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Divide and conquer ?

• Spin Models
– find communities like magnetic domains

• Flow trapping
– define dynamics and observe stagnation

• Minimum-cut methods
– find communities with minimum inter-linkage

• Hierarchical clustering
– join recursively less and less connected communities

• Girvan–Newman algorithms
– remove links among communities

• Modularity maximization
– maximize target function over communities

 



Spin Models

Potts model with q statesσi ∈ {1 . . . q}; each state correspond to a
possible community. Order parameter are the fraction of nodes in
the state s i.e. ns = n−1∑ δσi s .

H = −J
∑
ij

Aijδσiσj + λ

q∑
s=1

ns (ns − 1)
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To find the communities, minimise H

I classical ferromagnetic Potts model energy favouring spin
alignment

I second term favours homogeneously distributed spins
I the ratio γ/J allows to tune the fragmentation of the system



Walktrap

I Random walk is described by probability flows
I The transition matrix M = D−1A is Markov
I Strong flows in clusters, weak flows in-between

Walktrap uses short random walks of length t to detect
communities:

I Calculate the matrix Pt giving the probability of going from a
node to another in t random walk steps

I Define a distance among nodes based on Pt

I Use clustering algorithms (Ward’s method) to find
communities



Markov Clustering

I Random walk is described by probability flows
I The transition matrix M = D−1A is Markov
I Strong flows in clusters, weak flows in-between

MCL enhances strong flows, by repeating the following step:
I Expansion: M → ΦqM = Mq

I corresponds to perform q random walk steps
I Inflation: Mij → (Mij)

r/
∑

j(Mij)
r

I non-linear operator that sends to 0 smaller values of Mij

until M has converged to its fixpoint

M∗ = Γr ΦqM∗



Laplacian

A adjacency matrix

sparse matrix with Aij = 1 iff nodes i and j are linked

D degree matrix

diagonal matrix with Dii =
∑

j

Aij degree di of node i

L Laplacian matrix

L = D − A



Laplacian and Diffusion

I Diffusion in the network is dictated by the Laplacian matrix

∂tρ = −Lρ

I The eigenvalues of L are λ1 = 0 ≤ λ2 ≤ . . . ≤ λN

The first non-zero eigenvalue λ2 is the inverse timescale of slowest
mode of diffusion (the most extended mode). In general, we can
think of λ−1

2 as the timescale after which a perturbation (like the
infection of a site) that spreads diffusively will settle a new state
(like an epidemics) in the whole network.



Laplacian and vibration

I Network vibrations are dictated by the Laplacian matrix

∂2
t ρ = −Lρ

I Synchronizability is linked to the spectrum of L
I Controllability is linked to the spectrum of L



Minimal Cut

A partition of the nodes into two sets can be represented by a
vector ~x with xi ∈ {−1, 1}

I V+ sites with xi > 0
I E+ links between nodes in V+

I ∂V sites at the border of the partitions
I ∂E links among V+ and V−

Min-Cut
find minH [~x ] s.t. xi ∈ {−1, 1}

H [~x ] =
n.n.∑
ij

(
xi − xj

2

)2

=
~xL~x
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Min-Cut & Laplacian

Relax the min − cut conditions and let ~x ∈ RN s.t ‖~x‖ = 1. ; then
I can look at the eigenvectors ~uα of L
by expressing ~x =

∑
α

aα~uα we get the relation

~xL~x =
∑
α

a2
αλi ≥ λ2 ‖~x‖2 = λ2

therefore the minimal solution is ~u2



Eigenvectors & Partitions

Laplacian eigenvectors ~uα are zero sum and orthogonal∑
i

(~uα)i = 0 , ~uα ∗ ~uβ ∝ δαβ

hence for each node i and for each α < n I have the signature

si (α) = [sign (~u1)i , sign (~u2)i , . . . , sign (~uα)i ]

that assumes 2α different values; grouping the node i ∈ V
according to their signature si (α), we can divide the graph in at
most 2α clusters



Square Lattice



Triangular Lattice



Random Planar Lattice



Girman-Newman method

The idea is that edges with
high edge betweeness are kind
of bridges that are mostly likely
“between” the communities
1. Calculate edge betweeness
2. Remove edge with highest

betweeness
3. If there are still edges

repeat from step
One can also fix in advance the
number of communities as a
stopping criterion
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Ward’s method: hierarchical clustering

The idea is to start from
clusters formed by singletons
(single nodes) as the lowest
level of the hierarchy and join
“nearby” clusters

I Define a distance among
sets of nodes

I h = 0: each node is a
single cluster

I h > 0: join the two
clusters of level h− 1 with
minimum distance in a
new cluster of level h
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Communities vs Core



Modularity

I The maximum number q of possible community is fixed
I The variable si ∈ {1 . . . q} indicates to which community the

node i belongs
I Community are found by minimizing MODULARITY

Q =
1

2|E |
∑
ij

(
Aij −

didj

2|E |

)
δsi sj

I Aij is the observed number of edges among i , j
I didj/2|E | is the expected number of edges among i , j if edges

are taken at random
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Community Structure
Fundamental open questions  
even for the most basic models 
of community detection:
• Are there really clusters or 

communities? Most algorithms 
will output some community 
structure; when are these 
meaningful or artefacts?

• Can we always extract the 
communities, fully or 
partially?

• What is a good benchmark to 
measure the performance of 
algorithms, and how good are 
the current algorithms?


