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About the lecturer

= Experimental high energy physics
— 2001, PhD from Southern Methodist U
— 2001-2008, researcher at Caltech
— CLEO, BaBar, and CMS

- Software development at MathWorks since 2008
— Implement various machine learning algorithms

=  About MathWorks

— The leading developer of mathematical computing software for engineers and
scientists.

— Headquarters near Boston with offices in 15 countries.
— MATLAB and Simulink



Statistical Analysis Techniques in Particle Physics
(with Frank Porter)

Most of the material covered in this course
IS discussed in the book.

Table of content and ~10% of the book are
avalilable online.

The book has exercises. Some solutions are
posted at the Caltech site.

The book has many MATLAB examples. All
MATLAB examples can be downloaded from
the publisher site (link at the Caltech site).

— A bit outdated but all run.

http://www.hep.caltech.edu/~NarskyPorter/

llya Narsky, Frank C. Porter S WILEY-VCH
EmenemnT=—

Statistical Analysis Techniques
in Particle Physics

Fits, Density Estimation and Supervised Learning
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Types of learning
Supervised
Unsupervised

Feature learning
and feature
generation
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Jargon (aka conventions) and notation

= Observations
= Cases

= Samples

« Examples

= Events

Variables

Predictors
(supervised learning)
Features

Attributes
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XNXD

N observations and D variables

XDx1

one multivariate observation

Apx1

random variable
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What Is Machine Learning?
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Classification and regression

Statistical learning:

learn P(y|x)
response
(class label) vector of

observables
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Response Example Type of learning
(Cn;)gg:)?:g; | e, K, 10, p classification
) ) ) ~ K
unordered) ¥ |x~Cat({p () 3i=1)
ordinal y short, L
. . classification for
(categorical medium, .
ordinal labels
ordered) long
particle

continuous y

momentum

regression
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Bayes Rule in classification Assumed or specified by
prior knowledge (such

as, e.g., estimate of a
P(x, y) — P(y|x)P(x) — P(x\y)P(y) branching fraction for a
decay)

Learned by the model

Models in this class
P(ylx) = Pixly)Py) Naive Bayes: P(x|y) factorizabl
y > P(x|k)P(k) aive Bayes: P(x|y) factorizable

into a product of marginal pdf’'s

 Discriminant analysis: P(x]|y) is
multivariate normal
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Practical application of the Bayes Rule
Being killed by lightning Y € {0,1}

Being outside during lightning X € {0,1}

P =1) =
=1 =7500000

Px=1ly=1)=1

Pix=1ly=1D)P(y=1)
P(x=1)

Ply=1x=1) =

1

Ply=1lx=1) =
O=1x=1=2550000 Ptx = D
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Generative models PX,Y(x, y) = PX|y(x\y)Py(y)

Py‘_'y‘Ple‘x

Generate a point in space and its class label

Examples:
(Fisher) discriminant
Naive Bayes (aka “projection” method)

Benefits:

* If Pxy Is analytically known, all
distributions can be analytically computed

« Py(x) can be used to find outliers
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Sometimes we do not need probability
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(A bit less than) statistical learning

= Find a decision boundary between
two classes (or decision boundaries
for multiple classes)

- Examples:
— Nearest neighbor rules
— Support Vector Machines

= Estimates of classification confidence
(scores) are usually available

= Classification scores can be often
transformed to posterior probabilities
P(y|x) by some rule
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The learning curve (regression)

For continuous response, at fixed x
Observed Y and predicted F

Mean squared error €2 = E[(Y — F)?]
rreducible noise VarY = E[(Y — EY)?]
Prediction bias (squared) B? = (EF — EY)?
Prediction variance Var F = E[(F — EF)?]

e?=VarY + B%+VarF
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Learning curve for regression tree
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The learning curve (classification) * Y7 =most probable class at x
* Y = observed class at x

For binary response, at fixed x lcCiclegClassats

Learning curve with Breiman's decomposition

. O 0.1 !
ErI’OI’ P(Y o= Y) B Tree Bias
« thatis, fraction of misclassified observations 0.08! # Tree Variance
° Bayes -error.l — P(y*lx) ' ” TreeError-BayesError
* Prediction bias ... 0.06] e
* Prediction variance ... ol ‘.
: \ 4
\ 4

In classification, there are no agreed-upon 002k ’0.
definitions. | am using Breiman’s definitions for SEY P— .:uu I
classification tree. e

10 10 10

Size of trainina set

In classification, Bayes error = irreducible noise
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Overtraining

= Training, or resubstitution
error

— measured on the training set

= Generalization error

— defined on the true
distribution P(x, y)

— needs to be estimated
= It is not unusual for training

error to be much less than
generalization error

- Example for a single
decision tree
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Train and test error for decision tree
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Predictor variable 2
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Predictor variable 2
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Predictor variable 2
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Predictor variable 2
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Predictor variable 2

A

A

Testing (validation)
error:

4/15=26.7%

Predictor variable 1
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Overtraining for simple and complex models

Simple models: Optimal accuracy attained
when training and test errors are equal.

Train and test error for decision tree

B Train error

® Testerror L R R
0.3r Bayes error -
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Complex models: Various patterns emerge.

Train and test error for random forest

® Train error

® Testerror L X R
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Overtraining for complex models

Adult dataset (1996) from UCI repository: Algorithms
* Predicting if annual income exceeds $50k + Random forest with 100 trees

6 continuous and 8 categorical variables LogitBoost with 200 trees and learning rate 0.1
« 33k training and 16k test observations Vary the minimal tree leaf size

095 Train and test error for random forest 00 Train and test error for LogitBoost
| ® Train error oo @ Train error ¢
0.2 | ® Testerror - @ Testerror ...
0.15¢ 006 a0t - ‘e
“::.. 0.1F 0
0.1} .-' _ -
a* .
0.058 - 0.05
o
0 o® ssseap®
10° 105 100 o8
Leaf size Leaf size
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Overtraining: takeaways

= For simple models, optimal accuracy typically is attained when training and
test errors are equal.

= For complex models, there is no obvious relation between training and test
errors. It is not unusual for the training error to be much lower than the test
error at the optimal classification settings.

= Training error does not matter. Only test error is a reliable indicator or
performance.

© 2017 The MathWorks Inc. 26
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Train, validate and test

Training set Build the model
Validation set Estimate model accuracy
Test set Obtain the final estimate of the model accuracy

after accuracy has been optimized on training
and validation sets

Can use cross-validation instead of a validation set

© 2017 The MathWorks Inc. 27



Holdout validation

Train on z%, measure
accuracy on (100-z)%

Not recommended for
small datasets

For small datasets, use
cross-validation

Optimal z?

Have a fixed number of observations N

Need to split N = N¢pqin + Ntest
Minimize € test => Need large Nirqin
Minimize conf. interval on & test => nNeed large Ntest

0-02‘_/ ——N=1000 |
0.01F .

) S— T T B |

0 1000 2000 3000 4000 5000 6000 7000 8000

95% upper bound on classification error
0.25 | | | I | | i
-—--N=10000
0.2&_/ —N=1000 H
\\Hh

0.15+ ‘*“l ------- - o - —emmemmmem oo -

0 1000 2000 3000 4000 9000 6000 7000 8000

Standard deviation of classification error

-—-N=10000
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Cross-validation
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i Nl

CPU-Intensive

Generally not needed for large
datasets

Two-fold CV: Loss of accuracy due
to halving the dataset

Leave-one-out (LOO) CV: Can
underestimate variance of
prediction because models in folds
are very similar: They are
essentially trained on the same
dataset!

Use 5 or 10 folds as a rule of
thumb
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“Small” and “large” datasets

= Size is determined by the size of the interesting

subset

— For example, number of events in the signal region

800
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[ |Background
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60 1

40 |

20 1
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[ Background
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Stratified and non-stratified partitioning

Partition in two sets (training and test)

A 90000 00000
: 00000 00000 What partition is best?

c 90000 00000

© 2017 The MathWorks Inc. 31
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Stratified and non-stratified partitioning

" 00000 00000 )

B ”‘“ ”‘“ The book illustrates this problem
using a hypothetical example.

c 90000 00000

For estimation of the classifier accuracy:.

« Stratification reduces variance of the accuracy estimate.
« Good If you want to obtain an accurate estimate.
« Bad if you want to estimate uncertainty of the accuracy estimate.

© 2017 The MathWorks Inc. 32



Learning on imbalanced data

= Class imbalance

— Training set has many more observations of
one class than of another class

— Common situation in physics analysis

= Popular approaches

— Set class prior probabillities (class weights)
to uniform

— Undersample the majority class: RUSBoost
— Oversample the minority class: SMOTE and
SMOTEBoost

= More techniques in the book

800

600 1

400 |

200 1

[ ISignal
[ IBackground

b

10 15

© 2017 The MathWorks Inc.

&\ MathWorks’

33



&\ MathWorks’

Learning on imbalanced data

- Choo.s_e th_e teChnique based on how the 1R:ando:r-m Forest on MAGIC Telescope data
classification model works and what the | | |
software supports 208/

- Detailed discussion in the book v

: : 006
- Practical advice: -
— Do something special only if the class % 0.4
Imbalance is large (an order of magnitude or 2 — Random Forest
more). 0.2} fair coin toss ||
— If the class imbalance is small (factor of 2 or 0 | | | |
3), likely no need to worry. Just find the 0 0.2 0.4 0.6 0.8 1
optimal point on the Receiver Operating False Positive Rate

Characteristic curve, the way you usually do.
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More types of learning (something you might
want to hear about and quickly forget)
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Semisupervised learning

Some observations in the data
are labeled (true class is known)

Need to label the rest

Supervised approach:
— Learn on labeled data and classify

unlabeled observations.

— What if the labeled set is small?

Unsupervised approach

— Cluster and then assign each
cluster into the same class

— May be inaccurate
Specialized techniques

A\ \athWorks
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Active learning
Subclass of semisupervised learning
Querying class label is expensive and can only
be done for a few observations
Deciding which observations should be queried is
part of the algorithm
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Online learning

a kI?_ata become available bit by
It
= The model needs to be
updated on the next bit of data

= Can be used to process big
data

= Learning on i.1.d. data
(identical, independently
distributed)

— May have to account for a drift

= Learning with adversaries
— Play a game with an opponent

&\ MathWorks:

Steepest Descent
Minimize L(X, 68) wrt 6 over set of N
observations X
Descend in the direction of —VyL(X, 0)

Stochastic Gradient Descent
Minimize L(X,0) = YN_. ¢(x,,0)
Select observation n at random or get
the next observation from the source
Descend in the direction of —Vyf(x,, 0)
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Learning on big data

« Consider minimization of an
objective function

« “Embarrassingly parallel” algorithms:
Objective is a sum of many
Independently evaluated
contributions, L(X,0) = ¥N_. ¢(x,,0)

-.d\r

]

W .
! ¥ 1)
e | B
) :‘:: A

N

(o ' !
Sis i
! A

\ (LA
Lt

) |-:\:

1'\1'

Example:

 Distribute computation of the objective
L(X,0) and gradient V4L(X, 8) across
worker nodes

 Each node handles a chunk of data X
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Learning on big data: Computational issues

ﬁ —

I S
master gy storage

 Local data (available to workers) resides in
storage

limited by network bandwidth AND disk I/O

 Local data can be kept in worker memory
between passes

limited by network bandwidth

* One-pass algorithms

« Two-pass algorithms:

— 1 n
* 0% = N2g=1(xn — .u)z

« Multi-pass algorithms:
* Most ML algorithms in
this course

© 2017 The MathWorks Inc.
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End of lecture 1
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