Higgs connections:

Electroweak stability and cosmology

Giuseppe Iacobellis

Supervisor: dr. Isabella Masina

University of Ferrara and INFN - Ferrara

Bari Theory Xmas Workshop 2016 Bari, 22th December 2016

Stability vs metastability

EW
stability and cosmology

Giuseppe

 IacobellisLiving on the edge

Stability
and
inflection
point
ξ-inflation
$U(1) B-L$
How fast Santa should be?

SM Higgs potential

$$
V_{0}=\frac{\lambda}{6}\left(|\mathcal{H}|^{2}-\frac{v^{2}}{2}\right)^{2} \sim \frac{\lambda}{24} \phi_{H}^{4}
$$

Stationary configurations: m_{t}^{c} and m_{t}^{i}

Fermi

Fermi

Planck

$$
\tau>\tau_{\text {universe }}
$$

Degenerate vacua

Higgs discovery (2012)

EW
stability and cosmology

Giuseppe

 IacobellisLiving on the edge

Stability and inflection point
ξ-inflation
$U(1) B-L$
How fast Santa should be?

Masina, Talk in Padua(2014)
Is Nature trying to tell us something?

Stability results: degenerate vacua

(GI and Masina, Phys. Rev. D94(2016) 073005)

EW
stability
and cosmology

Giuseppe

 IacobellisLiving on the edge

Stability and inflection point
ξ-inflation
$U(1) B-L$
How fast Santa should be?

$$
m_{t}^{c}=171.08 \pm 0.37_{\alpha_{s}} \pm 0.12_{m_{H}} \pm 0.32_{\mathrm{th}} \mathrm{GeV}
$$

Only 1.5σ deviation from stability!

3 or regions for
$m_{t}=173.34 \pm 0.76 \mathrm{GeV}$ (grey)
$m_{h}=125.09 \pm 0.24 \mathrm{GeV}$ (blue)
$\alpha_{x}(m z)=0.1181 \pm 0.0013$ (orange

The running of λ is heavily dependent on y_{t}

Inflection point configuration: results

(GI and Masina, Phys. Rev. D94(2016) 073005)

EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and inflection point
ξ-inflation
$U(1)_{B-L}$
How fast Santa should be?

A tension of at least 3σ appears: all the false vacuum inflationary models seem to be ruled out

$$
V \approx \frac{3 \pi^{2} A_{s}}{2} r
$$

The potential spans one order of magnitude for decreasing α_{s} : dramatic variation of r

$$
\log _{10} \bar{V}_{i}^{1 / 4}=16.77 \pm 0.11_{\alpha_{s}} \pm 0.05_{m_{H}} \pm 0.08_{\mathrm{th}}
$$

ξ-inflation: predictions and constraints

(GI and Masina, in preparation)

EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and inflection point
ξ-inflation
$U(1)_{B-L}$
How fast Santa should be?

Action in the Jordan frame

Scalar fields can (should?) be non-minimally coupled to gravity
$\mathcal{S}_{J}=\int d^{4} x \sqrt{-g}\left[\frac{M_{P}^{2}}{2} R-\xi \mathcal{H}^{\dagger} \mathcal{H} R\right]$

Weak constraint on ξ

We see that a critical low ξ scenario is no more viable:

Unitarity issue!

Stabilisation of the potential: $U(1)_{B-L}$ extension

 (GI and Masina, in preparation)EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and
inflection point
ξ-inflation
$U(1)_{B-L}$
How fast Santa should be?

Threshold effect

 the scalar lifts up λ, whileMajoron inflation small room
to accomplish both tasks!
 neutrinos pull down the running

Merry Xmas and Happy New Year!

EW

stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and
inflection point
ξ-inflation
$U(1) B-L$
How fast Santa should be?

THE P PIYSICS:OF-SANTA

Every year, Santa must deliver gifts to $\mathbf{2 0 0}$ million children spread over $\mathbf{2 0 0}$ million square miles in $\mathbf{2 4}$ hours. With $\mathbf{2 . 6 7}$ children in each household, $\mathbf{7 5}$ million homes to visit, and an average distance of
1.63 miles between homes, how fast does Santa need to travel?

