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About the lecturer

 Experimental high energy physics

– 2001, PhD from Southern Methodist U

– 2001-2008, researcher at Caltech

– CLEO, BaBar, and CMS

 Software development at MathWorks since 2008

– Implement various machine learning algorithms

 About MathWorks

– The leading developer of mathematical computing software for engineers and 

scientists.

– Headquarters near Boston with offices in 15 countries.

– MATLAB and Simulink
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Statistical Analysis Techniques in Particle Physics 

(with Frank Porter)

 Most of the material covered in this course 

is discussed in the book.

 Table of content and ~10% of the book are 

available online.

 The book has exercises. Some solutions are 

posted at the Caltech site.

 The book has many MATLAB examples. All 

MATLAB examples can be downloaded from 

the publisher site (link at the Caltech site).

– A bit outdated but all run.

 http://www.hep.caltech.edu/~NarskyPorter/

© 2017 The MathWorks Inc.
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Give feedback in person or email 

to inarsky@mathworks.com
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Types of learning

 Supervised

 Unsupervised

 Feature learning 
and feature 
generation

© 2017 The MathWorks Inc.
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Jargon (aka conventions) and notation

 Observations

 Cases

 Samples

 Examples

 Events

 Variables

 Predictors 

(supervised learning)

 Features

 Attributes

𝑋𝑁×𝐷
N observations and D variables

𝑥𝐷×1
one multivariate observation

© 2017 The MathWorks Inc.

𝑋𝐷×1
random variable
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Classification and regression

Statistical learning: 

learn 𝑷 𝒚|𝒙

response

(class label) vector of 

observables

Response Example Type of learning

nominal 𝑦
(categorical 

unordered)

e, K, π, p
classification

𝑌|𝑥~Cat 𝑝𝑘 𝑥 𝑘=1
𝐾

ordinal 𝑦
(categorical 

ordered)

short, 

medium, 

long

classification for 

ordinal labels

continuous 𝑦
particle 

momentum
regression
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Bayes Rule in classification

𝑃 𝑦|𝑥 =
𝑃 𝑥|𝑦 𝑃 𝑦

 𝑘𝑃 𝑥|𝑘 𝑃 𝑘

𝑃 𝑥, 𝑦 = 𝑃 𝑦|𝑥 𝑃 𝑥 = 𝑃 𝑥|𝑦 𝑃 𝑦

Learned by the model

Assumed or specified by 

prior knowledge (such 

as, e.g., estimate of a 

branching fraction for a 

decay)

Models in this class

• Naïve Bayes: 𝑃 𝑥|𝑦 factorizable 

into a product of marginal pdf’s

• Discriminant analysis: 𝑃 𝑥|𝑦 is 

multivariate normal
© 2017 The MathWorks Inc.
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Practical application of the Bayes Rule

© 2017 The MathWorks Inc.

Being killed by lightning 𝑌 ∈ 0,1

Being outside during lightning 𝑋 ∈ 0,1

𝑃 𝑦 = 1 =
1

7,000,000

𝑃 𝑥 = 1|𝑦 = 1 = 1

𝑃 𝑦 = 1|𝑥 = 1 =
𝑃 𝑥 = 1|𝑦 = 1 𝑃 𝑦 = 1

𝑃 𝑥 = 1

𝑃 𝑦 = 1|𝑥 = 1 =
1

7,000,000 ⋅ 𝑃 𝑥 = 1
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Generative models

© 2017 The MathWorks Inc.

𝑃𝑋,𝑌 𝑥, 𝑦 = 𝑃𝑋|𝑌 𝑥|𝑦 𝑃𝑌 𝑦

𝑃𝑌 𝑦 𝑃𝑋|𝑌 𝑥

Generate a point in space and its class label

Examples:

• (Fisher) discriminant

• Naïve Bayes (aka “projection” method)

Benefits:

• If 𝑷𝑿|𝒀 is analytically known, all 

distributions can be analytically computed

• 𝑷𝑿 𝒙 can be used to find outliers
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Sometimes we do not need probability
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(A bit less than) statistical learning

 Find a decision boundary between 

two classes (or decision boundaries 

for multiple classes)

 Examples:

– Nearest neighbor rules

– Support Vector Machines

 Estimates of classification confidence 

(scores) are usually available

 Classification scores can be often 

transformed to posterior probabilities 

𝑃 𝑦|𝑥 by some rule
© 2017 The MathWorks Inc.
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The learning curve (regression)

For continuous response, at fixed 𝒙

• Observed 𝑌 and predicted 𝐹

• Mean squared error 𝜖2 = 𝐸 𝑌 − 𝐹 2

• Irreducible noise Var 𝑌 = 𝐸 𝑌 − 𝐸𝑌 2

• Prediction bias (squared) 𝐵2 = 𝐸𝐹 − 𝐸𝑌 2

• Prediction variance Var 𝐹 = 𝐸 𝐹 − 𝐸𝐹 2

• 𝜖2 = Var 𝑌 + 𝐵2 + Var 𝐹

© 2017 The MathWorks Inc.
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The learning curve (classification)

© 2017 The MathWorks Inc.

For binary response, at fixed 𝒙

• Error 𝑃  𝑌 ≠ 𝑌
• that is, fraction of misclassified observations

• Bayes error 1 − 𝑃 𝑦∗|𝑥
• Prediction bias …

• Prediction variance …

In classification, there are no agreed-upon 

definitions. I am using Breiman’s definitions for 

classification tree.

In classification, Bayes error = irreducible noise

• 𝑌∗ = most probable class at 𝒙
• 𝑌 = observed class at 𝒙
•  𝑌 = predicted class at 𝒙



18

Overtraining

 Training, or resubstitution 
error

– measured on the training set

 Generalization error

– defined on the true 
distribution 𝑃 𝑥, 𝑦

– needs to be estimated

 It is not unusual for training 
error to be much less than 
generalization error

 Example for a single 
decision tree

© 2017 The MathWorks Inc.
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Predictor variable 1
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Predictor variable 1
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Training error:

7/42 = 16.7%
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Predictor variable 1
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Testing (validation) 

error:

2/15 = 13.3%
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Predictor variable 1
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Training error:

0/42 = 0%
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Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

Testing (validation) 

error:

4/15 = 26.7%
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Overtraining for simple and complex models

© 2017 The MathWorks Inc.

Simple models: Optimal accuracy attained 

when training and test errors are equal.
Complex models: Various patterns emerge.

default value
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Overtraining for complex models

© 2017 The MathWorks Inc.

Adult dataset (1996) from UCI repository: 

• Predicting if annual income exceeds $50k

• 6 continuous and 8 categorical variables

• 33k training and 16k test observations

Algorithms

• Random forest with 100 trees

• LogitBoost with 200 trees and learning rate 0.1

• Vary the minimal tree leaf size
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Overtraining: takeaways

 For simple models, optimal accuracy typically is attained when training and 

test errors are equal.

 For complex models, there is no obvious relation between training and test 

errors. It is not unusual for the training error to be much lower than the test 

error at the optimal classification settings.

 Training error does not matter. Only test error is a reliable indicator or 

performance.

© 2017 The MathWorks Inc.
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Train, validate and test

© 2017 The MathWorks Inc.

Training set Build the model

Validation set Estimate model accuracy

Test set Obtain the final estimate of the model accuracy 

after accuracy has been optimized on training 

and validation sets

Can use cross-validation instead of a validation set 
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Holdout validation

 Train on z%, measure 

accuracy on (100-z)% 

 Not recommended for 

small datasets

 For small datasets, use 

cross-validation

 Optimal z?

• Have a fixed number of observations 𝑁
• Need to split 𝑁 = 𝑁train + 𝑁test
• Minimize  𝜀 test => need large 𝑁train
• Minimize conf. interval on  𝜀 test => need large 𝑁test

© 2017 The MathWorks Inc.
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Cross-validation

 CPU-intensive

 Generally not needed for large 
datasets

 Two-fold CV: Loss of accuracy due 
to halving the dataset

 Leave-one-out (LOO) CV: Can 
underestimate variance of 
prediction because models in folds 
are very similar: They are 
essentially trained on the same 
dataset!

 Use 5 or 10 folds as a rule of 
thumb

© 2017 The MathWorks Inc.
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“Small” and “large” datasets

 Size is determined by the size of the interesting 

subset

– For example, number of events in the signal region

© 2017 The MathWorks Inc.
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Stratified and non-stratified partitioning

© 2017 The MathWorks Inc.

Partition in two sets (training and test)

A

B

C

What partition is best?
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Stratified and non-stratified partitioning

© 2017 The MathWorks Inc.

A

B

C

stratified

For estimation of the classifier accuracy:

• Stratification reduces variance of the accuracy estimate.

• Good if you want to obtain an accurate estimate.

• Bad if you want to estimate uncertainty of the accuracy estimate.

The book illustrates this problem 

using a hypothetical example.
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Learning on imbalanced data

 Class imbalance

– Training set has many more observations of 

one class than of another class

– Common situation in physics analysis

 Popular approaches

– Set class prior probabilities (class weights) 

to uniform

– Undersample the majority class: RUSBoost

– Oversample the minority class: SMOTE and 

SMOTEBoost

 More techniques in the book

© 2017 The MathWorks Inc.



34

Learning on imbalanced data

 Choose the technique based on how the 

classification model works and what the 

software supports

 Detailed discussion in the book

 Practical advice: 

– Do something special only if the class 

imbalance is large (an order of magnitude or 

more). 

– If the class imbalance is small (factor of 2 or 

3), likely no need to worry. Just find the 

optimal point on the Receiver Operating 

Characteristic curve, the way you usually do.

© 2017 The MathWorks Inc.
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More types of learning (something you might 

want to hear about and quickly forget)

© 2017 The MathWorks Inc.
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Semisupervised learning

 Some observations in the data 

are labeled (true class is known)

 Need to label the rest

 Supervised approach:

– Learn on labeled data and classify 

unlabeled observations.

– What if the labeled set is small?

 Unsupervised approach

– Cluster and then assign each 

cluster into the same class

– May be inaccurate

 Specialized techniques

Active learning
• Subclass of semisupervised learning

• Querying class label is expensive and can only 

be done for a few observations

• Deciding which observations should be queried is 

part of the algorithm 

© 2017 The MathWorks Inc.
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Online learning

 Data become available bit by 
bit

 The model needs to be 
updated on the next bit of data

 Can be used to process big 
data

 Learning on i.i.d. data 
(identical, independently 
distributed)
– May have to account for a drift

 Learning with adversaries
– Play a game with an opponent

Stochastic Gradient Descent

• Minimize 𝐿 𝑿, 𝜃 =  𝑛=1
𝑁 ℓ 𝑥𝑛, 𝜃

• Select observation 𝑛 at random or get 

the next observation from the source

• Descend in the direction of −𝛻𝜃ℓ 𝑥𝑛, 𝜃

Steepest Descent

• Minimize 𝐿 𝑿, 𝜃 wrt 𝜃 over set of 𝑁
observations 𝑿

• Descend in the direction of −𝛻𝜃𝐿 𝑿, 𝜃

© 2017 The MathWorks Inc.
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Learning on big data

• Consider minimization of an 

objective function

• “Embarrassingly parallel” algorithms: 

Objective is a sum of many 

independently evaluated 

contributions, 𝐿 𝑿, 𝜃 =  𝑛=1
𝑁 ℓ 𝑥𝑛, 𝜃

Example: 

• Distribute computation of the objective 

𝐿 𝑿, 𝜃 and gradient 𝛻𝜃𝐿 𝑿, 𝜃 across 

worker nodes

• Each node handles a chunk of data 𝑿

© 2017 The MathWorks Inc.
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Learning on big data: Computational issues

master

worker 1

worker 2

worker N

storage

• One-pass algorithms

•  𝜇 =
1

𝑁
 𝑛=1
𝑁 𝑥𝑛

•  𝜎2 =
1

𝑁
 𝑛=1
𝑁 𝑥𝑛

2 −  𝜇2

• Two-pass algorithms:

•  𝜎2 =
1

𝑁
 𝑛=1
𝑁 𝑥𝑛 −  𝜇

2

• Multi-pass algorithms:

• Most ML algorithms in 

this course

• Local data (available to workers) resides in 

storage

• limited by network bandwidth AND disk I/O

• Local data can be kept in worker memory 

between passes

• limited by network bandwidth 
© 2017 The MathWorks Inc.
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End of lecture 1
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