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Energy is becoming more and more important in HPC

HPC facilities may start to account for consumed energy
instead of running time
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Two research approaches...

Use low-power/embedded hardware for HPC

may consume less since hardware is designed to be low-power

may also cost less thanks to economy of scale

Minimize energy consumption on actual high-end systems

may be possible using new energy monitoring / control hardware

may be possible by software optimization / tuning
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The D2Q37 Lattice Boltzmann Model

Lattice Boltzmann method (LBM) is a class of computational fluid dynamics
(CFD) methods

LBM methods simulate a discrete Boltzmann equation, which under
certain conditions, reduce to the Navier-Stokes equation

virtual particles called populations arranged at edges of a discrete and
regular grid are used to simulate a synthetic and simplified dynamics

the interaction is implemented by two main functions applied to the virtual
particles: propagation and collision

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations
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Simulation of the Rayleigh-Taylor (RT) Instability
Instability at the interface of two fluids of different densities triggered by
gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).
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Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation able exploit a large fraction of available
peak performance.
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D2Q37: propagation scheme

perform accesses to neighbour-cells at distance 1,2, and 3

generate memory-accesses with sparse addressing patterns
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D2Q37 collision

collision is computed at each lattice-cell after computation of boundary
conditions

computational intensive: for the D2Q37 model requires ≈ 7500 DP
floating-point operations

completely local: arithmetic operations require only the populations
associate to the site

computation of propagate and collide kernels are kept separate

after propagate but before collide we may need to perform collective
operations (e.g. divergence of of the velocity field) if we include
computations conbustion effects.
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Acquired data example with default frequency scaling
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Acquired data example using RAPL counters
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Acquired data example using NVML
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NVIDIA Jetson TK1

SoC: Tegra K1

CPU: NVIDIA "4-Plus-1"
2.32GHz ARM quad-core
Cortex-A15, with battery-saving
shadow-core

GPU: NVIDIA Kepler "GK20a"
GPU with 192 SM3.2 CUDA
cores

Awarded for the Best Paper
7th Workshop on UnConventional High Performance Computing (UCHPC), Porto 2014

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Bologna, November, 2016 18 / 48



NVIDIA Jetson TK1

SoC: Tegra K1

CPU: NVIDIA "4-Plus-1"
2.32GHz ARM quad-core
Cortex-A15, with battery-saving
shadow-core

GPU: NVIDIA Kepler "GK20a"
GPU with 192 SM3.2 CUDA
cores

Awarded for the Best Paper
7th Workshop on UnConventional High Performance Computing (UCHPC), Porto 2014

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Bologna, November, 2016 18 / 48



Energy to Sol. vs Time to Sol. CPU(top), GPU(bottom)
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Energy to Solution vs Time to Solution (GPU GK20A)
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96Boards - HiKey

SoC: HiSilicon Kirin 6220
CPU: 8 core ARM Cortex-A53
running at 1.2GHz
(64-bit aarch64)

GPU: ARM Mali 450-MP4 GPU

MEM: 1GB of 800MHz LPDDR3

Awarded for the Best Paper
8th Workshop on UnConventional High
Performance Computing (UCHPC),
Vienna 2015

3D printed case to fit a fan
(Thanks to V. Carassiti and A. Cotta

Ramusino, INFN Ferrara)
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C with NEON intrinsics, on the Cortex A53

Energy to Solution vs Time to Solution SP & DP
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C with NEON intrinsics, on the Cortex A53

Energy to Solution vs Time to Solution (Propagate) SP & DP
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C with NEON intrinsics, on the Cortex A53

Energy to Solution vs Time to Solution (Collide) SP & DP
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Preliminary conclusions about Low-Power Processors
Conclusions

limited but not negligible power optimization is possible by adjusting clocks
on a kernel-by-kernel basis (between ≈ 5 · · · 25%).

baseline power consumption is relevant (≈ 30%)

hard to differentiate between leakage current and ancillary electronics

options to run the processor at very low frequencies seem almost useless
(at least for the adopted benchmark)

Processor ES [J] per iter. TS [ms] per iter. EDP [J s]

GK20A 0.30 42 0.013
ARM A15 0.67 58 0.039
ARM A53 0.52 77 0.040

Table: Best EDP values, with corresponding energy-to-solution and
time-to-solution, running the (SP) collide kernel. Lattice 128x1024
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COKA Cluster Overview

Compute nodes:

Supermicro
SYS-4028GR-TR

2 x Intel Xeon E5-2630v3

8 x NVIDIA K80 (2xGPU)

2 x Mellanox ConnectX-3 Single
FDR 56Gb/s Infiniband cards
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Nodes Overview
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Energy/Time to Solution Collide DP
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Energy/Time to Solution Collide DP
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Results for single processors

Taking into account, for both CPU and GPU processors, the frequencies that
led the best energy efficiency, we estimated the energy saving wrt the
performance penalty:

GPU CPU
ES saving TS cost ES saving TS cost

propagate 18% 0% 9% 3%
collide 6% 10% 4% 4%

Full code 11% 10% 7% 8%

Table: Energy-to-solution (ES) gains and the corresponding time-to-solution
(TS) costs.
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Function-by-function tuning on CPUs
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Cost of ≈ 10µs for each frequency change.
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Function-by-function tuning on GPUs
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Cost of a frequency change is ≈ 10ms, thus identifying a single GPU
frequency for the whole simulation seems a better choice.
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Power drained for GPUs at different fixed frequencies
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Energy consumption for GPUs at fixed frequencies
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At a specific frequency (i.e. 732MHz) ≈ 7% of the total consumed energy of
the computing node can be saved without impacting performances.
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Conclusions
default frequency governors do not seems to be energy aware;

per function frequency optimization is not viable yet on GPUs, but it is on
CPUs;

per application frequency optimization can give interesting energy savings
with minimal or no impact on performances on both CPU and GPUs;

in general, for compute bound functions higher clocks are desiderable for
both energy efficiency and performances, while for memory bound
functions clocks can often be reduced to minimize energy consumption
minimally impacting on performances;

Future works
perform similar analisys on P100, KNL and other architectures

collect data for a fair comparison between architectures for several metrics

evaluate communication costs between different processors
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Thanks for Your attention
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