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Some General Properties

Random variable: integer (usually called r) or real (usually called x)
Pr is probability of r . Dimensionless numbers.

∑
Pr = 1

P(x) is probability density for x . [P(x)] = [x ]−1.
∫
P(x) dx = 1

Expectation values < f >=
∑

f (r)Pr or
∫
f (x)P(x) dx

Measures of Location

Mean: µ =< x >
Mode: P(mode) = max(P(x))

Median:
∫ median

P(x) dx = 0.5
Measures of Scale

σ =
√
< (x − µ)2 > =

√
< x2 > − < x >2

FWHM=Full Width Half Max
Inter-quartile range
Other stuff

Skew: γ = <(x−µ)3>
σ3

Kurtosis: K = <(x−µ)4>
σ4 − 3

Moments: MN =< xN >,µN =< (x − µ)N >
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More than one variable: Joint distributions

Two variables
Covariance Cov(x , y) =< xy > − < x >< y >

Correlation ρ = Cov(x ,y)
σxσy

Several variables
Covariance Cij =< xixj > − < xi >< xj >

Correlation ρij =
Cij

σiσj

Diagonals: Cii = σ2
i , ρii = 1

Can be shown that: |ρ| ≤ 1
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The Poisson

Memoryless random source. Mean number µ. Actual number r

P(r ;µ) = e−µ
µr

r !
Classic example: Geiger counter clicks
Also: Prussian soldiers killed by horses. Photomultipliers. Rare decays
Counterexamples: photons from lasers. Traffic (especially buses).

Vital fact: σ =
√
µ

Small µ: 0 is mode
µ > 1: peak develops
Distribution has positive skew -
tail to high values
Large µ: shape becomes Gaussian
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The Gaussian
or Normal Distribution

P(x ;µ, σ) = 1√
2πσ

e−
(x−µ)2

2σ2

(Inaccurately) called the ’Bell curve’

µ is mean and mode and median
σ is standard deviation

68.27% of area within 1 σ
so 1/3 of error bars should miss!

95.45% of area within 2 σ
99.73% of area within 3 σ

Describes: large µ Poisson, measurement errors, height, IQ...
Vital fact: Thanks to Central Limit Theorem: convolution of N random
variables P(x) tends to Gaussian for large N, irrespective of P(x).
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Demonstrating the CLT

Exercise: using your favourite package (ROOT, Python, Matlab, R,
whatever) generate many uniform random numbers and histogram them.
Get flat plot, very non-Gaussian. Then generate pairs and add them - get
triangular shape. Then triples. Then tens, Looks pretty Gaussian...
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Central Limit Theorem: the proof
Optional: skip this slide if you’re lazy or stupid...

Show: if you convolute P(x) with itself N(→∞) times you get a Gaussian
Given P(x), Fourier Transform is P̃(k) =

∫
P(x)e ikx dx =< e ikx >

Expand and separate: 1 + ik < x > + (ik)2

2! < x2 > + (ik)3

3! < x3 > ...

Take the logarithm, and use ln(1 + z) = z − z2

2 + z3

3 ...

Get series in k : lnP̃(k) = (ik)κ1 + (ik)2

2! κ2 + (ik)3

3! κ3 + ... where the κr
(”semi-invariant cumulants of Thiele”) are made of expectation values of x to the
r th power. κ1 =< x >= µ,κ2 =< x2 > − < x >2= σ2, etc
Semi-invariant? Location only changes κ1, scaling by factor α, κr → αrκr
Fact: The FT of a convolution is the product of the individual FTs.
So the log of the FT of a convolution is the sum of the logs and Kr = Nκr .
To discuss shape, scale by standard deviation

√
K2

K ′
2 = 1, K ′

r = Kr/
√
K2

r
= Nκr/(Nκ2)r/2, vanishes as N →∞ for r > 2.

So in the large N limit all Kr with r ≥ 3 vanish, the log of the FT is quadratic:
the FT itself is the exponential of a quadratic, i.e. a Gaussian.
Transforming, the (back) FT of a Gaussian is also a Gaussian. QED.
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Real world Gaussians(1)

Distribution of heights
Nice Gaussian
distribution

Roger Barlow (Huddersfield University) Distributions 7th May 2017 9 / 25



Real world Gaussians(2)

Distribution of weights
.Not really Gaussian.
Definite positive skew.
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Real world Gaussians(3)

Distribution of income
(per household, in US.
Other examples are
similar). Totally
non-Gaussian.
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The Binomial

Probability of r ‘successes’ from n trials, each with probability p.
P(r ; n, p) = n!

r !(n−r)!p
rqn−r with q ≡ 1− p

µ = np σ =
√
npq

Limit: n large, p small, np = µ fixed P(r)→ Poisson
Vital Fact: Basically just like tossing coins
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The Uniform
or Top Hat

Generally, P(x) = 1
a between µ− a/2 and µ+ a/2

Vital fact: Standard Deviation σ = a√
12
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The Breit-Wigner
or Cauchy or Lorentzian

P(x) = 1
π

1
1+x2

P(E ;M, Γ) = 1
2π

Γ
(E−M)2+(Γ/2)2

Does not have a standard deviation!
integral diverges

FWHM=Γ
for a Gaussian, FWHM=2.35 σ,
hence use of ‘σ’=Γ/2.35

Vital fact: Useful for describing measurements that should be Gaussian
but aren’t
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The log-normal

P(x) = 1√
2πσx

e−
(ln x−µ)2

2σ2

where µ and σ are mean and sd of ln x

Vital fact: Applies(thanks to CLT) when effect of many factors combine
multiplicatively
Example: energy measured in calorimeter with x = E0 − E
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The Negative Binomial

Coin-tossing again. This time ask ’How many successes before k failures?’

All plots here have p = 0.5

P(r ; k , p) = (k+r−1)!
r !(k−1)! p

rqk

Can write factor as (−1)r rC−k
(hence unhelpful name)

or as Γ(k+r)
Γ(k)r !

generalise to non-integer k
don’t ask what that means

Vital fact: Used to describe events where σ >
√
N

i.e. more spread out than Poisson.
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The Weibull

P(x ;α, β) = αβ(αx)β−1e−(αx)β

Devised to describe the lifetime of lightbulbs

’Failure rate’ ∝ xβ−1

β < 1: weak die early (‘burn in’)

β = 1: constant rate (rad. decay)

β > 1: aging process

α is just a scale factor

Vital fact: Handy as a way of parametrising rise-and-fall shapes
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The χ2

Much more on this in later lectures!

χ2 =
∑N

1

(
xi−µi
σi

)2
(xi Gaussian)

Measures agreement between xi and µi
Vital fact: χ2 = N, but big spread
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Generating Random Distributions
Starting with the Uniform

Need (pseudo) random number generator for simulations: from Geant4 to
Toy Monte Carlo.
All systems seem to contain a function that produces uniform random
numbers between 0 and 1 - may be called
ran(),ranf(),rnd(),runif(),?,TRandom,TRandom3...

Doesn’t look random, does it?
Very easy to see structure!
(Hence the need for Blind Analyses)
Try it yourself!
Extension to other uniform distributions
is trivial
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Technical detail

Such functions all based on generator of random integers, then mapped
into [0, 1].
Classical Method: Linear Congruential Generator (TRandom)
Rn+1 = (aRn + b)|c
with a, b, c suitably chosen. (c generally 264 or 232 )
Start with some ’seed’ R0

(If you want a really random number, use the clock as the seed.)

Drawbacks: repeats with cycle of 264 or 232 - large but not always large
enough. Particular R will never recur till the cycle repeats.
Modern methods: Mersenne Twister(TRandom3) (and its successors).
Large random state from which 62 or 32 bit number extracted.
Even more complicated random numbers used and needed for encryption.
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Other distributions

Suppose you’ve got a [0, 1] random number U
For random direction:
φ = 2πU1 θ = acos(2U2 − 1)
The Exponential
Needed to generate decays (with time) and interactions (with distance). If
the rate is r then x = −r ln(U)
The Gaussian To get a ‘unit Gaussian’ (µ = 0, σ = 1)
Lazy way: Add 12 instances of U and subtract 6

Why does this work?
Smart way: Generate U1 and U2. Form R = − lnU1, θ = 2πU2

Then R cos θ and R sin θ are both Gaussian random numbers (and
uncorrelated!)
Best way: Use the Gaussian generator provided by the system.
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General functions
1: Inversion

From desired P(x), form cumulative distribution C (x) =
∫ x

P(x ′) dx ′

Generate uniform u in [0, 1] and find x such that C (x) = u

Example: To generate pdf P(x) = 0.4 + 0.1x with xε[0, 2]
C (x) = 0.4x + 0.05x2

.05x2 + 0.4x − u = 0
x = −.4+

√
.16+.2u

0.1
Works great if you can (1) integrate P(x) to get C (x) and (2) invert
u = C (x) to get x = C−1(u)
If not possible analytically, numerical methods may be used
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General functions
2: von Neumann sampling

Generate x uniformly over range
Generate r uniformly between 0 and M,
where M ≥ max(P(x))
If P(x) > r , accept.
Else reject and try again

Works easily for multidimensional functions.
If M is overestimated, method is still valid (just a hit in the efficiency)
Can be very inefficient if P(x) has sharp peaks-
may be improved by generating x according to some P0 and using
P(x)/P0(x) in the acceptance comparison
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General functions
3: Weighting

Not all events need to be equal!
Generate x uniformly and weight the event by P(x)
when filling histograms, forming sums, etc, include the weight.
Can be effective when simulating low-probability processes that reject a lot
of events.
More work, but not as hard as it looks.

Doesn’t always help...

Poisson error on a weighted number is
√

Nw2, always bigger than
√
Nw ,

i.e. error worse than pure Poisson σ =
√
N.

If weights all much the same, not a problem.
If a few events with enormous weights dominate, get big statistical errors.
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Conclusions

There are many distribution for you to use - very big toolkit

Sometimes founded on dynamics of the problem

Sometimes empirical, found by experience to have useful behaviour in
particular circumstances

Be open-minded and on the lookout for new ones!
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