

High-Energy Astrophysical Neutrinos

Irene Tamborra Niels Bohr Institute, University of Copenhagen

Xmas Workshop 2016 Bari, December 22, 2016

Neutrinos: New Frontier in Astrophysics

Neutrinos are weakly interacting elementary particles.

Escaping unimpeded, neutrinos carry information about sources not otherwise accessible.

Truly Novel Property of Neutrinos

Neutrinos oscillate into each other by flavor mixing, because of their tiny non-vanishing mass.

- Neutrino flavor ratio give us information about neutrino properties.
- Flavor oscillations are affected by source matter distribution.
- In turn, flavor oscillations strongly affect source dynamics.
 Study of flavor evolution allows us to learn about source properties.

Neutrino Astronomy

Several detectors are (or will be soon) sensitive to astrophysical neutrinos.

What could we learn by adopting neutrinos as messengers?

Neutrinos: Powerful Probes in Astrophysics

Neutrinos are copiously produced in astrophysical sources:

Sun

Supernovae

Gamma-ray bursts, ...

How Did We Learn About the Sun? Neutrinos!

Deficit of measured solar neutrino flux.
 Discovery of neutrino oscillations.

• Neutrino flux strongly dependent from Sun core structure. -> Standard Solar Model Test.

The high-energy neutrino astronomy era has begun!

We can learn about highly energetic phenomena in our Universe through neutrinos!

* IceCube Collaboration, Science (2013); PRL (2014); ApJ (2015); PRL (2015).

Where are these neutrinos coming from?

- ★ New physics?
- ★ Galactic origin [sub-dominant contribution]
- * Extragalactic origin

* Anchordoqui et al., JHEAp 1-2 (2014) 1. Meszaros, arXiv: 1511.01396. Waxman, arXiv: 1511.00815. Murase, arXiv: 1511.01590. Credits for images: ESA, Hubble, NASA web-sites.

Neutrinos from Gamma-Ray Bursts

GRBs have rich phenomenology. Still many uncertainties on their physics.

Dark GRBs are especially poorly understood because scarcely (or not) visible in photons.

Meszaros, Astropart. Phys. (2013). Waxman & Bahcall, PRL (1997). Meszaros & Waxman, PRL (2001). Senno et al. (2016).

Neutrinos from Dark Gamma-Ray Bursts

Dark GRBs expected to be more abundant than visible ones, but poorly detectable in photons. Neutrinos could be the only way to study dark GRBs.

* Tamborra & Ando, JCAP (2015). Tamborra & Ando, PRD (2016).

Neutrinos Production in Dark GRBs: Methods

* Tamborra & Ando, PRD (2016). Senno et al. (2016). Meszaros & Waxman, PRL (2001).

Constraints on the SN-GRB connection

The IceCube flux can already put indirect constraints on the fraction of SNe evolving in choked bursts and their jet energy.

* Tamborra & Ando, PRD 93 (2016) 053010. IceCube and ROTSE Collaborations, A&A 539 (2012) A60.

Conclusions

- ★ Origin of the IceCube high-energy neutrino flux not yet clear.
- * Diffuse emission from optically thick jets is one natural possibility.
- IceCube high-energy neutrino data indirectly constrain the choked GRB rate to be lower than 10% of the local SN rate.

Thank you for your attention!

