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Outline

● 1) Basic interval estimation (Bayesian, Frequentist) for  gaussian

● 2) Poisson without & with background, expected limit, CL
S 

● 3) L-ratio based signal limits: Feldman-Cousins, profile likelihood

● Lecture is interleaved by exercises. Discuss solutions in the lecture

● ROOT macros for exercises: 

www.desy.de/~sschmitt/LimitStatSchool2013/macros

● If available, use wget:

wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list

wget -N -nd -i macros.list

http://www.desy.de/~sschmitt/LimitStatSchool2013/macros
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1) Basic interval estimation (Bayesian, 

Frequentist) for  gaussian

.
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Aren't we all Bayesians?

● Measurement with gaussian uncertainty:

● µ = true value; x = measured value; L(x|µ) = 

Trained to think (believe) 

that true value µ is with 

68% prob. inside 1σ  region

● Bayesian Posterior density:

Example 

σ=1; x=0.0
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Frequentist 68% C.L. central interval 

● Task: Chose interval [ µ
l
,µ

h 
]
x 
dependent on x such that in 68% of 

repeated experiments true value µ is included in the intervals

● “easy to do”: define for assumed true µ interval [ x
l
,x

h 
]
µ
 with

● P(x ∈ [ x
l
,x

h 
]
µ
) = 68%

● If x ∈ [ x
l
,x

h 
]
µ
   declare µ to be part of [ µ

l
,µ

h 
]
x 
otherwise out

● [ x
l
,x

h 
]
µ  

construction vs true µ → Neyman Belt (or band)
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Neyman Band for Gaussian (central interval)

● Step 1: Choose [ x
l
,x

h 
]
µ
 for one µ value  (example: µ=0)

Discard extreme 

observations: 

      x>µ+1

Discard extreme 

observations: 

   x<µ-1

x
h

x
l

Include 68% central 

region
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Neyman Band for Gaussian (central interval)

● Step 2: plot [ x
l
,x

h 
]
µ
 vs µ 
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Neyman Band for Gaussian (central interval)

● Step 3: plot [ x
l
,x

h 
]
µ
 vs µ; connect edges 
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Neyman Band for Gaussian (central interval)

● Step 4: plot [ x
l
,x

h 
]
µ
 vs µ; for given x: max & min µ → [ µ

l 
,µ

h
]
x

µ
l

µ
h

In 16% higher x values and this 

µ
l 
value outside estimated 

intervals 

In 16% lower x values and this 

µ
h 
value outside estimated  

intervals 
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Neyman Band for Gaussian (95% CL Upper limit)

● plot [ x
l
,∞

 
]
µ
 vs µ with 95% prob. x  is in range; for x: max µ →  µ

limit

µ
limit

In 5% lower x values and this 

µ
limit 

value outside estimated

upper limits 
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Upper Limit and Hypothesis testing

● Hypo: BSM enhanced tt production cross section Σ  is 10 (a.u.) 

● Simplifying assumption: it is measured with gauss. uncertainty 1 

Measured xsec x
x

c

α

F
re

q
u
e
n
c
y

● If x<x
c
 this BSM model is rejected  
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Upper Limit and Hypothesis testing

● Σ is now a free parameter, determined from measurement x 

Measured xsec xX = 7.99

α

F
re

q
u
e
n
c
y

● Exclude all hypotheses with: p-value  ≤ α = 5%  ⇔ Σ > Σ
limit |@95% CL

● Upper limit and signal hypothesis exclusion intrinsically linked    

 H0(Σ=8)
accepted

 

H0(Σ=9.64)
excluded

 H0(Σ=12)
excludedexcluded
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2) Poisson without & with background, 

expected limit, CL
S 

.
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Frequentist upper limit, Poisson data

● Neyman construction: scan µ 

and find for each μ  the max. 

N
obs

 with P(N ∈[N
obs,

∞])≥95%  

→ vertical lines

● For given N
obs

  find largest µ, 

where N
obs

 is just contained in 

the interval  →  horizontal lines 

→  µ
limit

● Note: discrete N
obs

 but continuous m → limit steps 
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Exercise 1 (Neyman construction)

● Poisson experiment, determine limits on the parameter μ, given N
obs

a) determine the probability α for observing a value N<N
obs

 for some 

selected values of µ

b) determine the limit on μ for N
obs

=0,2,10,100

● Hints: the probability to find N<N
obs 

is given by:

Probability: ∑
N =0

N obs−1
e
−N

N !
==TMath::Prob2∗ , 2∗N obs

Inverse function: limit=TMath::ChisquareQuantile1− , 2∗N obs1/2

μ N
obs α

2 1

3 1

5 2

10 5

N
obs

μ
limit

0

2

10

100

(a)

(b)
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Exercise 1 (Neyman construction)

● Poisson experiment, determine limits on the parameter μ, given N
obs

a) determine the probability α for observing a value N<N
obs

 for some 

selected values of µ

b) determine the limit on μ for N
obs

=0,2,10,100

● Hints: the probability to find N<N
obs 

is given by:

Probability: ∑
N=0

N obs−1
e
−N

N !
==TMath::Prob2∗ , 2∗N obs

Inverse function: limit=TMath::ChisquareQuantile1− , 2∗N obs1/2

μ N
obs α

2 1 0.14

3 1 0.05

5 2 0.04

10 5 0.03

N
obs

μ
limit

0 3.0

2 6.3

10 17.0

100 118.1

(a)

(b)
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Exercise 1 (Neyman construction)

Probability: ∑
N=0

N obs−1
e
−N

N !
==TMath::Prob2∗ , 2∗N obs

Inverse function: limit=TMath::ChisquareQuantile1− ,2∗N obs1/2

μ N
obs α

2 1 0.14

3 1 0.05

5 2 0.04

10 5 0.03

N
obs

μ
limit

0 3.0

2 6.3

10 17.0

100 118.1

(a)

(b)

P(N<N
obs

)



18

Coverage

● Coverage: given the limit procedure, 

    calculate for each µ
truth

 probability to include                               

    the true value in the Confidence interval

● Poisson example (exercise 2)

● coverage=0.95: exact coverage 

● coverage<0.95: undercoverage

● coverage>0.95: overcoverage, “conservative” limit

● “Simple” Poisson case: overcoverage (discrete measurement)

P incl truth =∑N
P , truth N truth≤limit N 

    where truth≤limit ={1 if truth≤limit

0  otherwise
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                                             Coverage
                                              illustration
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Bayesian upper limits

● Bayesian limit: exclude a set of theories, such that the posterior 

probability of the excluded theories is 1-CL

CL=P ≤limit∣N obs=1−=
∫

0


limit

LN obs∣d 

∫
0

∞
LN obs∣d 

: prior probability of the model 
L N obs∣ : Likelihood

Bayesian limit:
integrate over 
models, fixed N

obs

Enumerator: integrate
over allowed theories

Denominator: integrate all
theories (normalisation)

Frequentist limit:
integrate over 
N

obs
, test each model
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Exercise 2 (Bayesian limit)

● Exercise 2a: Bayesian limit for  

N
obs

=0,2,10,100 (flat prior)

(use Root macro)

● Exercise 2b: use a prior P(µ)=µ, 

N
obs

={0,2,10,100}

(modify first routine in macro)

● Compare to exercise 2

● Bayesian limit with arbitrary prior → 

numerical integration

● GetPosterior.C(muLimit,nObs)

● Vary muLimit until Posterior=0.95

Posterior∼∫
0

μ0

dμPrior (μ)
exp[−μ]μN obs

N obs !

frequentist
Bayes 

flat
Bayes 
P(μ)=μ

N
obs

μ
limit

μ
limit

μ
limit

0 3.0

2 6.3

10 17.0

100 118.1
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Bayesian limit exercise

● Exercise 2a: Bayesian limit for  

N
obs

=0,2,10,100 (flat prior)

(use Root macro)

● Exercise 2b: use a prior P(µ)=µ, 

N
obs

={0,2,10,100}

● For this example: Bayes 

flat=Frequentist

● Prior P(µ)=µ gives more 

conservative limit

frequentist
Bayes 

flat
Bayes 
P(μ)=μ

N
obs

μ
limit

μ
limit

μ
limit

0 3.0 3.0 4.7

2 6.3 6.3 7.8

10 17.0 17.0 18.2

100 118.1 118.2 119.3
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Limits with background

● Expected number of events: 

● s=0: standard model

● s>0: new physics

● Assume background known. What is the limit on the signal?

● Frequentist: set limit on μ, then subtract b

● Bayesian: use prior probability which is zero for s<0

μ=s+ b , s , b : signal and background event yield, respectively
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Exercise 3 (limit with background)

● Calculate Frequentist and Bayesian limits for N
obs

={0,2} and 

b={0.5,2.0,3.5}

● Frequentist: use methods from exercise 2

● use macro GetPosteriorWithBackground.C

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian

Frequentist

Poisson parameter: μ=s+ b
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Exercise 3 (limit with background)

● Calculate Frequentist and Bayesian limits for N
obs

={0,2} and 

b={0.5,2.0,3.5}

● Problem for Frequentist limit, N
obs

=0 and b=3.5:

limit excludes all signal above s=-0.5.

Even the “standard model”  s=0 is excluded

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Poisson parameter: μ=s+ b
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Discussion Exercise 3

● Frequentist analysis can give 

limits where all models are 

“excluded” at a given CL 

(even model with s=0) 

N
obs

=0, µ=s+b, b=3.5

→ limit s<-0.5 @ 95% CL but 

s>=0 physical bound

● Bayesian limit uses prior 

knowledge s>=0

Unphysical region

● Feldman-Cousins frequentist approach based on likelihood 

ratio test statistics provides an alternative (see later)
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Limits near a boundary

● What to do if frequentist analysis excludes parameters beyond 

the sensitivity of the experiment or beyond boundaries?

● Give also expected limit to show sensitivity of the experiment 

(exercise 4)

● CL
S
 method, also known as “modified frequentist” (exercise 5)

● Bayesian methods (see exercise 3)
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Expected limit (exercise 4)

● Expected limit: limit weighted by background probability

● Calculate expected limits for b={0.5,2.0,3.5}

● Macro GetExpectedLimit.C

〈s limit 〉=∑n=0

∞ e
−b

b
n

n !
LimitOnSignal (b , n)

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Expected
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Expected limit (exercise 4)

● Expected limit: limit weighted by background probability

● Problematic case: expected limit differs a lot from observed limit

→ Recognize statistical fluctuation or problem with background

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Expected 3.3 4.2 4.9

〈s limit 〉=∑n=0

∞ e
−b

b
n

n !
LimitOnSignal (b , n)
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The CL
S 
 (modified frequentist) method

● Frequentist limit:

● CL
S
 limit: 

● Probability is normalized to background probability

● CL
B
≤1 → CL

S
≥CL

SB
: same α requires larger signal

Limit is “conservative”

● For zero signal: CL
S
=1

→ zero signal is never excluded

1−CL≥CL
S
=

CL
SB

CLB

=
P (N≤N obs ;μ=s+ b)

P (N≤N obs ;μ=b)

1−CL≥α=CL
SB
=P (N≤N obs ;μ=s+ b)



31

Exercise 5 (CL
S  

method)

● Frequentist limit:

● CL
S
 limit:

●  Use macro GetCLsLimit.C to calculate CL
S
, iterate to get limit

1−CL≥CL
S
=

CL
SB

CLB

=
P (N≤N obs ;μ=s+ b)

P (N≤N obs ;μ=b)

1−CL≥α=CL
SB
=P (N≤N obs ;μ=s+ b)

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

CL
S

Expected 3.3 4.2 4.9
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Exercise 5 (CL
S  

method)

● Frequentist limit:

● CL
S
 limit:

●  For this example, CL
S
 is identical to Bayesian (with flat prior)

1−CL≥CL
S
=

CL
SB

CLB

=
P (N≤N obs ;μ=s+ b)

P (N≤N obs ;μ=b)

1−CL≥α=CL
SB
=P (N≤N obs ;μ=s+ b)

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

CL
S 3.0 5.8 3.0 4.8 3.0 4.3

Expected 3.3 4.2 4.9
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Summary of CLs pros & cons

● CL
S
 method avoids problem 

with limits better than the 

experiments sensitivity

● Limits on s always > 0

● Disadvantage: CL
S
 method is 

conservative, in particular for 

small signals

 



1 

  
3) Likelihood ratio based intervals    
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  Upper limit for gaussian with boundary µ≥0 

Problem: upper limit approaches 0 for x going negative,  
    rule out all positive µ values for x<-1.64  ! 

Measurement x of µ 

with gaussian uncert. 

In 5% lower x values for µlimit  

f(x|µ) ~exp(-(x-µ)2/2) 
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 Feldman-Cousins unified approach Phys.Rev.D57:387303889,1998 

Use different ordering principle for test statistics t: so far: t=x   

t = R = 
(௫|ఓ)(௫|ఓ್ೞ)  with µbest = best fit value in physical range:   

x≥0: µbest = x   

x<0:µbest = 0   

µbest = max(x,0) 

 

 

Constant R  
curves 

Pos. & neg. x 
regions with   

same R ranges 
Neyman band 

shifted to neg. x 
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 Feldman-Cousins unified approach Phys.Rev.D57:387303889,1998 

Note: F-C switches itself as function of x from upper limit to two-
sided interval  “unified approach” 

90% CL  
F-C Neyman band 
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Searches using Likelihood ratio   

Clear peak+large stat. 
Small or negative bump:  

Asymptotics (large stat.)  
Toys (any stat.)  

Nuisance pars 

For testing µ: 

Principal test statistics: 

Profiled 

values 

Best fit  

values 

∙L(control data)∙PDFs(θ) 
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Clear peak + large stat.: fit mass 

Gaussian shaped s + exponential b 

Fix: µ=1=signal strength; Fit: mass m and   

θ = b exponential slope (nuisance)  

Profile likelihood: Scan  
q=-2∆ln(L) vs m whilst profiling θ 

q contours 

Fixed θ 
to best fit 

 68% CL interval from m points with q=1  

m 

m m 
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Searches using Likelihood ratio 

CMS B2G-16-022 
Nuisance pars 

∙L(control data)∙PDFs(θ) 

LHC test statistics 

Profiled 

values 

Best fit  

values ((0)ࣂ,0)ܮ ∧ 
∧ for  µ< 0 replace by 

∧ 

Discovery  q0  (set to 0 for µ≤0)    
∧ 

Upper limit  qµ  (set to 0 for µ ≥µ)    
∧ 

CCGV paper  

arXiv:1007.1727 
LHC test statistics LHC test statistics LHC test statistics LHC test statistics 

∧ 
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Searches using Likelihood ratio 

CMS B2G-16-022 
Nuisance pars 

∙L(control data)∙PDFs(θ) 

LHC test statistics 

Profiled 

values 

Best fit  

values ((0)ࣂ,0)ܮ ∧ 
∧ for  µ< 0 replace by 

∧ 

Discovery  q0  (set to 0 for µ≤0)    
∧ 

Upper limit  qµ  (set to 0 for µ ≥µ)    
∧ 

CCGV paper  

arXiv:1007.1727 
LHC test statistics LHC test statistics LHC test statistics LHC test statistics 

∧ 

This setting to 0 

destroys 

Feldman-Cousins 

Test Statistics 

This setting 

introduces  

Feldman- Cousins 

Test Statistics  
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Asymptotics: CCGV paper arXiv:1007.1727, based on results of Wilks and Wald  

B2G-16-022 

 Large sample  
approximation:   follows gaussian around true value 

 For 
discovery:  

 q0  

Ł Significance  

 1.642 

Upper limit @95% C.L.   

 Discuss only   
          case  ߤ = 1.0 ± 0.7 
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CLs criterion  

B2G-16-022 

 := best fit value for repeated experiments  

 1.682 

CLs Upper limit @95% C.L.   

For our example with           and asymptotics 

 Find      such that 

For this 
experiment:  

To have less strong limits 
in case of     fluctuations 

 =92%  

      We use Likelihood  ratio   could apply Feldman Cousins procedures to have 
proper frequentist handling also for     < 0  no need for overcovering CLs    
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CLs criterion – description in CMS papers 

‘CLs’ should be called a “criterion” or a “prescription” but not a 
method because otherwise one gets the false impression that much 
older basic concepts like p-values were only invented with CLs. 

 
Papers to cite: 

A.L. Read, “Presentation of search results:  

     the CLs technique”,  J. Phys. G. 28 (2008) 2693. 

T. Junk, “Confidence level computation for combining  

     searches with small statistics”, NIM A 434 (1999) 435. 

CMS and ATLAS Collaborations, “Procedure for the LHC  

     Higgs boson search combination in Summer 2011”,  
     https://cds.cern.ch/record/1379837, CMS-NOTE-2011-005,  
     ATL-PHYS-PUB-2011-11, CERN, 2011. 

CCGV: G. Cowan, K. Cranmer, E. Gross, and O. Vitells,  
     “Asymptotic formulae for likelihood-based tests of new physics”,  
      EPJC 71 (2011) 1554. 

foundational 

If toys are used 

Definition of LHC 
test statistics + 

asymptotic formulae 

Please specify for each nuisance parameter assumed uncertainty 
effect on expected event rates: log-normal, normal, etc.  



Limit for single event count with LHC test statistics    

12 

Example: b=400.; n=400  

qµ distribution for this b and µ = 34.5 from toys:   

For observed 
n=400 qµ =2.81  

5% of toys: 

q>2.81  

Toys:  

µlimit  = 34.5  

Asymptotics:  

qµ |n=400 = 1.642=2.69 

Vary µ until eq. fulfilled  

 µlimit  = 33.7  

verify asymptotics 
with toys!  

qµ  
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Typical LHC limits   Scan vs mass of new particles   

ATLAS-CONF-2016-045 
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Typical LHC limit plots: 1D  CMS SUS-13-013 

 Exclude  
mgluino ≤ 880 GeV    

 Median and 68% and 95% CL 
expected bands from toys     
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Typical LHC limit plots: 2D  CMS SUS-13-013 

 Excluded  
region    



Systematics:  
define set of independent nuisance parameters θ 
with proper PDFs and mapping to expected rates: sj (θ), bj (θ) 

    Linearization? Template morphing? (understand what is done!) 
Cross section limits: multiplicative factors (luminosity, eff., etc.) 
 ≈ gaussian uncertainty for ln(x-sec) “Log-normal uncertainty”  

16 

AnAlysers tasks for typical LHC limit setting 

CMS B2G-16-022 

Nuisance pars 

∙L(control data)∙PDFs(θ) 

Check everything! 
GOF-tests, shifts of nuisance parameters (best fit values or 
profiled), verify asymptotic limits with toys, etc. 

 



Bayesian upper limit estimation in a 
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 Limit 
determination:  

Posterior density: 

∙ L(control data) 
Nuisance pars 

Marginalise = 
integrate out θ 

∫ Usually done with 

Markov-Chain MC 

Priors 

 Priors:  π(µ)=1 popular at LHC;       priors change under 
parameter trafo;  study result sensitivity to prior choices   

 Software:  BAT toolkit A. Caldwell et. al.; theta (J. Ott)    

Likelihood 



Bayesian upper limit estimation in a 
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 Limit 
determination:  

Posterior density: 

∙ L(control data) 
Nuisance pars 

Marginalise = 
integrate out θ 

∫ Usually done with 

Markov-Chain MC 

Priors 

 Priors:  π(µ)=1 popular at LHC;       priors change under 
parameter trafo;  study result sensitivity to prior choices   

 Software:  BAT toolkit A. Caldwell et. al.); theta (J. Ott)    

Likelihood 

In LHC practice Bayesian and frequentist upper limits  
seem to agree often fairly well   “are in asymptotic 

Nirvana” (Bob Cousins) 
If they not agree (usually for very low stat.) they 
probably “address different questions” (Bob Cousins) 
If you use Bayesian estimation you should run for some 
exemplary assumed true µ values toy experiments to 
check the coverage!  



Interval estimation summary I: 
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Interval estimation @LHC times is relying on sophisticated software 

 good to remember foundations: 
Frequentist: consider all outcomes x for any true µ  [µl,µh]x 

Bayesian: consider only x of current exp.  posterior µ  density 

Standard ATLAS-CMS 95% CL upper limit procedure based on: 

Likelihood ratio (“LHC style”) with profiling all syst. uncertainties 
Applying at the end CLs prescription (political agreement) 
My personal impression: for most LHC analyses Bayesian 
treatment with flat priors gives very similar results 



Interval estimation summary II: 
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Most important tasks for analysers:  
Set up properly analysis and perform checks throughout (e.g. 
GOF tests in all control regions) 
Not discussed today: optimizing the sensitivity (with MCs)            
Note: discovery and best limit need different optimisation! 
 

Participate in RooFit/RooStats tutorial (L. Moneta) 
Statistics & Systematic treatments:  

 read other analysis papers (from same/other experiment) 
present your analysis often in working group meetings! 



Backup slides 

21 



1

Ca cu ation o Poisson sums

● Sum ov r Poisson t rms is r at  to 2 distribution with number-of-

degrees of freedom “k”:

● Poisson sum equals integral over 2 distribution (partial integration)

● Standard functions for 2 integrals:

( ,N)=TMath::Prob(2* ,2*(N+1)) and

=0.5*TMath::ChisquareQuantile(1- ,2*(N+1))

2 x ; k =
x
k /2−1

e
−x/2

2
k /2k /2

P N ;=
e
−N

N !

 , N =∫
2

∞
2 x ;2 N1 x=∑

i=0

N

P i ;



2

σ) /
truth

∝-
o bs

( x
- 2 0 2

p
r
o
b
.
d
e
n
s
i
t
y

0

0. 1

0. 2

0. 3

0. 4
Gaussian l imit for CL=0.95

 are "similar"
obs

 and x
truth

∝

 are not excluded
truth

∝    these 

 "much smal ler" than predictedobsx

truth
∝     exclude these 

r u ntist upp r imit  Gaussian cas

● i  σ  m asur m nt x
o�s

 param t r o  int r st 
truth

● Define 95% probability area under Gaussian

● If μ
truth

 is too large, it is outside the 95% → excluded

CL=∫
xobs

∞

exp[−1/2(
x−μ��uth

σ )
2

]
1

√2πσ
� x
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Limits with background, comparison

● Frequentist limit may become 

“unphysicsal” or “too good”

● Expected limit: sensitivity of 

the experiment

● CL
S
 method: normalize to 

“standard model”,  never 

exclude zero signal

● Disadvantage of CL
S
? Study 

coverage
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