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Decision trees
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World in (𝑫-dimensional) boxes
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Incarnations

CART Breiman, Friedman, Stone & 

Olshen, Classification and 

Regression Trees, 1984

tree (R)

fitctree (MATLAB)

Salford Systems

C4.5 Quinlan, papers and books in 

1986-1993

C50 (R)

J48 (WEKA, Java)

C5.0 (RuleQuest, C)

CHAID Kass, 1980 CHAID (R)

Statistica (StatSoft)
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Tree for binary classification

Impurity of node 𝑡 for class fractions 𝑝 and 𝑞: 

𝑖 𝑡 = 𝜑 𝑝, 𝑞 ; 𝑝 + 𝑞 = 1

Good node: 𝑖 𝑡 = 0 Bad node 𝑖 𝑡 = 0.5

Node impurity weighted by node probability:

𝐼 𝑡 = 𝑃 𝑡 𝑖 𝑡

𝑡0

𝑡𝑅𝑡𝐿

Maximize impurity gain Δ𝐼 = 𝐼 𝑡0 − 𝐼 𝑡𝐿 − 𝐼 𝑡𝑅

Impurity measures:

• Classification error 𝑖 𝑡 = min 𝑝, 𝑞

• Gini index: 𝑖 𝑡 = 1 − 𝑝2 − 𝑞2

• Cross-entropy:

• 𝑖 𝑡 = −
1

2
𝑝 log2 𝑝 + 𝑞 log2 𝑞

© 2017 The MathWorks Inc.



7

Minimizing classification error

• The two splits give equal classification error.

• Yet one of them gives a pure node, while the other one does not.

• It seems natural to prefer big pure nodes.
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Gini index

𝑖 𝑡𝐿 =
3

8
𝑖 𝑡𝑅 =

3

8

𝑃 𝑡𝐿 =
1

2
𝑃 𝑡𝑅 =

1

2

𝐼 𝑡𝐿 + 𝐼 𝑡𝑅 =
3

8

𝑖 𝑡𝐿 =
4

9
𝑖 𝑡𝑅 = 0

𝑃 𝑡𝐿 =
3

4
𝑃 𝑡𝑅 =

1

4

𝐼 𝑡𝐿 + 𝐼 𝑡𝑅 =
1

3

Maximize Δ𝐼 = 𝐼 𝑡0 − 𝐼 𝑡𝐿 − 𝐼 𝑡𝑅

Nonlinear concavity 

is essential

© 2017 The MathWorks Inc.



9

Impurity measures for multiple classes

Binary impurity measures:

• Classification error 𝑖 𝑡 = min 𝑝, 𝑞

• Gini index: 𝑖 𝑡 = 1 − 𝑝2 − 𝑞2

• Cross-entropy:

• 𝑖 𝑡 = −
1

2
𝑝 log2 𝑝 + 𝑞 log2 𝑞

Generalize for 𝐾 classes with 

probabilities 𝑝𝑘

𝑖 𝑡 = 1 − max
𝑘

𝑝𝑘

𝑖 𝑡 = 1 − 

𝑘=1

𝐾

𝑝𝑘
2

𝑖 𝑡 = −
1

2
 

𝑘=1

𝐾

𝑝𝑘 log2 𝑝𝑘
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Balanced splits by twoing
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How does twoing work?

Gini

twoing

Synthetic data with 4 

classes and 3 binary 

variables

© 2017 The MathWorks Inc.

The tree grown by twoing 

is more balanced



12

Splits on numeric variables

x1 x2

1 1

2 2

3 3

1 4

2 5

3 6

1 7

2 8

3 9

1 10

2 possible splits 9 possible splits

• Inspect all possible splits on all 

variables. Choose the one with the 

largest impurity gain.

• More splits ⟹ larger probability of 

finding a spurious pattern.

• Decision tree prefers variables with 

many possible splits, that is, variables 

with many possible values.

• A deep tree can find many spurious 

patterns.
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Eliminating bias toward multivalued variables

Loh and Shih, Split selection methods for classification 

trees, Statistica Sinica, 7:815–840, 1997

• Bin each continuous variable into quartiles (𝐵 = 4)

• Let  𝜋𝑘𝑏 =
𝑛𝑘𝑏

𝑁
be the estimated probability for class 𝑘

in bin 𝑏

• Let  𝜋𝑘+ =  𝑏=1
𝐵 𝑛𝑘𝑏

𝑁
and  𝜋+𝑏 =  𝑘=1

𝐾 𝑛𝑘𝑏

𝑁
be marginal 

probabilities for classes and bins

• If the variable and class labels are independent, 

must have 𝜋𝑘𝑏 = 𝜋𝑘+𝜋+𝑏

• Let 𝑡 = 𝑁 𝑘=1
𝐾  𝑏=1

𝐵  𝜋𝑘𝑏− 𝜋𝑘+ 𝜋+𝑏
2

 𝜋𝑘+ 𝜋+𝑏
be the test statistic

𝑡
𝑁→∞

𝜒 𝐾−1 𝐵−1
2

under hypothesis of independence

Contingency tables: 

Test for independence

© 2017 The MathWorks Inc.

𝒏𝟏𝟏 𝒏𝟏𝟐 𝒏𝟏𝟑 𝒏𝟏𝟒 𝒏𝟏+

𝒏𝟐𝟏 𝒏𝟐𝟐 𝒏𝟐𝟑 𝒏𝟐𝟒 𝒏𝟐+

𝒏+𝟏 𝒏+𝟐 𝒏+𝟑 𝒏+𝟒 𝑁
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Eliminating bias toward multivalued variables: Recipe

© 2017 The MathWorks Inc.

• For each variable, compute the t statistic under 

hypothesis of independence between this 

variable and class labels

• Choose the variable with largest value of the 

statistic

• Find the optimal split on this variable in the 

usual way (by maximizing impurity gain)

Variable selection is not affected by how 

many splits can be imposed. Bias toward 

variables with many splits is eliminated!
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Eliminating bias toward multivalued variables: 

Synthetic example from Loh & Shih

• Binary classification

• One useful variable (with few 

values) and 19 useless variables 

(with many values)

• Limit the number of splits per tree to 

one (decision stump)

• Measure probability of splitting on 

the first variable

• Ideally, should be one
© 2017 The MathWorks Inc.
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Accounting for variable interactions

Yang dataset: Two interacting 

variables (shown) mixed with 

(many) useless variables

𝑡 = 𝑁 

𝑘=1

𝐾

 

𝑏=1

𝐵
 𝜋𝑘𝑏 −  𝜋𝑘+  𝜋+𝑏

2

 𝜋𝑘+  𝜋+𝑏

• Same test statistic applied to a pair of 

variables

• Bins are now formed by dividing a 2D 

plane into quadrants (or smaller pieces)

• Inspect all pairs of variables and choose 

the one with largest value of the statistic

• Split on one of the two variables in that 

pair. (The split is still one-dimensional.)

© 2017 The MathWorks Inc.

For 𝐷 variables, consider 

𝐷 𝐷 − 1 /2 interactions.
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Decision tree performance on this dataset

Two strongly relevant variables 

(shown) diluted with 100 irrelevant 

variables (not shown).

Interaction test is essential for 

detecting relevant variables.

© 2017 The MathWorks Inc.
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Stopping criteria

• Pure node (one class only)

• Minimal size of a branch node

• Size = number of 

observations

• Minimal size of a leaf node

• Maximal number of splits 

(branch nodes)

• Minimal impurity gain per split

• Maximal tree depth

• …

© 2017 The MathWorks Inc.
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Cost-complexity pruning: Alternative to growing many trees
• MAGIC telescope data 

(UCI ML repository)

• Synthetic dataset

• 19k observations and 10 

variables

 𝑟 𝑇 = 𝑟 𝑇 + 𝛼 𝐿 𝑇

Error of tree 𝑇

Number of 

leaves in tree 𝑇

Penalty 

coefficient

© 2017 The MathWorks Inc.
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Strategies for optimizing tree for accuracy

• Always estimate accuracy by cross-

validation or using an independent 

validation set

Approach 1

• Find a good stopping criterion by 

minimizing error (risk)

Approach 2

• Grow a deep tree (as deep as you can) 

and prune back to minimal validation 

error (risk). Optimize penalty coefficient 

𝜶 (previous slide).

• Instead of pruning back to min 

validation error, prune back to the level 

where validation error is one standard 

deviation away from minimum.
© 2017 The MathWorks Inc.
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Prediction

Example: Fisher iris data

𝑃 𝑘|𝑡 =
𝑛𝑘 𝑡

𝑛 𝑡
(fraction of class k in node t)

Predict into the class with the largest posterior

© 2017 The MathWorks Inc.
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Weighted data

© 2017 The MathWorks Inc.

𝑃 𝑘|𝑡 =
𝑛𝑘 𝑡

𝑛 𝑡
𝑃 𝑘|𝑡 =

𝑤𝑘 𝑡

𝑤 𝑡

• 𝑃 𝑘|𝑡 - posterior probability of 

class 𝑘 in node 𝑡
• 𝑛𝑘 𝑡 - number of observations 

of class 𝑘 in node 𝑡
• 𝑛 𝑡 - total number of 

observations in node 𝑡

• 𝑃 𝑘|𝑡 - posterior probability of 

class 𝑘 in node 𝑡
• 𝑤𝑘 𝑡 - weight of observations 

of class 𝑘 in node 𝑡
• 𝑤 𝑡 - total weight of 

observations in node 𝑡

Generalization of splitting criteria 

for weighted data easily follow.
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Decision trees: Good and bad

• Can easily handle categorical and 

continuous variables.

• Robust in high dimensions.

• Specialized techniques for missing 

data support.

• Highly interpretable when shallow.

• Compute posterior probabilities.

• Inaccurate. (Does not refer to 

ensembles.)

• Unstable: A slight change in the data 

can change the optimal split and the 

entire subtree underneath this branch.

Prefer trees when interpretability is 

favored over accuracy.
© 2017 The MathWorks Inc.
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Decision tree ensembles
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Decision tree features for ensemble learning

© 2017 The MathWorks Inc.

Feature
Decision 

tree

Tree ensemble 

for accuracy

Tree ensemble 

for variable 

selection

Handle categorical and continuous 

variables   

Robust in high dimensions   

Efficient missing data support   

Interpretability  × ×

Twoing for multiple classes  × ×

Unbiased variable selection  × 

Account for variable interactions  × 

Pruning  × ×

Posterior probability estimates   

 used

× not used

 partially 

used
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Popular types of decision tree ensembles

 Random forest

– Training: Grow many trees on replicas of the data obtained by unweighted

resampling

– Prediction: Average predictions across trees. (Democratic unweighted vote.)

 Boosted trees

– Training: Grow many trees on weighted replicas of the data. Weights are different for 

every tree.

– Prediction: Take a weighted vote across trees.

 Theory and optimal tree settings for the two types of ensembles are very 

different

© 2017 The MathWorks Inc.
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Random forest
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Random forest

Breiman, L. (2001) Random forests. Mach. Learn., 45, 5–32.

http://www.stat.berkeley.edu/~breiman/RandomForests/

Average over many 

trees grown on bootstrap 

replicas of the data

• Bootstrap replica: Sample N 

observations out of N with replacement

• On average, 63% observations in each 

replica are unique.
© 2017 The MathWorks Inc.
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Example: Learning a simple decision boundary

Averaged over a few hundred trees

© 2017 The MathWorks Inc.
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Why does averaging work?

• Grow very deep trees.

• Minimal leaf size = 1

• Each tree overfits.

• Each tree has low bias and high 

variance.

• Explore instability of decision tree. 

Reduce variance by averaging over 

many trees.

© 2017 The MathWorks Inc.
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Bagging vs random forest

• Bootstrap aggregation = bagging

• Trees need to be diverse to probe 

various parts of the input space

• Random forest: Diversify trees by 

choosing variable candidates for 

splits at random.

• At every branch node, choose 

𝑑 < 𝐷 variables at random.

• Then apply the usual split 

selection procedure to these 𝑑
variables.

Suggested setting: 𝑑 = 𝐷

BaBar PID data ~44k tracks

© 2017 The MathWorks Inc.
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Out-of-bag error

• One bootstrap replica gets, on average, 

63% of observations in the training set. 

The remaining 37% are out of bag.

• To predict label for each observation in the 

training set, use only trees trained on 

replicas without this observation, that is, 

trees for which this observation is out of 

bag.

• Average estimated posterior probabilities 

across trees or take a majority vote across 

trees for the class label.

• Compare with true labels to get OOB error.

• Breiman showed (empirically) 

that OOB error is an unbiased 

estimate of the generalization 

error 

• Estimating OOB error is typically 

faster than cross-validating.

© 2017 The MathWorks Inc.
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Out-of-bag estimates of variable importance

© 2017 The MathWorks Inc.

• For every variable:

• Replace values of this variable with 

noise: For every tree, permute values 

of this variable across OOB 

observations at random while keeping 

OOB class labels at the same 

positions.

• How much worse does prediction 

get due to this variable being 

replaced with noise? Record increase 

in the classification error of this tree 

due to this permutation. 

• Average estimated increases across 

all trees and normalize by their 

standard deviation.

Recommendations:

• Prefer OOB estimates of variable 

importance over other estimates for 

decision trees such as counts of 

splits per variable, average impurity 

gain per variable etc. Most accurate!

• If the primary goal is estimation of 

variable importance, use all variables 

for every split (do not subsample).

• Use unbiased selection of split 

variables (see earlier slides).
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Estimates of variable importance: example

© 2017 The MathWorks Inc.

dEdx variables

Conclusions can be very different 

from different techniques!

Classify 𝑲,𝝅, 𝒆, 𝒑 using 

several detectors
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Proximities for visualization MAGIC telescope data

• N=6000

• D=10

• Two classes: gamma and hadron• Compute pairwise proximities 𝑃𝑁×𝑁:

• If two observations land on the 

same node of the same tree in 

RF, increase their proximity by 1

• Otherwise do nothing

• Normalize 𝑃𝑁×𝑁 by the number of 

trees

• Apply classical multidimensional 

scaling

• Discover interesting structures in the 

data!

© 2017 The MathWorks Inc.
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Outliers

• Histogram proximities and 

identify observations in the tails 

of the distribution

• Observations with high outlier 

measures are unlike any other 

observations in the training set

• These observations may be 

worth a closer look

© 2017 The MathWorks Inc.
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Random forest: Practical advice

© 2017 The MathWorks Inc.

 Two most important tuning knobs are:

– minimal leaf size

– number of features to select at random for split candidates

 For classification, Breiman recommends

– min leaf size = 1

– number of variables to select at random = 𝐷

 These settings are usually pretty good for accuracy on tall datasets 𝑁 ≫ 𝐷
– Invest in their optimization only if you want to reduce the memory footprint or squeeze 

the last drop of accuracy

 100-200 trees should suffice for most problems

 Good tool for variable selection! 

– If using for variable selection, use all variables for every split
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Boosting
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Boosting: Intuitive explanation

 Grow a shallow decision tree (for example, decision stump)

 Find observations in the training set misclassified by the tree

 Increase weights of misclassified observations

 Grow another shallow decision tree on the reweighted set

 Continue for a certain number of iterations, typically a few hundred

 Compute prediction of the ensemble by combining (possibly weighted) 

predictions from individual trees

– If weighted, the weight of each tree is determined by its accuracy

© 2017 The MathWorks Inc.
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Example using decision stumps (stump = tree with one split) 

After 10 

stumps
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Example: evolution of observation weights

© 2017 The MathWorks Inc.

misclassified 

by many trees

correctly classified 

by most trees
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Types of boosting

 Gradient boosting, aka stagewise additive modeling

– J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The 

Annals of Statistics, Vol. 29, No. 5 (2001), pp. 1189-1232

– J. Friedman, T. Hastie and R. Tibshirani, Additive Logistic Regression: A Statistical View 

of Boosting, The Annals of Statistics, Vol. 28, No. 2 (2000), pp. 337-407

– Appears more popular, at least judging by software survey. Better known in HEP.

 Maximization of the minimal margin

– R. Schapire, Y. Freund, P. Bartlett and W.S. Lee, Boosting the Margin: A New 

Explanation for the Effectiveness of Voting Methods, The Annals of Statistics, Vol. 26. 

No. 5 (1998), pp. 1651-1686

– R. Schapire and Y. Freund, Boosting, MIT Press, 2012

– Interesting extensions such as robust boosting (non-convex optimization)

© 2017 The MathWorks Inc.
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Gradient boosting: Problem formulation

© 2017 The MathWorks Inc.

Loss per observation:

ℓ 𝑦, 𝑓 𝑥 = exp −𝑦𝑓 𝑥

𝑦 ∈ −1,+1 (true label)

𝑓 𝑥 ∈ −∞,+∞ (predicted soft score)

Objective: Minimize expected loss:

𝐿 = 𝐸𝑋,𝑌 exp −𝑌𝑓 𝑋

Prediction at iteration 𝑡:

𝑓𝑡 𝑥 =

0 if 𝑡 = 1

 

𝑖=1

𝑡−1

𝛼𝑖ℎ𝑖 𝑥 if 𝑡 > 1

𝜶𝒕 - ?

𝒉𝒕 - ?by minimizing expected loss at 𝑥 at iteration 𝑡 + 1:

𝐿𝑡+1 𝑥 = 𝐸𝑌 exp −𝑌 𝑓𝑡 𝑥 + 𝛼𝑡ℎ𝑡 𝑥
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Gradient boosting for binary classification (GentleBoost)

© 2017 The MathWorks Inc.

𝐸𝑌
𝑡+1

𝑌|𝑥 = −

𝜕𝐿𝑡+1 𝑥
𝜕ℎ𝑡 𝑥

𝜕2𝐿𝑡+1 𝑥
𝜕ℎ𝑡

2 𝑥

ℎ𝑡 𝑥 = 𝐸𝑌
𝑡+1

𝑌|𝑥
Newton update

𝐸𝑌
𝑡+1

𝑌|𝑥 : fit 𝑦𝑛 by least squares on 𝑥𝑛 with weights 𝑤𝑛
𝑡

Contribution of 𝑛-th observation to the empirical loss:

𝑤𝑛
𝑡+1

ℓ 𝑦𝑛, 𝑓𝑡+1 𝑥𝑛 = 𝑤𝑛
𝑡
exp −𝑦𝑛 𝑓𝑡 𝑥𝑛 + ℎ𝑡 𝑥𝑛

Update weights: 𝑤𝑛
𝑡+1

= 𝑤𝑛
𝑡
exp −𝑦𝑛ℎ𝑡 𝑥𝑛

Assume 

𝜶𝒕 = 𝟏
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Copied from Additive Logistic Regression 

by Friedman, Hastie & Tibshirani
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Gradient boosting for binary classification – continued

© 2017 The MathWorks Inc.

From soft scores to posterior probabilities:

𝑓 𝑥 = argmin
𝑞 𝑥

𝐸𝑌 exp −𝑌𝑞 𝑥 ⇔ 𝑓 𝑥 =
1

2
log

𝑃 𝑌 = +1|𝑥

𝑃 𝑌 = −1|𝑥

Learning rate can help prevent overfitting:

ℎ𝑡 𝑥 = 𝜂𝐸𝑌
𝑡
𝑌|𝑥 0 < 𝜂 ≤ 1

Overfitting is an issue!
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Boosting: Practical advice

 Boosting is typically used with shallow trees

– Decision stumps is the case most often discussed in the literature

 Most important tuning knobs:

– number of trees in the ensemble

– stopping criterion for tree (min leaf size, max number of splits etc)

– for some algorithms (notably, LogitBoost and GentleBoost), also learning rate

 Unlike random forest, adding more trees does not necessarily help

– Monitor the appropriate loss function versus number of trees on a validation set or by cross-
validation

 With proper parameter tuning, boosted trees offer superb accuracy

 Because trees are typically shallow, boosted trees are not a good tool for 
estimation of variable importance

– Few splits per variable, not enough statistics

© 2017 The MathWorks Inc.
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Random forest vs boosted trees

© 2017 The MathWorks Inc.

Feature
Random 

forest

Boosted 

trees

Accuracy  

Speed of training  

Speed of prediction × 

Easy selection of optimal parameters  ×

Memory requirements × 

Estimation of variable importance and variable interactions  ×

Out-of-bag estimates (quick estimates of test error)  ×

Estimation of proximities and outliers  ×

 good

 OK

× poor

The accuracy and speed ratings are very approximate and 

do not hold for every dataset. Take with a grain of salt!
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The End


