

Giuseppe Iacobellis

Supervisor: dr. Isabella Masina

University of Ferrara and INFN - Ferrara

Bari Theory Xmas Workshop 2016 Bari, 22th December 2016

Stability vs metastability

EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and inflection point

ξ-inflation

How fast Santa

SM Higgs potential

$$V_0 = \frac{\lambda}{6} \left(|\mathcal{H}|^2 - \frac{v^2}{2} \right)^2 \sim \frac{\lambda}{24} \phi_H^4$$

Stationary configurations: m_t^c and m_t^i

 $\lambda \phi^4$, plateau, ...

Degenerate vacua

 $au > au_{universe}$

Higgs discovery (2012)

EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and inflection point

 ξ -inflation

How fast Santa

Masina, Talk in Padua(2014)

Is Nature trying to tell us something?

Stability results: degenerate vacua

(GI and Masina, Phys. Rev. D94(2016) 073005)

EW stability and cosmology

Giuseppe Iacobellis

Living of the edge

Stability and inflection point

 ξ -inflatior

How fast Santa

Inflection point configuration: results

(GI and Masina, Phys. Rev. D94(2016) 073005)

EW stability and cosmology

Giuseppe Iacobellis

Living or the edge

Stability and inflection point

 ξ -inflatior

How fast Santa

A tension of at least 3σ appears: all the false vacuum inflationary models seem to be ruled out

$$V \approx \frac{3\pi^2 A_s}{2} r$$

The potential spans one order of magnitude for decreasing α_s :

dramatic variation of r

$$\log_{10} \bar{V}_i^{1/4} = 16.77 \pm 0.11_{\alpha_s} \pm 0.05_{m_H} \pm 0.08_{\text{th}}$$

ξ -inflation: predictions and constraints

(GI and Masina, in preparation)

EW stability and cosmology

Giuseppe Iacobellis

Living or the edge

Stability and inflection point

 $\xi\text{-inflation}$

How fast Santa

Action in the Jordan frame

Scalar fields can (should?) be non-minimally coupled to gravity

$$\mathcal{S}_{J}=\int d^{4}x\sqrt{-g}\left[rac{M_{P}^{2}}{2}R-\mathbf{\xi}\mathcal{H}^{\dagger}\mathcal{H}\mathbf{R}
ight]$$

Weak constraint on ξ

We see that a critical low ξ scenario is no more viable:

Unitarity issue!

Stabilisation of the potential: $U(1)_{B-L}$ extension

(GI and Masina, in preparation)

EW stability and cosmology

Giuseppe Iacobellis

Living on the edge

Stability and inflection point

 ξ -inflation

How fast Santa

Threshold effect the scalar lifts up λ , while neutrinos pull down the running

 $\frac{\mbox{Majoron inflation}}{\mbox{small room}}$ to accomplish both tasks!

Merry Xmas and Happy New Year!

EW stability and cosmology

Giuseppe Iacobellis

Living or the edge

Stability and inflection point

 ξ -inflation

How fast Santa should be?

THE * PHYSICS * O * SANTA

Every year, Santa must deliver gifts to 200 million children spread over 200 million square miles in 24 hours. With 2.67 children in each household, 75 million homes to visit, and an average distance of 1.63 miles between homes, how fast does Santa need to travel?

