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No free lunch



Terminology

Machine Learning is about learning algorithms𝐴 that:

› defined on sample set𝒳 (e.g. ℝ𝑛) and targets 𝒴 (e.g. {0, 1});
› take a problem (dataset)𝐷 = (𝑋, 𝑦) ⊆ 𝒳× 𝒴;
› learn relation between𝒳 and 𝒴;
› and return prediction function:

𝐴(𝐷) = 𝑓
𝑓 ∶ 𝒳 → 𝒴
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No free lunch theorem

No free lunch theorem states that on average by all datasets all learning algorithms are
equally bad at learning.
Examples:

› crazy algorithm:

𝑓(𝑥) = ⌊(⌈∑
𝑖

𝑥𝑖 + 𝜃⌉ mod 17 + 1027)
𝜋

⌋ mod 2

› SVM

perform equally well on average.
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IQ test: try to learn yourself!
First question from MENSA website:
Following the pattern shown in the number sequence below, what is the missing number?

1, 8, 27, ?, 125, 216

Possible answers:

› 36

› 45

› 46

› 64

› 99
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IQ test: try to learn yourself!

First question from MENSA website:
Following the pattern shown in the number sequence below, what is the missing number?

𝑋train 1 2 3 5 6
𝑦train 1 8 27 125 216

𝑋test = (4, )
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IQ test: try to learn yourself!

My solution:

𝑦 = 1
12(91𝑥

5 − 1519𝑥4 + 9449𝑥3 − 26705𝑥2 + 33588𝑥 − 14940)

› fits perfectly!

My answer:

› 99
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No free lunch theorem

Possible learning algorithm behaviours in problem space:

› + - better than the average;

› — - worse than the average.
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Are Machine Learning algorithms useless?
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Are Machine Learning algorithms useless?

No.
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Are Machine Learning algorithms useless?

› No Free Lunch theorem applies to:
› one learning algorithm;
› against all possible problems.

› in real world we have:
› data scientist with prior knowledge of the world;
› problem description;
› data description;
› a set of standard algorithms.

Andrey Ustyuzhanin, Maxim Borisyak, Mikhail Usvyatsov, Alexander Panin 11



Traditional Machine Learning (simplified)
› analyse the problem and make assumptions;
› pick an algorithm from a toolkit (e.g. logistic regression);
› provide assumptions suitable for the algorithm (feature engineering).

Logistic
Regression
domain

prior
problem
domain

feature
engineering
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Discussion

› this approach works well for traditional datasets with a small number of features:

› e.g. Titanic dataset:

passenger class name sex age fare …

Essentially, performance of the algorithm depends on:

› knowledge of the domain;

› feature generation skills;

› understanding of assumptions behind standard algorithms.
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Kitten
Let's try to detect kittens!
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Kitten seen by a machine

[[ 22 25 28 32 29 ..., 58 36 35 34 34]
[ 26 29 30 31 36 ..., 65 38 42 41 42]
[ 27 28 31 30 40 ..., 84 58 51 52 44]
[ 27 26 27 29 43 ..., 90 70 60 57 43]
[ 20 26 28 28 31 ..., 83 73 62 52 45]
...,
[173 187 180 183 184 ..., 170 227 244 219 199]
[193 199 194 188 185 ..., 181 197 201 209 187]
[175 177 156 166 171 ..., 226 215 194 185 182]
[161 159 160 187 178 ..., 216 193 220 211 200]
[178 180 177 185 164 ..., 190 184 212 216 189]]
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Solution?

› edge detection;

› image segmentation;

› eyes, ears, nose models;

› fit nose, ears, eyes;

› average color of segments;

› standard deviation of color segments;

› goodness of fit for segments;

› kitten's face model;

› logistic regression.

* not an practical solution 16



Solution?

original dataset
prior 
problem domain

solved well by
logistic regression

Problem space



Solution?

Perhaps, more Machine Learning and less Human
Engineering?
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Deep Learning



Deep Learning

Let's learn features!
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Deep Learning

F1

F2

softmax

input

Log. Regression
domain

Prior problem 
domain

F1
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Deep Learning
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Kitten
Traditional approach:

› edge detection;

› image segmentation;

› fit nose, ears, eyes;

› average, standard deviation of
segment color;

› fluffiness model;

› kitten's face model;

› logistic regression.

Deep Learning:

› non-linear transformation;

› another non-linear transformation;

› non-linear transformation, again;

› non-linear transformation, and again;

› non-linear transformation (why not?);

› logistic regression.
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Deep Learning

› is not a superior algorithm;

› is not even a single algorithm;

› is a framework;

› allows to express our assumptions in much more general way.
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Why DL rocks

› can crack much harder problems;
› it is easier to formulate models for features than features itself;

› easy to construct networks:
› merge together;
› bring new objectives;
› inject something inside network;
› build networks inside networks;
› any differentiable magic is allowed.
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Example
A problem contains groups of features:

› image;

› sound features;

Prior knowledge:

› features from different group should
not interact directly;

Example of a solution:

› build a subnetwork upon each group
of features;

› merge them together.
feature group 1 feature group 2
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Almost Free Lunch



Machine Learning Algorithm

› parametrized model - how to produce predictions;

› search procedure:
› initial guess for parameters;
› optimization procedure.
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Hacking model
› hacking layers:

› restrictions on weights: convolutions, ...;
› new operations: pooling, kernels, ...;
› specific unit behaviour: GRU, LSTM units;

› combining layers, architecture of network;

Images show: U-net, ladder net, end-to-end memory network. 29



Hacking model

› restrictions on search space:
› regularization, e.g.:

ℒ = ℒcross−entropy + 𝛼‖𝑊‖22
› regularization with respect to solution𝑊0 of a similar problem:

ℒ = ℒcross−entropy + 𝛼‖𝑊 −𝑊0‖22
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Hacking search procedure
› SGD-like methods:

› adam, adadelta, adamax, rmsprop;
› nesterov momentum;

› quasi-Newton methods;
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Hacking search procedure

› data augmentation:
› shifts, rotations, ...:

› searching for a network that labels shifted, rotated, ... samples the same
way as original ones;

› random noise:
› pushing separation surface farther from samples;

› interference with network:
› drop-out, drop-connect:

› searching for a robust network.
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Hacking search procedure

› hacking objectives:
› introducing loss for each layer:

ℒ = ℒ𝑛 +
𝑛−1
∑
𝑖=1

𝐶𝑖ℒ𝑖

where:
› ℒ𝑖 - loss on 𝑖-th layer.

› Deeply Supervised Networks:
› searches for network that obtains good intermediate results.
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Hacking initial guess

› solution for a similar problem as initial guess for search;

› pretraining on a similar dataset:
› unsupervised pretraining on unlabeled samples;
› supervised pretraining.
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Almost Free Lunch

Any magic is allowed!
... almost any magic.
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Summary



Summary

No Free Lunch theorem:

› Machine Learning is about using prior knowledge about the problem wisely.

Deep Learning:

› a flexible framework;

› allows to express prior knowledge ;

› makes it easier to solves much harder problems.
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More resources

A lot of useful links can be found in:

› Schmidhuber, Jürgen. "Deep learning in neural networks: An overview." Neural
networks 61 (2015): 85-117.
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