Backgrounds			
	BP1	BP2	BP3	tī	ZZ	Zh	bbh	bbZ
$n_j \leq 5 \left[2b_{ m jet} + 2 au_{ m jet} ight] \& p_T' \leq 30 \; { m GeV}$	220.10	591.46	310.19	1824.08	199.50	39.56	11.87	4903.05
$\& p_{\mathcal{T}}^{bj_{1,2}} \leq 50 { m GeV} \ \& m_{bb} - m_{\mathcal{Z}} > 10 \; { m GeV}$	211.30	568.14	289.02	410.83	73.04	7.87	3.96	2941.83
$\& m_{bb} - m_{h_{125}} > 10 \; { m GeV}$	211.30	565.32	289.02	386.18	73.04	7.52	3.96	2614.96
$\& m_{ au au} - m_Z > 10 \; { m GeV}$	211.30	560.37	289.02	312.23	62.13	6.29	3.46	2397.04
& $ m_{ au au} - m_{h_{125}} > 10~{ m GeV}$	211.30	560.37	289.02	287.58	62.13	6.18	2.97	2397.04
& $m_{ au au}<$ 125GeV	211.30	560.37	289.02	254.71	62.13	6.18	2.97	2397.04
& m _{bb} < 125GeV	211.30	559.66	289.02	230.06	62.13	6.07	2.97	2288.09
Significance	4.00	9.98	5.39					
& $p_1 : m_{bb} - m_{a_1} \le 10 \text{GeV}$	198.82	281.95	216.04	24.65 65.73 65.73	0.00 26.16 8.72	0.22 1.46 1.34	0.49 0.49 1.00	326.87 1307.48 435.83
Significance	8.47	6.87	8.01					
$\& p_2: m_{\tau\tau} - m_{\vartheta_1} \le 10 \text{GeV}$	205.29	229.66	203.63	65.73 73.95 41.08	3.27 28.34 13.08	0.33 1.46 1.57	0.00 0.49 1.48	0.00 762.70 0.00
Significance	12.40	6.94	12.65					

Hidden Higgs(es)

Charged Higgs Sector

Scala Invariant Extended SM

$h^{\pm} \rightarrow W^{\pm}Z$

Theories with triplets have a tree-level vertex $h_i^{\pm} - W^{\mp} - Z$ which breaks the custodial symmetry. In our case it's

$$g_{h_i^{\pm}W^{\mp}Z} = -\frac{i}{2} \left(g_L g_Y \left(v_u \sin\beta \mathcal{R}_{i1}^C - v_d \cos\beta \mathcal{R}_{i3}^C \right) + \sqrt{2} g_L^2 v_T \left(\mathcal{R}_{i2}^C + \mathcal{R}_{i4}^C \right) \right)$$

The on-shell decay width is

$$\Gamma_{h_{i}^{\pm} \to W^{\pm}Z} = \frac{G_{F} \cos^{2} \theta_{W}}{8\sqrt{2}\pi} m_{h_{i}^{\pm}}^{3} |g_{h_{i}^{\pm}W^{\mp}Z}|^{2} \sqrt{\lambda(1, x_{W}, x_{Z})} \left(8 x_{W} x_{Z} + (1 - x_{W} - x_{Z})^{2}\right)$$

where
$$\lambda(x, y, z) = (x - y - z)^2 - 4 y z$$
 and $x_{Z,W} = \frac{m_{Z,W}^2}{m_{h_i^\pm}^2}$.

 $g_{h_i^{\pm}W^{\mp}Z}$

Charged Higgs Pair Production

The production processes for the charged Higgs pair are

Charged Higgs Pair Production

The production processes for the charged Higgs pair are

 Z, γ contibution to $\sigma(h_1^{\pm}h_1^{\mp})$

$g_L \cos \theta_w$	$\frac{g_L}{2} \frac{\cos 2\theta_w}{\cos \theta_w}$
$W^{\pm} - W^{\mp} - Z$	MSSM - like

(Preliminary) Results

Decay Chappels			# of Events		
Decay channels		Signal	Backgrounds		
		$\geq 3\ell + 2 au + ot\!$	1	6	
		$\geq 3\ell + 2b + ot\!$	21	39	
P2	$a_1 W^{\pm} au u_{ au}$	$3 au+1\ell+ ot\!$	13	< 1	
$\boxed{\overline{\mathbf{D}}}$ $a_1 W^{\pm} a_1 W^{\mp}$		$2b+2 au+2\ell+ ot\!\!\!/_T$	164	38	
	$ZW^{\pm} \tau \nu_{\tau}$	$1 au + 3\ell + \not\!\! E_T$	9	19	
BP3	$Z W^{\pm} Z W^{\mp}$	$\geq 5\ell + \not\!\! E_T$	228	23	
		$\geq 1\ell + 2b + 2 au + ot\!$	29	246	

Hidden Higgs(es)

Charged Higgs Sector

Scala Invariant Extended SM

Classical Scale Invariant Extension of the SM

$$\mathcal{L}_{int} = -rac{1}{\Lambda}
ho T^{\mu}_{\mu\,SM}$$

Constrainign the Breaking Scale Λ ...

$$\sigma_{gg \to \rho} = \sigma_{gg \to H} \frac{\Gamma_{\rho \to gg}}{\Gamma_{H \to gg}}$$

$$\frac{\Gamma_{\rho \to gg}}{\Gamma_{H \to gg}} = \frac{v^2}{\Lambda^2} \frac{m_\rho^3}{m_H^3} \frac{|\beta_{QCD} + x_t \left[1 + (1 - x_t) f(x_t)\right]|^2}{|x_t \left[1 + (1 - x_t) f(x_t)\right]|^2}$$

... from Heavy Higgs Searches @ LHC

 $\Lambda\gtrsim 5\,{\rm TeV}$

Results

Final states	Benchmark	Backgrounds				
	BP1	tī	tτΖ	tZW	VV	VVV
$\geq 3\ell + p_T' \leq 30 \mathrm{GeV}$	494.97	275.52	65.17	22.29	6879.42	765.11
$+ m_{II} - m_Z < 5 \mathrm{GeV}$	384.47	68.88	62.68	20.93	2514.92	16.16
$+n_{bjet} = 0$	377.56	9.84	17.64	10.08	2479.66	15.13
Significance	7.00					
\mathcal{L}_5	$51 {\rm fb}^{-1}$					
$\geq 4\ell + p_T \leq 30 \mathrm{GeV}$	273.96	0.00	3.32	1.36	1655.99	34.18
$+\left m_{II}-m_{Z} ight <5{ m GeV}$	218.71	0.00	3.11	1.16	627.38	4.44
Significance	7.48					
\mathcal{L}_5	45 fb ⁻¹					

Thanks

