
1© 2017 The MathWorks, Inc.

Boosted decision trees and random forest

Ilya Narsky

2

Copyright

© COPYRIGHT 2017 by The MathWorks, Inc.

The materials of this training course shall at all times remain the intellectual property of The MathWorks,

Inc. The MathWorks, Inc. reserves all rights in these materials. No part of these materials may be

photocopied, reproduced in any form, or distributed without prior written consent from The MathWorks,

Inc. The software described in this document is furnished under a license agreement. The software may

be used or copied only under the terms of the license agreement.

© 2017 The MathWorks Inc.

3

Decision trees

© 2017 The MathWorks Inc.

4

World in (𝑫-dimensional) boxes

© 2017 The MathWorks Inc.

5

Incarnations

CART Breiman, Friedman, Stone &

Olshen, Classification and

Regression Trees, 1984

tree (R)

fitctree (MATLAB)

Salford Systems

C4.5 Quinlan, papers and books in

1986-1993

C50 (R)

J48 (WEKA, Java)

C5.0 (RuleQuest, C)

CHAID Kass, 1980 CHAID (R)

Statistica (StatSoft)

© 2017 The MathWorks Inc.

6

Tree for binary classification

Impurity of node 𝑡 for class fractions 𝑝 and 𝑞:

𝑖 𝑡 = 𝜑 𝑝, 𝑞 ; 𝑝 + 𝑞 = 1

Good node: 𝑖 𝑡 = 0 Bad node 𝑖 𝑡 = 0.5

Node impurity weighted by node probability:

𝐼 𝑡 = 𝑃 𝑡 𝑖 𝑡

𝑡0

𝑡𝑅𝑡𝐿

Maximize impurity gain Δ𝐼 = 𝐼 𝑡0 − 𝐼 𝑡𝐿 − 𝐼 𝑡𝑅

Impurity measures:

• Classification error 𝑖 𝑡 = min 𝑝, 𝑞

• Gini index: 𝑖 𝑡 = 1 − 𝑝2 − 𝑞2

• Cross-entropy:

• 𝑖 𝑡 = −
1

2
𝑝 log2 𝑝 + 𝑞 log2 𝑞

© 2017 The MathWorks Inc.

7

Minimizing classification error

• The two splits give equal classification error.

• Yet one of them gives a pure node, while the other one does not.

• It seems natural to prefer big pure nodes.

© 2017 The MathWorks Inc.

8

Gini index

𝑖 𝑡𝐿 =
3

8
𝑖 𝑡𝑅 =

3

8

𝑃 𝑡𝐿 =
1

2
𝑃 𝑡𝑅 =

1

2

𝐼 𝑡𝐿 + 𝐼 𝑡𝑅 =
3

8

𝑖 𝑡𝐿 =
4

9
𝑖 𝑡𝑅 = 0

𝑃 𝑡𝐿 =
3

4
𝑃 𝑡𝑅 =

1

4

𝐼 𝑡𝐿 + 𝐼 𝑡𝑅 =
1

3

Maximize Δ𝐼 = 𝐼 𝑡0 − 𝐼 𝑡𝐿 − 𝐼 𝑡𝑅

Nonlinear concavity

is essential

© 2017 The MathWorks Inc.

9

Impurity measures for multiple classes

Binary impurity measures:

• Classification error 𝑖 𝑡 = min 𝑝, 𝑞

• Gini index: 𝑖 𝑡 = 1 − 𝑝2 − 𝑞2

• Cross-entropy:

• 𝑖 𝑡 = −
1

2
𝑝 log2 𝑝 + 𝑞 log2 𝑞

Generalize for 𝐾 classes with

probabilities 𝑝𝑘

𝑖 𝑡 = 1 − max
𝑘

𝑝𝑘

𝑖 𝑡 = 1 −

𝑘=1

𝐾

𝑝𝑘
2

𝑖 𝑡 = −
1

2

𝑘=1

𝐾

𝑝𝑘 log2 𝑝𝑘

© 2017 The MathWorks Inc.

10

Balanced splits by twoing

© 2017 The MathWorks Inc.

11

How does twoing work?

Gini

twoing

Synthetic data with 4

classes and 3 binary

variables

© 2017 The MathWorks Inc.

The tree grown by twoing

is more balanced

12

Splits on numeric variables

x1 x2

1 1

2 2

3 3

1 4

2 5

3 6

1 7

2 8

3 9

1 10

2 possible splits 9 possible splits

• Inspect all possible splits on all

variables. Choose the one with the

largest impurity gain.

• More splits ⟹ larger probability of

finding a spurious pattern.

• Decision tree prefers variables with

many possible splits, that is, variables

with many possible values.

• A deep tree can find many spurious

patterns.

© 2017 The MathWorks Inc.

13

Eliminating bias toward multivalued variables

Loh and Shih, Split selection methods for classification

trees, Statistica Sinica, 7:815–840, 1997

• Bin each continuous variable into quartiles (𝐵 = 4)

• Let 𝜋𝑘𝑏 =
𝑛𝑘𝑏

𝑁
be the estimated probability for class 𝑘

in bin 𝑏

• Let 𝜋𝑘+ = 𝑏=1
𝐵 𝑛𝑘𝑏

𝑁
and 𝜋+𝑏 = 𝑘=1

𝐾 𝑛𝑘𝑏

𝑁
be marginal

probabilities for classes and bins

• If the variable and class labels are independent,

must have 𝜋𝑘𝑏 = 𝜋𝑘+𝜋+𝑏

• Let 𝑡 = 𝑁 𝑘=1
𝐾 𝑏=1

𝐵 𝜋𝑘𝑏− 𝜋𝑘+ 𝜋+𝑏
2

 𝜋𝑘+ 𝜋+𝑏
be the test statistic

𝑡
𝑁→∞

𝜒 𝐾−1 𝐵−1
2

under hypothesis of independence

Contingency tables:

Test for independence

© 2017 The MathWorks Inc.

𝒏𝟏𝟏 𝒏𝟏𝟐 𝒏𝟏𝟑 𝒏𝟏𝟒 𝒏𝟏+

𝒏𝟐𝟏 𝒏𝟐𝟐 𝒏𝟐𝟑 𝒏𝟐𝟒 𝒏𝟐+

𝒏+𝟏 𝒏+𝟐 𝒏+𝟑 𝒏+𝟒 𝑁

14

Eliminating bias toward multivalued variables: Recipe

© 2017 The MathWorks Inc.

• For each variable, compute the t statistic under

hypothesis of independence between this

variable and class labels

• Choose the variable with largest value of the

statistic

• Find the optimal split on this variable in the

usual way (by maximizing impurity gain)

Variable selection is not affected by how

many splits can be imposed. Bias toward

variables with many splits is eliminated!

15

Eliminating bias toward multivalued variables:

Synthetic example from Loh & Shih

• Binary classification

• One useful variable (with few

values) and 19 useless variables

(with many values)

• Limit the number of splits per tree to

one (decision stump)

• Measure probability of splitting on

the first variable

• Ideally, should be one
© 2017 The MathWorks Inc.

16

Accounting for variable interactions

Yang dataset: Two interacting

variables (shown) mixed with

(many) useless variables

𝑡 = 𝑁

𝑘=1

𝐾

𝑏=1

𝐵
 𝜋𝑘𝑏 − 𝜋𝑘+ 𝜋+𝑏

2

 𝜋𝑘+ 𝜋+𝑏

• Same test statistic applied to a pair of

variables

• Bins are now formed by dividing a 2D

plane into quadrants (or smaller pieces)

• Inspect all pairs of variables and choose

the one with largest value of the statistic

• Split on one of the two variables in that

pair. (The split is still one-dimensional.)

© 2017 The MathWorks Inc.

For 𝐷 variables, consider

𝐷 𝐷 − 1 /2 interactions.

17

Decision tree performance on this dataset

Two strongly relevant variables

(shown) diluted with 100 irrelevant

variables (not shown).

Interaction test is essential for

detecting relevant variables.

© 2017 The MathWorks Inc.

18

Stopping criteria

• Pure node (one class only)

• Minimal size of a branch node

• Size = number of

observations

• Minimal size of a leaf node

• Maximal number of splits

(branch nodes)

• Minimal impurity gain per split

• Maximal tree depth

• …

© 2017 The MathWorks Inc.

19

Cost-complexity pruning: Alternative to growing many trees
• MAGIC telescope data

(UCI ML repository)

• Synthetic dataset

• 19k observations and 10

variables

 𝑟 𝑇 = 𝑟 𝑇 + 𝛼 𝐿 𝑇

Error of tree 𝑇

Number of

leaves in tree 𝑇

Penalty

coefficient

© 2017 The MathWorks Inc.

20

Strategies for optimizing tree for accuracy

• Always estimate accuracy by cross-

validation or using an independent

validation set

Approach 1

• Find a good stopping criterion by

minimizing error (risk)

Approach 2

• Grow a deep tree (as deep as you can)

and prune back to minimal validation

error (risk). Optimize penalty coefficient

𝜶 (previous slide).

• Instead of pruning back to min

validation error, prune back to the level

where validation error is one standard

deviation away from minimum.
© 2017 The MathWorks Inc.

21

Prediction

Example: Fisher iris data

𝑃 𝑘|𝑡 =
𝑛𝑘 𝑡

𝑛 𝑡
(fraction of class k in node t)

Predict into the class with the largest posterior

© 2017 The MathWorks Inc.

22

Weighted data

© 2017 The MathWorks Inc.

𝑃 𝑘|𝑡 =
𝑛𝑘 𝑡

𝑛 𝑡
𝑃 𝑘|𝑡 =

𝑤𝑘 𝑡

𝑤 𝑡

• 𝑃 𝑘|𝑡 - posterior probability of

class 𝑘 in node 𝑡
• 𝑛𝑘 𝑡 - number of observations

of class 𝑘 in node 𝑡
• 𝑛 𝑡 - total number of

observations in node 𝑡

• 𝑃 𝑘|𝑡 - posterior probability of

class 𝑘 in node 𝑡
• 𝑤𝑘 𝑡 - weight of observations

of class 𝑘 in node 𝑡
• 𝑤 𝑡 - total weight of

observations in node 𝑡

Generalization of splitting criteria

for weighted data easily follow.

23

Decision trees: Good and bad

• Can easily handle categorical and

continuous variables.

• Robust in high dimensions.

• Specialized techniques for missing

data support.

• Highly interpretable when shallow.

• Compute posterior probabilities.

• Inaccurate. (Does not refer to

ensembles.)

• Unstable: A slight change in the data

can change the optimal split and the

entire subtree underneath this branch.

Prefer trees when interpretability is

favored over accuracy.
© 2017 The MathWorks Inc.

24© 2017 The MathWorks Inc.

Decision tree ensembles

25

Decision tree features for ensemble learning

© 2017 The MathWorks Inc.

Feature
Decision

tree

Tree ensemble

for accuracy

Tree ensemble

for variable

selection

Handle categorical and continuous

variables   

Robust in high dimensions   

Efficient missing data support   

Interpretability  × ×

Twoing for multiple classes  × ×

Unbiased variable selection  × 

Account for variable interactions  × 

Pruning  × ×

Posterior probability estimates   

 used

× not used

 partially

used

26

Popular types of decision tree ensembles

 Random forest

– Training: Grow many trees on replicas of the data obtained by unweighted

resampling

– Prediction: Average predictions across trees. (Democratic unweighted vote.)

 Boosted trees

– Training: Grow many trees on weighted replicas of the data. Weights are different for

every tree.

– Prediction: Take a weighted vote across trees.

 Theory and optimal tree settings for the two types of ensembles are very

different

© 2017 The MathWorks Inc.

27© 2017 The MathWorks Inc.

Random forest

28

Random forest

Breiman, L. (2001) Random forests. Mach. Learn., 45, 5–32.

http://www.stat.berkeley.edu/~breiman/RandomForests/

Average over many

trees grown on bootstrap

replicas of the data

• Bootstrap replica: Sample N

observations out of N with replacement

• On average, 63% observations in each

replica are unique.
© 2017 The MathWorks Inc.

29

Example: Learning a simple decision boundary

Averaged over a few hundred trees

© 2017 The MathWorks Inc.

30

Why does averaging work?

• Grow very deep trees.

• Minimal leaf size = 1

• Each tree overfits.

• Each tree has low bias and high

variance.

• Explore instability of decision tree.

Reduce variance by averaging over

many trees.

© 2017 The MathWorks Inc.

31

Bagging vs random forest

• Bootstrap aggregation = bagging

• Trees need to be diverse to probe

various parts of the input space

• Random forest: Diversify trees by

choosing variable candidates for

splits at random.

• At every branch node, choose

𝑑 < 𝐷 variables at random.

• Then apply the usual split

selection procedure to these 𝑑
variables.

Suggested setting: 𝑑 = 𝐷

BaBar PID data ~44k tracks

© 2017 The MathWorks Inc.

32

Out-of-bag error

• One bootstrap replica gets, on average,

63% of observations in the training set.

The remaining 37% are out of bag.

• To predict label for each observation in the

training set, use only trees trained on

replicas without this observation, that is,

trees for which this observation is out of

bag.

• Average estimated posterior probabilities

across trees or take a majority vote across

trees for the class label.

• Compare with true labels to get OOB error.

• Breiman showed (empirically)

that OOB error is an unbiased

estimate of the generalization

error

• Estimating OOB error is typically

faster than cross-validating.

© 2017 The MathWorks Inc.

33

Out-of-bag estimates of variable importance

© 2017 The MathWorks Inc.

• For every variable:

• Replace values of this variable with

noise: For every tree, permute values

of this variable across OOB

observations at random while keeping

OOB class labels at the same

positions.

• How much worse does prediction

get due to this variable being

replaced with noise? Record increase

in the classification error of this tree

due to this permutation.

• Average estimated increases across

all trees and normalize by their

standard deviation.

Recommendations:

• Prefer OOB estimates of variable

importance over other estimates for

decision trees such as counts of

splits per variable, average impurity

gain per variable etc. Most accurate!

• If the primary goal is estimation of

variable importance, use all variables

for every split (do not subsample).

• Use unbiased selection of split

variables (see earlier slides).

34

Estimates of variable importance: example

© 2017 The MathWorks Inc.

dEdx variables

Conclusions can be very different

from different techniques!

Classify 𝑲,𝝅, 𝒆, 𝒑 using

several detectors

35

Proximities for visualization MAGIC telescope data

• N=6000

• D=10

• Two classes: gamma and hadron• Compute pairwise proximities 𝑃𝑁×𝑁:

• If two observations land on the

same node of the same tree in

RF, increase their proximity by 1

• Otherwise do nothing

• Normalize 𝑃𝑁×𝑁 by the number of

trees

• Apply classical multidimensional

scaling

• Discover interesting structures in the

data!

© 2017 The MathWorks Inc.

36

Outliers

• Histogram proximities and

identify observations in the tails

of the distribution

• Observations with high outlier

measures are unlike any other

observations in the training set

• These observations may be

worth a closer look

© 2017 The MathWorks Inc.

37

Random forest: Practical advice

© 2017 The MathWorks Inc.

 Two most important tuning knobs are:

– minimal leaf size

– number of features to select at random for split candidates

 For classification, Breiman recommends

– min leaf size = 1

– number of variables to select at random = 𝐷

 These settings are usually pretty good for accuracy on tall datasets 𝑁 ≫ 𝐷
– Invest in their optimization only if you want to reduce the memory footprint or squeeze

the last drop of accuracy

 100-200 trees should suffice for most problems

 Good tool for variable selection!

– If using for variable selection, use all variables for every split

38© 2017 The MathWorks Inc.

Boosting

39

Boosting: Intuitive explanation

 Grow a shallow decision tree (for example, decision stump)

 Find observations in the training set misclassified by the tree

 Increase weights of misclassified observations

 Grow another shallow decision tree on the reweighted set

 Continue for a certain number of iterations, typically a few hundred

 Compute prediction of the ensemble by combining (possibly weighted)

predictions from individual trees

– If weighted, the weight of each tree is determined by its accuracy

© 2017 The MathWorks Inc.

40© 2017 The MathWorks Inc.

Example using decision stumps (stump = tree with one split)

After 10

stumps

41

Example: evolution of observation weights

© 2017 The MathWorks Inc.

misclassified

by many trees

correctly classified

by most trees

42

Types of boosting

 Gradient boosting, aka stagewise additive modeling

– J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The

Annals of Statistics, Vol. 29, No. 5 (2001), pp. 1189-1232

– J. Friedman, T. Hastie and R. Tibshirani, Additive Logistic Regression: A Statistical View

of Boosting, The Annals of Statistics, Vol. 28, No. 2 (2000), pp. 337-407

– Appears more popular, at least judging by software survey. Better known in HEP.

 Maximization of the minimal margin

– R. Schapire, Y. Freund, P. Bartlett and W.S. Lee, Boosting the Margin: A New

Explanation for the Effectiveness of Voting Methods, The Annals of Statistics, Vol. 26.

No. 5 (1998), pp. 1651-1686

– R. Schapire and Y. Freund, Boosting, MIT Press, 2012

– Interesting extensions such as robust boosting (non-convex optimization)

© 2017 The MathWorks Inc.

43

Gradient boosting: Problem formulation

© 2017 The MathWorks Inc.

Loss per observation:

ℓ 𝑦, 𝑓 𝑥 = exp −𝑦𝑓 𝑥

𝑦 ∈ −1,+1 (true label)

𝑓 𝑥 ∈ −∞,+∞ (predicted soft score)

Objective: Minimize expected loss:

𝐿 = 𝐸𝑋,𝑌 exp −𝑌𝑓 𝑋

Prediction at iteration 𝑡:

𝑓𝑡 𝑥 =

0 if 𝑡 = 1

𝑖=1

𝑡−1

𝛼𝑖ℎ𝑖 𝑥 if 𝑡 > 1

𝜶𝒕 - ?

𝒉𝒕 - ?by minimizing expected loss at 𝑥 at iteration 𝑡 + 1:

𝐿𝑡+1 𝑥 = 𝐸𝑌 exp −𝑌 𝑓𝑡 𝑥 + 𝛼𝑡ℎ𝑡 𝑥

44

Gradient boosting for binary classification (GentleBoost)

© 2017 The MathWorks Inc.

𝐸𝑌
𝑡+1

𝑌|𝑥 = −

𝜕𝐿𝑡+1 𝑥
𝜕ℎ𝑡 𝑥

𝜕2𝐿𝑡+1 𝑥
𝜕ℎ𝑡

2 𝑥

ℎ𝑡 𝑥 = 𝐸𝑌
𝑡+1

𝑌|𝑥
Newton update

𝐸𝑌
𝑡+1

𝑌|𝑥 : fit 𝑦𝑛 by least squares on 𝑥𝑛 with weights 𝑤𝑛
𝑡

Contribution of 𝑛-th observation to the empirical loss:

𝑤𝑛
𝑡+1

ℓ 𝑦𝑛, 𝑓𝑡+1 𝑥𝑛 = 𝑤𝑛
𝑡
exp −𝑦𝑛 𝑓𝑡 𝑥𝑛 + ℎ𝑡 𝑥𝑛

Update weights: 𝑤𝑛
𝑡+1

= 𝑤𝑛
𝑡
exp −𝑦𝑛ℎ𝑡 𝑥𝑛

Assume

𝜶𝒕 = 𝟏

45© 2017 The MathWorks Inc.

Copied from Additive Logistic Regression

by Friedman, Hastie & Tibshirani

46

Gradient boosting for binary classification – continued

© 2017 The MathWorks Inc.

From soft scores to posterior probabilities:

𝑓 𝑥 = argmin
𝑞 𝑥

𝐸𝑌 exp −𝑌𝑞 𝑥 ⇔ 𝑓 𝑥 =
1

2
log

𝑃 𝑌 = +1|𝑥

𝑃 𝑌 = −1|𝑥

Learning rate can help prevent overfitting:

ℎ𝑡 𝑥 = 𝜂𝐸𝑌
𝑡
𝑌|𝑥 0 < 𝜂 ≤ 1

Overfitting is an issue!

47

Boosting: Practical advice

 Boosting is typically used with shallow trees

– Decision stumps is the case most often discussed in the literature

 Most important tuning knobs:

– number of trees in the ensemble

– stopping criterion for tree (min leaf size, max number of splits etc)

– for some algorithms (notably, LogitBoost and GentleBoost), also learning rate

 Unlike random forest, adding more trees does not necessarily help

– Monitor the appropriate loss function versus number of trees on a validation set or by cross-
validation

 With proper parameter tuning, boosted trees offer superb accuracy

 Because trees are typically shallow, boosted trees are not a good tool for
estimation of variable importance

– Few splits per variable, not enough statistics

© 2017 The MathWorks Inc.

48

Random forest vs boosted trees

© 2017 The MathWorks Inc.

Feature
Random

forest

Boosted

trees

Accuracy  

Speed of training  

Speed of prediction × 

Easy selection of optimal parameters  ×

Memory requirements × 

Estimation of variable importance and variable interactions  ×

Out-of-bag estimates (quick estimates of test error)  ×

Estimation of proximities and outliers  ×

 good

 OK

× poor

The accuracy and speed ratings are very approximate and

do not hold for every dataset. Take with a grain of salt!

49© 2017 The MathWorks Inc.

The End

