Limits in High Energy Physics

Olaf Behnke, DESY

Lecture/tutorial for the INFN Statistics School

Ischia 9 May, 2017

Based in parts on the lecture by Stefan Schmitt, DESY, @Terascale Statistics School, Mar 2013

Outline

- 1) Basic interval estimation (Bayesian, Frequentist) for gaussian
- 2) Poisson without & with background, expected limit, CL_s
- 3) L-ratio based signal limits: Feldman-Cousins, profile likelihood
- Lecture is interleaved by exercises. Discuss solutions in the lecture
- ROOT macros for exercises:

www.desy.de/~sschmitt/LimitStatSchool2013/macros

• If available, use wget:

wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list wget -N -nd -i macros.list 1) Basic interval estimation (Bayesian, Frequentist) for gaussian

Aren't we all Bayesians?

• Measurement with gaussian uncertainty:

• μ = true value; x = measured value; L(x| μ) = $\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Frequentist 68% C.L. central interval

- Task: Chose interval [μ_{μ}, μ_{μ}]_x dependent on x such that in 68% of repeated experiments true value μ is included in the intervals
- "easy to do": define for assumed true μ interval [x_{μ}, x_{μ}], with
 - $P(x \in [x_1, x_h]_{\mu}) = 68\%$
 - If $x \in [x_{\mu}, x_{\mu}]_{\mu}$ declare μ to be part of $[\mu_{\mu}, \mu_{\mu}]_{x}$ otherwise out
- $[x_{\mu}, x_{\mu}]_{\mu}$ construction vs true $\mu \rightarrow$ Neyman Belt (or band)

• Step 1: Choose $[x_{\mu}, x_{\mu}]_{\mu}$ for one μ value (example: μ =0)

• Step 2: plot $[x_{\mu}, x_{\mu}]_{\mu}$ vs μ

7

• Step 3: plot $[x_{\mu}, x_{\mu}]_{\mu}$ vs μ ; connect edges

8

• Step 4: plot $[x_{\mu}, x_{\mu}]_{\mu}$ vs μ ; for given x: max & min $\mu \rightarrow [\mu_{\mu}, \mu_{\mu}]_{x}$

Neyman Band for Gaussian (95% CL Upper limit)

Upper Limit and Hypothesis testing

- Hypo: BSM enhanced tt production cross section Σ is 10 (a.u.)
- Simplifying assumption: it is measured with gauss. uncertainty 1

If x<x_c this BSM model is rejected

Upper Limit and Hypothesis testing

• Σ is now a free parameter, determined from measurement x

- Exclude all hypotheses with: p-value $\leq \alpha = 5\% \iff \Sigma > \Sigma_{\text{limit } |@95\% CL}$
- Upper limit and signal hypothesis exclusion intrinsically linked 12

2) Poisson without & with background, expected limit, CL_s

Frequentist upper limit, Poisson data

Exercise 1 (Neyman construction)

- Poisson experiment, determine limits on the parameter $\mu,$ given $N_{_{obs}}$
 - a) determine the probability α for observing a value N<N_{obs} for some

selected values of μ

b) determine the limit on μ for N_{obs}=0,2,10,100

• Hints: the probability to find N<N_{obs} is given by:

Probability: $\sum_{N=0}^{N_{obs}-1} \frac{e^{-\mu}(\mu)^{N}}{N!} = \alpha = TMath::Prob(2*\mu, 2*N_{obs})$ Inverse function: $\mu_{limit} = TMath::ChisquareQuantile(1-\alpha, 2*(N_{obs}+1))/2$

μN
obsα213152105

Exercise 1 (Neyman construction)

- Poisson experiment, determine limits on the parameter $\mu,$ given $N_{_{obs}}$
 - a) determine the probability α for observing a value N<N_{obs} for some

selected values of μ

b) determine the limit on μ for N_{obs}=0,2,10,100

• Hints: the probability to find N<N_{obs} is given by:

Probability: $\sum_{N=0}^{N_{obs}-1} \frac{e^{-\mu}(\mu)^{N}}{N!} = \alpha = \text{TMath::Prob}(2*\mu, 2*N_{obs})$ Inverse function: $\mu_{limit} = \text{TMath::ChisquareQuantile}(1-\alpha, 2*(N_{obs}+1))/2$

 $\begin{array}{c|c|c|c|c|c|c|c|} \mu & N_{obs} & \alpha \\ \hline 2 & 1 & 0.14 \\ \hline 3 & 1 & 0.05 \\ \hline 5 & 2 & 0.04 \\ \hline 10 & 5 & 0.03 \\ \end{array}$

(b)	N _{obs}	μ_{limit}
	0	3.0
	2	6.3
	10	17.0
	100	118.1

Probability: $\sum_{N=0}^{N_{obs}-1} \frac{e^{-\mu}(\mu)^{N}}{N!} = \alpha = \text{TMath::Prob}(2*\mu, 2*N_{obs})$ Inverse function: $\mu_{limit} = \text{TMath::ChisquareQuantile}(1-\alpha, 2*(N_{obs}+1))/2$

Coverage

• Coverage: given the limit procedure,

calculate for each $\boldsymbol{\mu}_{_{truth}}$ probability to include

the true value in the Confidence interval

• Poisson example (exercise 2)

$$P_{\text{incl}}(\mu_{\text{truth}}) = \sum_{N} P_{\mu, \text{truth}}(N) \Theta(\mu_{\text{truth}} \leq \mu_{\text{limit}}(N))$$

where $\Theta(\mu_{\text{truth}} \leq \mu_{\text{limit}}) = \begin{cases} 1 \text{ if } \mu_{\text{truth}} \leq \mu_{\text{limit}} \\ 0 \text{ otherwise} \end{cases}$

- coverage=0.95: exact coverage
- coverage<0.95: undercoverage
- coverage>0.95: overcoverage, "conservative" limit
- "Simple" Poisson case: overcoverage (discrete measurement) 18

Bayesian upper limits

 Bayesian limit: exclude a set of theories, such that the posterior probability of the excluded theories is 1-CL
 Enumerator: integrate over allowed theories

 $CL = P(\mu \le \mu_{limit} | N_{obs}) = 1 - \alpha = \frac{\int_{0}^{\mu_{limit}} L(N_{obs} | \mu) \pi(\mu) d\mu}{\int_{0}^{\infty} L(N_{obs} | \mu) \pi(\mu) d\mu}$ $\pi(\mu)$: prior probability of the model μ Denominator: integrate all theories (normalisation) $L(N_{obs}|\mu)$: Likelihood **Bayesian limit:** Likelihood Posterior probability depends on the data integrate over area-normalized models, fixed N_{obs} model parameter limit on model parameter Prior probability (here: high probability excluded at Frequentist limit: \downarrow CL=1- α for standard model near zero) integrate over l-α α N_{obs}, test each model model parameter model parameter

Exercise 2 (Bayesian limit)

• Exercise 2a: Bayesian limit for

N_{obs}=0,2,10,100 (flat prior)

(use Root macro) -

- Exercise 2b: use a prior P(µ)=µ, $N_{_{Obs}}=\{0,2,10,100\}$

(modify first routine in macro)

• Compare to exercise 2

- Bayesian limit with arbitrary prior → numerical integration
- GetPosterior.C(muLimit, nObs) Posterior ~ $\int_{0}^{\mu_{0}} d\mu \operatorname{Prior}(\mu) \frac{\exp[-\mu]\mu^{N_{obs}}}{N_{obs}!}$
- Vary muLimit until Posterior=0.95

	frequentist	Bayes flat	Bayes P(µ)=µ
N _{obs}	$\mu_{\sf limit}$	μ_{limit}	$\mu_{\sf limit}$
0	3.0		
2	6.3		
10	17.0		
100	118.1		

Bayesian limit exercise

• Exercise 2a: Bayesian limit for

N_{obs}=0,2,10,100 (flat prior)

(use Root macro)

• Exercise 2b: use a prior $P(\mu)=\mu$,

N_{obs}={0,2,10,100}

- For this example: Bayes flat=Frequentist
- Prior P(µ)=µ gives more conservative limit

	frequentist	Bayes flat	Bayes P(µ)=µ
N _{obs}	$\mu_{\sf limit}$	μ_{limit}	$\mu_{\sf limit}$
0	3.0	3.0	4.7
2	6.3	6.3	7.8
10	17.0	17.0	18.2
100	118.1	118.2	119.3

Limits with background

• Expected number of events:

 $\mu = s + b$, s, b: signal and background event yield, respectively

- s=0: standard model
- s>0: new physics
- Assume background known. What is the limit on the signal?
- Frequentist: set limit on μ , then subtract b
- Bayesian: use prior probability which is zero for s<0

Exercise 3 (limit with background)

Calculate Frequentist and Bayesian limits for N_{obs} = {0,2} and

b={0.5,2.0,3.5}

Poisson parameter: $\mu = s + b$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian						
Frequentist						

- Frequentist: use methods from exercise 2
- use macro GetPosteriorWithBackground.C

Exercise 3 (limit with background)

Calculate Frequentist and Bayesian limits for N_{obs}={0,2} and

b={0.5,2.0,3.5}

Poisson parameter: $\mu = s + b$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8

• Problem for Frequentist limit, N_{obs}=0 and b=3.5:

limit excludes all signal above s=-0.5.

Even the "standard model" s=0 is excluded

Discussion Exercise 3

- Frequentist analysis can give limits where all models are "excluded" at a given CL (even model with s=0)
 - N_{obs} =0, µ=s+b, b=3.5
 - \rightarrow limit s<-0.5 @ 95% CL but s>=0 physical bound
- Bayesian limit uses prior knowledge s>=0

 Feldman-Cousins frequentist approach based on likelihood ratio test statistics provides an alternative (see later)

Limits near a boundary

- What to do if frequentist analysis excludes parameters beyond the sensitivity of the experiment or beyond boundaries?
- Give also expected limit to show sensitivity of the experiment (exercise 4)
- CL_s method, also known as "modified frequentist" (exercise 5)
- Bayesian methods (see exercise 3)

Expected limit (exercise 4)

• Expected limit: limit weighted by background probability

$$\langle s_{\text{limit}} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b} b^n}{n!} \text{LimitOnSignal}(b, n)$$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected						

- Calculate expected limits for b={0.5,2.0,3.5}
- Macro GetExpectedLimit.C

Expected limit (exercise 4)

• Expected limit: limit weighted by background probability

$$\langle s_{\text{limit}} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b} b^n}{n!} \text{LimitOnSignal}(b, n)$$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected	3.3		4.2		4.9	

• Problematic case: expected limit differs a lot from observed limit

 \rightarrow Recognize statistical fluctuation or problem with background

The CL_s (modified frequentist) method

- Frequentist limit: $1 CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s + b)$
- CL_s limit: $1 - CL \ge CL_s = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s + b)}{P(N \le N_{obs}; \mu = b)}$
- Probability is normalized to background probability
- $CL_B \leq 1 \rightarrow CL_S \geq CL_{SB}$: same α requires larger signal bgr only Limit is "conservative"
- For zero signal: CL_s=1

 \rightarrow zero signal is never excluded

Exercise 5 (CL_s method)

- Frequentist limit: $1 CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s + b)$
- CL_s limit: $1-CL \ge CL_s = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s + b)}{P(N \le N_{obs}; \mu = b)}$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CL _s						
Expected	3.3		4.2		4.9	

Use macro GetCLsLimit.C to calculate CL_s, iterate to get limit

Exercise 5 (CL_s method)

- Frequentist limit: $1 CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s + b)$
- CL_s limit: $1-CL \ge CL_s = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s + b)}{P(N \le N_{obs}; \mu = b)}$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CLs	3.0	5.8	3.0	4.8	3.0	4.3
Expected	3.3		4.2		4.9	

• For this example, CL_s is identical to Bayesian (with flat prior)

Summary of CLs pros & cons

- CL_s method avoids problem
 with limits better than the
 experiments sensitivity
- Limits on s always > 0
- Disadvantage: CL_s method is conservative, in particular for small signals

3) Likelihood ratio based intervals

Upper limit for gaussian with boundary $\mu{\ge}0$

Feldman-Cousins unified approach Phys.Rev.D57:387303889,1998

Feldman-Cousins unified approach Phys.Rev.D57:387303889,1998

 Note: F-C switches itself as function of x from upper limit to twosided interval → "unified approach"

Searches using Likelihood ratio

Discuss cases:

- Clear peak+large stat.
- Small or negative bump:
 - Asymptotics (large stat.)
 - Toys (any stat.)

 $q_{\mu} = -2 \ln \lambda(\mu)$

Clear peak + large stat.: fit mass

Profile likelihood: Scan q=-2 Δ ln(L) vs m whilst profiling θ

Searches using Likelihood ratio

Searches using Likelihood ratio

Asymptotics: CCGV paper arXiv:1007.1727, based on results of Wilks and Wald

We use Likelihood ratio \rightarrow could apply Feldman Cousins procedures to have proper frequentist handling also for $\hat{\mu} < 0 \rightarrow$ no need for overcovering CLs

CLs criterion – description in CMS papers

CLs' should be called a "criterion" or a "prescription" but not a method because otherwise one gets the false impression that much older basic concepts like p-values were only invented with CLs.

Papers to cite:

- A.L. Read, "Presentation of search results: the CLs technique", J. Phys. G. 28 (2008) 2693.
- T. Junk, "Confidence level computation for combining searches with small statistics", NIM A 434 (1999) 435.
- CMS and ATLAS Collaborations, "Procedure for the LHC Higgs boson search combination in Summer 2011", https://cds.cern.ch/record/1379837, CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, 2011.
- CCGV: G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics", EPJC 71 (2011) 1554.

Definition of LHC test statistics + asymptotic formulae

Please specify for each nuisance parameter assumed uncertainty effect on expected event rates: log-normal, normal, etc.

Limit for single event count with LHC test statistics

1

$$L(\mu) = e^{-(\mu+b)} \cdot (\mu+b)^n / n! \qquad q_\mu = \begin{cases} -2\ln\left(\frac{L(\mu)}{L(\hat{\mu})}\right) & \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$

- Example: b=400.; n=400
- q_{μ} distribution for this b and $\mu = 34.5$ from toys:

Typical LHC limits \rightarrow Scan vs mass of new particles

ATLAS-CONF-2016-045

Typical LHC limit plots: 1D CMS SUS-13-013

Typical LHC limit plots: 2D

CMS SUS-13-013

ANALYSERS tasks for typical LHC limit setting

$$\underbrace{L(\mu, \theta)}_{j=1} = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \cdot L(\text{control data}) \cdot \text{PDFs}(\theta)$$

- Systematics:
 - define set of independent nuisance parameters θ
 - with proper PDFs and mapping to expected rates: s_j(θ), b_j(θ)
 Linearization? Template morphing? (understand what is done!)
 - Cross section limits: multiplicative factors (luminosity, eff., etc.) $\rightarrow \approx$ gaussian uncertainty for ln(x-sec) \rightarrow "Log-normal uncertainty"

Check everything!

 GOF-tests, shifts of nuisance parameters (best fit values or profiled), verify asymptotic limits with toys, etc. Bayesian upper limit estimation in a

Nuisance pars

$$L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \cdot L(\text{control data})$$
 Priors
Posterior density: $p(\mu, \theta) = \frac{L(\mu, \theta) \cdot \pi(\mu) \cdot \pi(\theta)}{\int L(\mu, \theta) \cdot \pi(\mu) \cdot \pi(\theta) d\mu d\theta}$
Marginalise = $p_m(\mu) = \int p(\mu, \theta) d\theta \leftarrow \int \text{Usually done with Markov-Chain MC}$
Limit determination: $CL = P(\mu \le \mu_{limit}) = 1 - \alpha = \int_{0}^{\mu_{limit}} p_m(\mu) d\mu$
Priors: $\pi(\mu)=1$ popular at LHC; \bigwedge priors change under parameter trafo; \rightarrow study result sensitivity to prior choices
Software: BAT toolkit A Caldwell et al.: theta (1 Ott)

Bayesian upper limit estimation in a

Nuisance pars $L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \cdot L(\text{control data})$ Priors Likelihood Posterior density: $p(\mu, \theta) = \frac{L(\mu, \theta) \cdot \pi(\mu) \cdot \pi(\theta)}{\int L(\mu, \theta) \cdot \pi(\mu) \cdot \pi(\theta) \, d\mu \, d\theta}$

Mar th In LHC practice Bayesian and frequentist upper limits intec seem to agree often fairly well \rightarrow "are in asymptotic Nirvana" (Bob Cousins) If they not agree (usually for very low stat.) they $d\mu$ dete probably "address different questions" (Bob Cousins) If you use Bayesian estimation you should run for some Priors exemplary assumed true μ values toy experiments to *:es* check the coverage! Software: BAT toolkit A. Caldwell et. al.); theta (J. Ott)

Interval estimation summary I:

Interval estimation @LHC times is relying on sophisticated software

- \rightarrow good to remember foundations:
 - Frequentist: consider all outcomes x for any true $\mu \rightarrow [\mu_l, \mu_h]_x$
 - Bayesian: consider only x of current exp. \rightarrow posterior μ density

• Standard ATLAS-CMS 95% CL upper limit procedure based on:

- Likelihood ratio ("LHC style") with profiling all syst. uncertainties
- Applying at the end CLs prescription (political agreement)
- My personal impression: for most LHC analyses Bayesian treatment with flat priors gives very similar results

Interval estimation summary II:

- Most important tasks for analysers:
 - Set up properly analysis and perform checks throughout (e.g. GOF tests in all control regions)
 - Not discussed today: optimizing the sensitivity (with MCs) Note: discovery and best limit need different optimisation!

Final recommendations:

- → Participate in RooFit/RooStats tutorial (L. Moneta)
- → Statistics & Systematic treatments:
 - \rightarrow read other analysis papers (from same/other experiment)
 - \rightarrow present your analysis often in working group meetings!

Backup slides

Calculation of Poisson sums

• Sum over Poisson terms is related to χ^2 distribution with number-of-

degrees of freedom "k":

$$\chi^{2}(x;k) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)} \qquad P(N;\mu) = \frac{e^{-\mu}\mu^{N}}{N!}$$

- Poisson sum equals integral over χ^2 distribution (partial integration) $\alpha(\mu, N) = \int_{2\mu}^{\infty} \chi^2(x; 2(N+1)) dx = \sum_{i=0}^{N} P(i; \mu)$
- Standard functions for χ^2 integrals:

 $\alpha(\mu, N) = TMath:: Prob(2*\mu, 2*(N+1))$ and

 $\mu=0.5$ *TMath::ChisquareQuantile(1- α ,2*(N+1))

Frequentist upper limit, Gaussian case

- Fixed σ , measurement x_{obs} , parameter of interest μ_{truth}
- Define 95% probability area under Gaussian
- If $\mu_{_{truth}}$ is too large, it is outside the 95% \rightarrow excluded

Limits with background, comparison

- Frequentist limit may become "unphysicsal" or "too good"
- Expected limit: sensitivity of the experiment
- CL_s method: normalize to "standard model", never
 exclude zero signal
- Disadvantage of CL_s? Study coverage

