Flavor Physics : Overview & Perspectives

Guido Martinelli Dipartimento di Fisica & INFN Sezione di Roma Università La Sapienza

DIPARTIMENTO DI FISICA

Pisa, October 26 2017

PLAN OF THE TALK

- General introduction to the Unitary Triangle Fit
- Standard Model (SM) Analysis
- Tensions and unknown
- Uncertainties in lattice calculations;
- From simple to complicated;
- Future directions, new/old ideas
- Beyond the SM
- Conclusion

Thanks to Bona, Ciuchini, Lubicz, Silvestrini, Sachrajda, Tantalo, ...

Impossible to cover all recent developments – a selected list of topics – apologies for the interesting work that is not reported here

STANDARD MODEL UNITARITY TRIANGLE ANALYSIS (Flavor Physics)

- *Provides the best determination of the CKM parameters;*
- Tests the consistency of the SM (``direct" vs ``indirect" determinations) @ the quantum level;
- Provides <u>predictions</u> for SM observables (in the past for example sin 2β and Δm_s)
- It could lead to new discoveries (CP violation, Charm, !?)

The fundamental issue is to find signatures of new physics and to unravel the underlying theoretical structure;

Precision Flavor physics is a key tool, complementary to the large energy searches at the LHC;

If the LHC discovers new elementary particles BSM, then precision flavor physics will be necessary to constrain the underlying framework; The discovery potential of precision flavor physics should not be underestimated. The extraordinary progress of the experimental measurements requires accurate theoretical predictions

Precision flavour physics requires the control of hadronic effects for which lattice QCD simulations are essential.

$$Q^{EXP} = V_{CKM} \langle F | \hat{O} | I \rangle$$

$$Q^{EXP} = \sum_{i} C^{i}_{SM}(M_{W}, m_{t}, \alpha_{s}) \langle F | \hat{O}_{i} | I \rangle + \sum_{i'} C^{i'}_{Beyond}(\tilde{m}_{\beta}, \alpha_{s}) \langle F | \hat{O}_{i'} | I \rangle$$

Flavor physics in the Standard Model

In the SM, the quark mass matrix, from which the CKM matrix and *GP* violation originate, is determined by the coupling of the Higgs boson to fermions.

Absence of FCNC at tree level (& GIM suppression of FCNC @loop level)

Almost no CP violation at tree level

Flavour Physics is extremely sensitive to New Physics (NP)

In competition with Electroweak Precision Measurements

WHY RARE DECAYS ?

Rare decays are a manifestation of broken (accidental) symmetries e.g. of physics beyond the Standard Model

Proton decay

baryon and lepton number conservation

RARE DECAYS WHICH ARE ALLOWED IN THE STANDARD MODEL

FCNC:

$$q_i \rightarrow q_k + \nu \overline{\nu}$$

$$q_i \rightarrow q_k + l^+ l^-$$

 $q_i \rightarrow q_k + \gamma$

these decays occur only via loops because of GIM and are suppressed by CKM

THUS THEY ARE SENSITIVE TO NEW PHYSICS

CP Violation in the Standard Model

In the Standard Model the quark mass matrix, from which the CKM Matrix and $\mathcal{C}P$ originate, is determined by the Yukawa Lagrangian which couples fermions and Higgs

Diagonalization of the Mass Matrix

Up to singular cases, the mass matrix can always be
diagonalized by 2 unitary transformations
$$u^{i}_{L} \rightarrow U^{ik}_{L} u^{k}_{L} \qquad u^{i}_{R} \rightarrow U^{ik}_{R} u^{k}_{R}$$
$$M' = U^{\dagger}_{L} M U_{R} \qquad (M')^{\dagger} = U^{\dagger}_{R} (M)^{\dagger} U_{L}$$
$$\int_{mass}^{mass} \equiv m_{up} (\overline{u}_{L} u_{R} + \overline{u}_{R} u_{L}) + m_{ch} (\overline{c}_{L} c_{R} + \overline{c}_{R} c_{L}) + m_{top} (\overline{t}_{L} t_{R} + \overline{t}_{R} t_{L})$$

$$L_{CC}^{weak\,int} = \frac{g_W}{\sqrt{2}} \left(J_{\mu}^- W_{\mu}^+ + h.c. \right)$$

$$\rightarrow \frac{g_W}{\sqrt{2}} \left(\bar{u}_L \mathbf{V}^{CKM} \gamma_{\mu} d_L W_{\mu}^+ + ... \right)$$

N(N-1)/2 angles and (N-1)(N-2)/2 phases

N=3 3 angles + 1 phase KM the phase generates complex couplings i.e. <u>CP</u> <u>violation;</u>

6 masses +3 angles +1 phase = 10 parameters

$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{bmatrix}$$

NO Flavour Changing Neutral Currents (FCNC) at Tree Level (FCNC processes are good candidates for observing NEW PHYSICS)

CP Violation is natural with three quark generations (Kobayashi-Maskawa)

With three generations all CP phenomena are related to the same unique parameter (δ)

Quark masses & Generation Mixing

$$M^{d} = M \begin{pmatrix} 0 & -\sqrt{x} \\ \sqrt{x} & 1+x \end{pmatrix} \xrightarrow{\text{Sin } \theta_{c} \sim \sqrt{m_{d}} / m_{s}} \\ \text{R.Gatto '70} \\ \text{diag}(M) = M (x , 1) \quad x = m_{d} / m_{s} \\ V_{1} = \begin{pmatrix} 1 \\ \sqrt{x} \end{pmatrix} \quad \lambda_{1} = M x \quad \begin{array}{c} \text{Masses } \& \\ \text{Mixings} \\ \text{(including the} \\ \text{CP phases }) \\ \text{are related !!} \\ \end{array}$$

The Wolfenstein Parametrization

1 - 1/2 λ ²	λ	Αλ ³ (ρ - i η)	V _{ub}
- λ	1 - 1/2 λ ²	$A \lambda^2$	+ Ο(λ ⁴)
A $\lambda^3 \times$ (1- ρ - i η)	-A λ ²	1	
V _{td} ∧ ~ 0.2	A ~ 0.	$\begin{array}{c} \text{Sin } \theta_1 \\ \text{Sin } \theta_2 \\ \text{Sin } \theta_1 \end{array}$	2 = λ 3 = A λ ² 3 = A λ ³ (ρ-i η)
η~υ.Ζ	ρ~υ	5	

STRONG CP VIOLATION

This term violates CP and gives a contribution to the electric dipole moment of the neutron

$$e_n < 3 \ 10^{-26} e cm$$

 $\theta < 10^{-10}$ which is quite unnatural !!

Updates from UTfit

www.utfit.org

CRISTIANO ALPIGIANI^[a], ADRIAN BEVAN^[b], MARCELLA BONA^[b], MARCO CIUCHINI^[c], DENIS DERKACH^[d], ENRICO FRANCO^[e], VITTORIO LUBICZ^[f], GUIDO MARTINELLI^[g], FABRIZIO PARODI^[h], MAURIZIO PIERINI^[i], LUCA SILVESTRINI^[e], VIOLA SORDINI^[j], ACHILLE STOCCHI^[k], CECILIA TARANTINO^[f], AND VINCENZO VAGNONI^[l]

Other UT analyses exist, by: CKMfitter (http://ckmfitter.in2p3.fr/), Laiho&Lunghi&Van de Water (http://latticeaverages.org/) Lunghi&Soni (1010.6069)

Measure
$$V_{CKM}$$
Other NP parameters $\Gamma(b \rightarrow u)/\Gamma(b \rightarrow c)$ $\bar{\rho}^2 + \bar{\eta}^2$ $\bar{\Lambda}, \lambda_1, F(1), \dots$ ϵ_K $\eta [(1 - \bar{\rho}) + \dots]$ B_K Δm_d $(1 - \bar{\rho})^2 + \bar{\eta}^2$ $f_{B_d}^2 B_{B_d}$ $\Delta m_d / \Delta m_1$ $(1 - \bar{\rho})^2 + \bar{\eta}^2$ ξ $A_{CP}(B_d \rightarrow J/\psi K_s)$ $\sin 2\beta$ $Q^{EXP} = V_{CKM} \times \langle H_F | \hat{O} | H_I \rangle$

For details see: UTfit Collaboration

http://www.utfit.org

classical UT analysis

DIFFERENT LEVELS OF THEORETICAL UNCERTAINTIES (STRONG INTERACTIONS)

1) First class quantities, with reduced or negligible theor. uncertainties $A_{CP}(B \rightarrow J/\psi K_s) \quad \gamma \ from \ B \rightarrow DK$

 $K^0 \rightarrow \pi^0 \nu \bar{\nu}$

2) Second class quantities, with theoretical errors of O(10%) or less that can be reliably estimated $\epsilon_{K} \qquad \Delta M_{d,s}$ $\Gamma(B \to c, u), \qquad K^{+} \to \pi^{+} v \bar{v}$

3) Third class quantities, for which theoretical predictions are model dependent (BBNS, charming, etc.) In case of discrepacies we cannot tell whether is <u>new physics or</u> <u>we must blame the model</u> $B \rightarrow K \pi \quad B \rightarrow \pi^0 \pi^0$

Quantities used in the Standard UT Analysis

levels @ 68% (95%) CL

Inclusive vs Exclusive Opportunity for lattice QCD

UT-LATTICE

Other Quantities used in the UT Analysis

UT-ANGLES

Several new determinations of UT angles are now available, thanks to the results coming from the B-Factory experiments

New bounds are available from rare B and K decays. They do not still have a strong impact on the global fit and they are not used at present.

 $(\mathbf{B} \rightarrow \rho/\omega \mathbf{\gamma})/(\mathbf{B} \rightarrow \mathbf{K}^* \mathbf{\gamma})$

CKM matrix is the dominant source of flavour mixing and CP violation

CKM Matrix in the SM 2016

CKM matrix thus looks like

$$V_{CKM} = \begin{pmatrix} (0.97431 \pm 0.00015) & (0.22512 \pm 0.00067) \\ (-0.22497 \pm 0.00067)e^{i(0.0352 \pm 0.0010)^{\circ}} & (0.97344 \pm 0.00015)e^{i(-0.001877 \pm 0.000055)^{\circ}} & (0.04255 \pm 0.00069) \\ (0.00869 \pm 0.00014)e^{i(-22.00 \pm 0.73)^{\circ}} & (-0.04156 \pm 0.00056)e^{i(1.040 \pm 0.035)^{\circ}} & (0.999097 \pm 0.000024) \end{pmatrix}$$

Standard Parametrization (PDG)Sin $\theta_{12} = 0.22497 \pm 0.00069$ Sin $\theta_{23} = 0.04229 \pm 0.00057$ Sin $\theta_{13} = 0.00368 \pm 0.00002$ $\delta = 65.9 \pm 2.0$ Wolfenstein Parametrization (PDG) $\lambda = 0.22497 \pm 0.00069$ $A = 0.833 \pm 0.0.12$

PROGRESS SINCE 1988

Experimental progress so impressive that we can fit the hadronic matrix elements (in the SM)

Experimental progress so impressive that we can fit the hadronic matrix				Updates from UTfit obtained excluding the given constraint			
elements (in the SM)				from the fit			
	Observables	Measurement	Prediction	Pull (#σ)			
	Βκ	0.740 ± 0.029	0.81 ± 0.07	< 1			
	f _{Bs}	0.226 ± 0.005	0.220 ± 0.007	< 1			
	f _{Bs} ∕f _{Bd}	1.203 ± 0.013	1.210 ± 0.030	< 1			
	$\mathbf{B}_{Bs}/\mathbf{B}_{Bd}$	1.032 ± 0.036	1.07 ± 0.05	< 1			
	B _{Bs}	1.35 ± 0.08	1.30 ± 0.07	< 1			
in general: average the Nf=2+1+1 and Nf=2+1 FLAG averages, through eq.(28) in arXiv:1403.4504 for Bk, fBs, fBs/fBd:							

```
FLAG Nf=2+1+1 (single result) and Nf=2+1 average
```

for B_{Bs} , B_{bs}/B_{bd} :

update w.r.t. the Nf=2+1 FLAG average (no Nf=2+1+1 results yet) updating the FNAL/MILC result to FNAL/MILC 2016 (1602.03560)

Do we still care? Tensions and Unknowns

- 1) A``classical'' example B $\rightarrow \tau \nu$
- 2) $|V_{ub}|$ and $|V_{cb}|$ inclusive vs exclusive
- 3) $|V_{cb}|$, B mixing and ε_K
- 4) D-mixing
- 5) R(D) and R(D*)
- 6) B -> K* ll
- 7) Physics BSM ?

My answer is yes: we still care !

• What can be computed and what cannot be computed

$B \rightarrow \pi\pi, K\pi, etc. No !$

Non-leptonic but only below the inelastic threshold (may be also 3 body decays)

type3

type4

Neutral meson mixing (local)

meson mixing + short distance contributions to $B \rightarrow K^{(*)} l^+ l^-$

Radiative corrections to weak amplitudes important for hadron masses, leptonic and semileptonic decays, $|V_{us}|$, but also for D and B decays

FIG. 5: Connected diagrams contributing at $O(\alpha)$ contribution to the amplitude for the decay $\pi^+ \to \ell^+ \nu_l$.

The accuracy of lattice calculations of the hadron spectrum (and hence of the quark masses) and of the decay constants and form factors is such that isospin breaking and em effects cannot be neglected anymore:

FLAG Collaboration, arXiv:1607.00299

 $N_f = 2+1 m_{ud} = 3.37(8) MeV$ $m_s = 92.0(2.1) \text{ MeV}$ $m_s/m_{ud} = 27.43(31)$ ε =3%-6% $N_{f} = 2 + 1 + 1$ $m_{ud} = 3.70(17) MeV$ $m_s = 93.9(1.1)$ MeV $m_s/m_{ud} = 27.30(34)$ $f_{\pi} = 130.2(1.4) \text{ MeV} \quad f_{K} = 155.36(0.4) \text{ MeV} \epsilon = 0.26\%$ $f_{\rm K}/f_{\pi} = 1.1933(29) \epsilon = 0.24\%$ F $^{\rm K\pi}(0) = 0.9704(32) \epsilon = 0.34\%$

• $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9998(5)$ or 0.9999(6) from semileptonic and leptonic respectively

Relevant also in D and B meson decays

ATTENTION TO THE QUOTED ERRORS

significant differences in estimates of fit and systematic uncertainties in otherwise very similar computations

well-known example from light-quark physics (both computations use MILC ensembles, relatively minor differences)

MILC 13
$$f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{f}=2+1+1} = 1.1947(26)(33)(17)(2)$$
 e.m.

HPQCD 13 $f_{K^{\pm}}/f_{\pi^{\pm}}|_{N_{f}=2+1+1} = 1.1916(15)(12)(1)(10)$ + perturbative renormalization courtesy of C. Pena stat CL FV (misc).

$\frac{\Lambda_b \to p \,\ell^- \,\bar{\nu}_\ell \text{ and } \Lambda_b \to \Lambda_c \,\ell^- \,\bar{\nu}_\ell \text{ form factors from lattice QCD}}{\text{with relativistic heavy quarks}}$

William Detmold,¹ Christoph Lehner,² and Stefan Meinel^{3,4,*}

¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA ³Department of Physics, University of Arizona, Tucson, AZ 85721, USA ⁴RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Very nice paper – interesting for LHCb

Parameter	r coarse	fine
$am_Q^{(b)}$	8.45	3.99
$\xi^{(b)}$	3.1	1.93
$c_{E,B}^{(b)}$	5.8	3.57
$am_Q^{(c)}$	0.1214	-0.0045
$\xi^{(c)}$	1.2362	1.1281
$c_E^{(c)}$	1.6650	1.5311
$c_B^{(c)}$	1.8409	1.6232

TABLE II. Parameters of the bottom and charm quark actions [51, 52].

the parameters ν , c_E , c_B as functions of am_Q , heavy-quark discretization errors proportional to powers of am_Q can be removed to all orders. The remaining discretization errors are of order $a^2|\mathbf{p}|^2$, where $|\mathbf{p}|$ is the typical magnitude of the spatial momentum of the heavy quark inside the hadron. As the continuum limit $a \to 0$ is approached, the

FLAG-2 on B mixing

BBs = 1.32(5) Nf=2, ETMC BBs = 1.33(6) Nf=2+1 HPQCD BBs = 1.492(92)Nf=2+1, NEW FNAL/MILC UTFIT AV. BBs = 1.38(11)

FLAG-2 on B mixing

FLAG2 BBs/BBd = 1.06(11) UTFIT BBs/BBd = 1.012(27)

Do we still care? Tensions and Unknowns

- 1) A``classical'' example B -> τv
- 2) $|V_{ub}|$ and $|V_{cb}|$ inclusive vs exclusive
- 3) $|V_{cb}|$, B mixing and ϵ_K
- 4) D-mixing
- 5) R(D) and R(D*)
- 6) B -> K* ll
- 7) Physics BSM ?

CKM-TRIANGLE ANALYSIS

State of The Art 2015

	Measurement	Fit	Prediction	Pull
$\overline{\alpha}$	$(92.7 \pm 6.2)^{o}$	$(90.1 \pm 2.7)^{o}$	$(88.3 \pm 3.4)^{o}$	0.6
	6.7~%	2.9 %	3.8 %	
$\overline{\sin 2\beta}$	0.680 ± 0.024	0.696 ± 0.022	0.747 ± 0.039	1.8
	3.5~%	2.6~%	$5.2 \ \%$	
$\overline{\gamma}$	$(71.4 \pm 6.5)^{o}$	$(67.4 \pm 2.8)^{o}$	$(66.7 \pm 3.0)^{o}$	0.7
	9.1 %	4.2 %	4.5 %	
$ V_{ub} \times 10^3$	3.81 ± 0.40	3.66 ± 0.12	3.64 ± 0.12	0.5
	$10 \ \%$	3.3~%	3.3~%	
$\overline{ V_{cb} \times 10^2}$	4.09 ± 0.11	4.206 ± 0.053	4.240 ± 0.062	0.9
	2.6~%	$1.2 \ \%$	1.4~%	
$\overline{\varepsilon_K \times 10^3}$	2.228 ± 0.011	2.227 ± 0.011	2.08 ± 0.18	0.8
	$0.5 \ \%$	$0.5 \ \%$	8.7~%	
$\overline{\Delta m_s \ (\mathrm{ps}^{-1})}$	17.761 ± 0.022	17.755 ± 0.022	17.3 ± 1.0	0.2
	0.1 %	0.1~%	5.7 %	
$BR(B \to \tau \nu) \times 10^4$	1.06 ± 0.20	0.83 ± 0.07	0.81 ± 0.7	1.3
	18.9~%	7.9 %	8.2~%	
$\bar{B}R(B_s \to \mu\mu) \times 10^3$	2.9 ± 0.7	0.00 ± 0.15	0.04 ± 0.10	1.0
	24.1~%	3.8 %	4.0 %	ew corrections not included
$\overline{BR(B_d \to \mu\mu) \times 10^9}$	0.39 ± 0.15	0.1098 ± 0.0057	0.1103 ± 0.0058	1.9
	38.5~%	5.2%	5.2~%	ew corrections not included
$\overline{eta_s}$	$(0.97 \pm 0.95)^{o}$	$(1.056 \pm 0.039)^o$	$(1.056 \pm 0.039)^o$	0.1
	98 %	4.4 %	4.1 %	not included in the fit

 $B(B \rightarrow \tau \nu)_{Old} = (1.67 \pm 0.30) \ 10^{-4}$

LATTICE PARAMETERS (2017)

It does not make sense to improve the precision on B_K if we do not control <u>long distance effects;</u> Similarly for f_{π} or f_K <u>without radiative corrections</u>

Observables	Measurement	Prediction	Pull (# σ)
Βκ	0.740 ± 0.029	0.81 ± 0.07	< 1
f _{Bs}	0.226 ± 0.005	0.220 ± 0.007	< 1
f _{Bs} ∕f _{Bd}	1.203 ± 0.013	1.210 ± 0.030	< 1
$\mathbf{B}_{Bs}/\mathbf{B}_{Bd}$	1.032 ± 0.036	1.07 ± 0.05	< 1
B _{Bs}	1.35 ± 0.08	1.30 ± 0.07	< 1

Long Distance Effects in Neutral Meson Mixing

N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu (RBC-UKQCD), arXiv:1212.5931 Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni & J.Yu (RBC-UKQCD), arXiv:1406.0916 Z.Bai (RBC-UKQCD), arXiv:1411.3210

 $exp \quad \Delta m_K \equiv m_{K_L} - m_{K_S} = 3.483(6) \times 10^{-12} \text{ MeV.} \qquad \begin{array}{l} 3.19(41)(96) \\ lattice \ unphysical \\ masses \end{array}$

- Historically led to the prediction of the energy scale of the charm quark.
 Mohapatra, Rao & Marshak (1968); GIM (1970); Gaillard & Lee (1974)
- Tiny quantity \Rightarrow places strong constraints on BSM Physics.
- Within the standard model, Δm_K arises from $K^0 \bar{K}^0$ mixing at second order in the weak interactions:

$$\Delta M_{K} = 2\mathcal{P} \sum_{\alpha} \frac{\langle \bar{K}^{0} | H_{W} | \alpha \rangle \langle \alpha | H_{W} | K^{0} \rangle}{m_{K} - E_{\alpha}},$$

New project: $64^3 \times 128$, $a^{-1} = 2.36$ GeV, $m_c = 1.2$ GeV, $m_{\pi} = 136$ MeV

• Based on 59 configurations: $\Delta M_K = 5.5(1.7) \times 10^{-12}$ MeV Lattice 2017 [C. Sachrajda's talk, Wednesday 12:30@Seminarios 6+7]

Long Distance Effects in Neutral Meson Mixing

• Δm_K is given by

$$\Delta m_K \equiv m_{K_L} - m_{K_S} = 2\mathcal{P} \sum_{\alpha} \frac{\langle \bar{K}^0 | \mathcal{H}_W | \alpha \rangle \langle \alpha | \mathcal{H}_W | K^0 \rangle}{m_K - E_{\alpha}} = 3.483(6) \times 10^{-12} \,\mathrm{MeV}.$$

• The above correlation function gives $(T = t_B - t_A + 1)$

$$C_{4}(t_{A}, t_{B}; t_{i}, t_{f}) = |Z_{K}|^{2} e^{-m_{K}(t_{f} - t_{i})} \sum_{n} \frac{\langle \bar{K}^{0} | \mathcal{H}_{W} | n \rangle \langle n | \mathcal{H}_{W} | K^{0} \rangle}{(m_{K} - E_{n})^{2}} \times \left\{ e^{(M_{K} - E_{n})T} - (m_{K} - E_{n})T - 1 \right\}.$$

• From the coefficient of T we can therefore obtain

$$\Delta m_{K}^{\text{FV}} \equiv 2 \sum_{n} \frac{\langle \bar{K}^{0} | \mathcal{H}_{W} | n \rangle \langle n | \mathcal{H}_{W} | K^{0} \rangle}{(m_{K} - E_{n})}$$

Long Distance Effects in Neutral Meson Mixing

The general formula can be written: N.H.Christ, G.Martinelli & CTS, arXiv:1401.1362
 N.H.Christ, X.Feng, G.Martinelli & CTS, arXiv:1504.01170

$$\Delta m_K = \Delta m_K^{\rm FV} - 2\pi \,_V \langle \bar{K}^0 \,|\, H \,|\, n_0 \rangle_V \,_V \langle n_0 \,|\, H \,|\, K^0 \rangle_V \,\left[\cot \pi h \, \frac{dh}{dE} \right]_{m_K} \,,$$

where $h(E, L)\pi \equiv \phi(q) + \delta(k)$.

- This formula reproduces the result for the special case when the volume is such that there is a two-pion state with energy $= m_K$. N.H.Christ, arXiv:1012.6034
- Increasing the volumes keeping h = n/2 and thus avoiding the power corrections is an intriguing possibility. 3-particle correlator

Within reasonable approximations can be extended to D meson mixing M. Ciuchini,V. Lubicz, L. Silvestrini, S. Simula (progresses made by M. T. Hansen & S. Sharpe,1204.0826v4,1409.7012v,1504.04248v1) Also CPV in D -> ππ or KK

D MIXING

• D mixing is described by:

- Dispersive $D \rightarrow \overline{D}$ amplitude M_{12}

SM: long-distance dominated, not calculable

• NP: short distance, calculable w. lattice

– Absorptive D \rightarrow D amplitude Γ_{12}

• SM: long-distance, not calculable

• NP: negligible

- Observables: $|M_{12}|$, $|\Gamma_{12}|$, Φ_{12} =arg(Γ_{12}/M_{12})

Let us assume that the Standard Model contributions to M_{12} and Γ_{12} are real

PP @ LHC, Pisa, 17/5/2016

Do we still care? Tensions and Unknowns

- 1) A``classical'' example B $\rightarrow \tau v$
- 2) $|V_{ub}|$ and $|V_{cb}|$ inclusive vs exclusive
- 3) $|V_{cb}|$, B mixing and ε_K
- 4) D-mixing
- 5) R(D) and R(D*)
- 6) B -> K* ll
- 7) Physics BSM ?

V_{cb} and V_{ub}

2D average inspired by D'Agostini skeptical procedure (hep-ex/9910036) with σ =1. Very similar results obtained from a 2D a la PDG procedure.

$$|V_{cb}| = (40.5 \pm 1.1) \ 10^{-3}$$

uncertainty ~ 2.4%

$$|V_{ub}| = (3.74 \pm 0.23) \ 10^{-1}$$

Incl

Excl coollo B

updated for LHPC17

Model-Independent Extraction of $|V_{cb}|$ from $\bar{B} \to D^* \ell \overline{\nu}$, cont'd

LUV B-decays

Work ahead:

- Experiments: release unfolded data
- Experiments' next best alternative: do BGL fits
- Global analysts: do BGL fits, others (*e.g.*, polynomail in q^2)?
- Theorists: Λ/m_c effects?
- Theorists: Is BGL better than polynomial for independent form factors?
- Can this affect $B
 ightarrow D^{(*)} au
 u$
- LATTICE !!

If I may be so bold: problem solved

- Retrospect: What went wrong?
 - The probelm was sociological!

Also: FF calculations only on MILC configurations ⇒need confirmation with different methods

Universal Unitarity Triangle 2016 and the Tension Between $\Delta M_{s,d}$ and ε_K in CMFV Models

Monika Blanke a,b and Andrzej J. Buras^c

^a Institut fur Kernphysik, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
^b Institut fur Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Engesserstraße 7, D-76128 Karlsruhe, Germany
^c TUM-IAS, Lichtenbergstr. 2a, D-85748 Garching, Germany Physik Department, TUM, D-85748 Garching, Germany

Abstract

Motivated by the recently improved results from the Fermilab Lattice and MILC Collaborations on the hadronic matrix elements entering $\Delta M_{s,d}$ in $B^0_{s,d} - \bar{B}^0_{s,d}$ mixing, we determine the Universal Unitarity Triangle (UUT) in models with Constrained Minimal Flavour Vi-

$$F_{B_s}\sqrt{\hat{B}_{B_s}}, \quad F_{B_d}\sqrt{\hat{B}_{B_d}}, \quad \hat{B}_K.$$
 (2)

Fortunately, during the last years these uncertainties decreased significantly. In particular, concerning $F_{B_s}\sqrt{\hat{B}_{B_s}}$ and $F_{B_d}\sqrt{\hat{B}_{B_d}}$, an impressive progress has recently been made by the Fermilab Lattice and MILC Collaborations (Fermilab-MILC) that find [3]

$$F_{B_s}\sqrt{\hat{B}_{B_s}} = (274.6 \pm 8.8) \,\mathrm{MeV}, \qquad F_{B_d}\sqrt{\hat{B}_{B_d}} = (227.7 \pm 9.8) \,\mathrm{MeV}\,,$$
(3)

with uncertainties of 3% and 4%, respectively. An even higher precision is achieved for the ratio

$$\xi = \frac{F_{B_s} \sqrt{\hat{B}_{B_s}}}{F_{B_d} \sqrt{\hat{B}_{B_d}}} = 1.206 \pm 0.019.$$
(4)

$$\begin{aligned} &\mathsf{CKM \ Uncertainties} \\ &\mathsf{Br}\big(\mathsf{K}^{+} \to \pi^{+} v \overline{v}\big) = \big(8.39 \pm 0.30\big) \cdot 10^{-11} \bigg[\frac{|\mathsf{V}_{cb}|}{0.0407}\bigg]^{2.8} \bigg[\frac{\gamma}{73.2^{\circ}}\bigg]^{0.71} \\ &\mathsf{Br}\big(\mathsf{K}_{L} \to \pi^{0} v \overline{v}\big) = \big(3.36 \pm 0.09\big) \cdot 10^{-11} \bigg[\frac{|\mathsf{V}_{ub}|}{3.88 \cdot 10^{-3}}\bigg]^{2} \bigg[\frac{|\mathsf{V}_{cb}|}{0.0407}\bigg]^{2} \bigg[\frac{\sin\gamma}{\sin(73.2)}\bigg]^{2} \end{aligned}$$

$$\mathsf{Br}\big(\mathsf{K}^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \nu \overline{\nu}\big) = \big(\mathsf{65.3} \pm \mathsf{3.1}\big) \Big[\overline{\mathsf{B}}\mathsf{r}\big(\mathsf{B}_{\mathsf{s}} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}\big)\Big]^{1.4} \Big[\frac{\gamma}{\mathsf{70}^{\circ}}\Big]^{0.71} \Bigg[\frac{\mathsf{227} \ \mathsf{MeV}}{\mathsf{F}_{\mathsf{B}_{\mathsf{s}}}}\Bigg]^{2.8}$$

A. Buras , Buttazzo, Girrbach-Noe, Knegjens 1503.02693 For $B_s \to \mu^+ \mu^-$ we use the formula from [56], slightly modified in [2]

$$\begin{split} \overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\rm SM} &= (3.65 \pm 0.06) \cdot 10^{-9} \left[\frac{m_t(m_t)}{163.5 \,{\rm GeV}} \right]^{3.02} \left[\frac{\alpha_s(M_Z)}{0.1184} \right]^{0.032} R_s \\ \text{where} \\ R_s &= \left[\frac{F_{B_s}}{227.7 \,{\rm MeV}} \right]^2 \left[\frac{\tau_{B_s}}{1.516 {\rm ps}} \right] \left[\frac{0.938}{r(y_s)} \right] \left[\frac{|V_{ts}|}{41.5 \cdot 10^{-3}} \right]^2. \end{split}$$
Now,

$$|V_{td}| = |V_{us}| |V_{cb}| R_t, \qquad |V_{ts}| = \eta_R |V_{cb}| \\ \text{with } R_t \text{ being one of the sides of the unitarity triangle (see Fig. 1) and} \end{split}$$

$$\eta_R = 1 - |V_{us}| \xi \sqrt{\frac{\Delta M_d}{\Delta M_s}} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \cos\beta + \frac{\lambda^2}{2} + \mathcal{O}(\lambda^4) = 0.9825 \,,$$

M. Blanke A. Buras 1602.040220v3

Do we still care? Tensions and Unknowns

- 1) A``classical'' example B $\rightarrow \tau v$
- 2) $|V_{ub}|$ and $|V_{cb}|$ inclusive vs exclusive
- 3) $|V_{cb}|$, B mixing and ε_K
- 4) D-mixing (already discussed)
- 5) R(D) and R(D*) (and Vcb of course)
- 6) B -> $K^{(*)}$ ll
- 7) Physics BSM ?

B semileptonic decay: $|V_{cb}|$

$$\frac{\mathrm{d}\Gamma(B_{(s)} \to Pl\nu)}{\mathrm{d}q^2} = \frac{G_{\rm F}^2 |V_{cb}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$$

$$e,\mu \text{ suppressed}$$

uncertainties from kinematical factors / neglected h.o. OPE at the permille level

B semileptonic decay: $|V_{cb}|$

$$\frac{\mathrm{d}\Gamma(B \to Dl\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\mathrm{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$
$$\frac{\mathrm{d}\Gamma(B \to D^* l\nu_l)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\mathrm{EW}}|^2 \chi(w) |V_{cb}|^2 |\mathcal{F}(w)|^2 + \mathcal{O}\left(\frac{m_l^2}{q^2}\right)$$

$$w = \frac{p_B \cdot p_{D^{(*)}}}{m_B m_{D^{(*)}}} \qquad \qquad \mathcal{G}(w) = \frac{4 \frac{m_D}{m_B}}{1 + \frac{m_D}{m_B}} f_+(q^2) \quad \text{etc}$$

Low recoil region (w=1) accessible to lattice calculations

B -> *D*-*D**

same lattice configurations used $m_b a \approx 1.1$ in the best case

	FNAL/MILC*	FNAL/MILC	HPQCD
process	$B \to D^* \ell \nu$	$B \to D l \nu$	$B \to D l \nu$
kinematics	w = 1	$w \ge 1$	$w \ge 1$
ensembles	MILC	MILC	MILC
$N_{ m f}$	2+1	2+1	2+1
a (fm)	5/0.045 - 0.15	4/0.045 - 0.12	2/0.09, 0.12
M_{π}^{\min} [MeV]	260	220	260
$M_\pi^{\min}L$	3.8	3.8	3.8
l quarks	asqtad	asqtad	asqtad
c quark	RHQ (Fermilab)	RHQ (Fermilab)	HISQ
<i>b</i> quark	RHQ (Fermilab)	RHQ (Fermilab)	NRQCD
reference	[1403.0635]	[1503.07237]	[1505.03925]

(* full publication of $B \rightarrow D^*$ results, no changes wrt proceedings value quoted in FLAG)

new results for $B \to D l \nu$

[FNAL/MILC]

[HPQCD]

HPQCD June 13 2016

A.Celis, M. Jung, X. Li, A. Pich arXiv:1612.07757v2

FIG. 1. Average of $R(D^{(*)})$ measurements, displayed as red filled ellipses (68% CL and 95% CL). The SM prediction is shown as a black ellipse (95% CL), and the individual measurements as continuous contours (68% CL): Belle (blue ellipse and horizontal bands), BaBar (green ellipse), and LHCb (horizontal orange band).

$|V_{ub}| \& |V_{cb}|$ inclusive vs exclusive and all that

- On the long run <u>exclusive decays</u> based on non-perturbative (lattice) determination of the relevant form factors <u>will win;</u>
- The precision of the theoretical predictions for inclusive decays cannot be improved (are the present quoted errors reliable?);
- Still (much) more work is needed, and <u>different lattice approaches to the physical</u>
 <u>B</u> should be used and compared;
- R(D) and R(D*) is an open problem; more lattice collaborations should work on these calculations. A comparison with Bs and Bc decays fundamental;
- 5) Theoretical calculations and experimental analyses should not be biased by the HQFT after all $\Lambda_{QCD}/m_{c} \approx O(1)$;
- 6) I hope to be wrong, but the possibility of new physics in tree level b -> c decays looks to me quite remote.

Do we still care? Tensions and Unknowns

- 1) A``classical'' example B $\rightarrow \tau v$
- 2) $|V_{ub}|$ and $|V_{cb}|$ inclusive vs exclusive
- 3) $|V_{cb}|$, B mixing and ε_K
- 4) D-mixing (already discussed)
- 5) R(D) and $R(D^*)$ (and Vcb of course)

Is the present picture showing a **Model Standardissimo**?

An evidence, an evidence, my kingdom for an evidence

From Shakespeare's *Richard III* and A. Stocchi

 Fit of NP-ΔF=2 parameters in a Model "independent" way

2) "Scale" analysis in $\Delta F=2$

.... beyond the Standard Model

New Physics in Kaon decaysNew Physics in B -> K(*) I+I-New Physics in Mixing

Angular Analyses

- > First **full angular analysis** of $B^0 \rightarrow K^{*0}\mu\mu$: measured all CP-averaged angular terms and CP-asymmetries
- > Can construct less form-factor dependent ratios of observables

New analysis from Belle

Reminder: $R_{K}=B(B^{+}\rightarrow K^{+}\mu^{+}\mu^{-})/B(B^{+}\rightarrow K^{+}e^{+}e^{-})$

 Test of lepton universality : R_K ~1 in SM, with negligible theoretical uncertainties

 $R_{\rm K}(1 < q^2 < 6 \text{ GeV}^2) = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$

- Compatible with SM at 2.6σ
- Experimentally challenging
 - lower trigger efficiency for electrons, resolution deteriorated by bremsstrahlung
- Other modes suitable for same test: $B^0 \rightarrow K^{*0} l^+ l^-, B_s \rightarrow \phi l^+ l^-, \Lambda_B \rightarrow \Lambda l^+ l^-$

AND NOW:

The hint that the loop induced decays $b \to s\ell\ell$ can break lepton flavor universality (1) was corroborated by the most recent LHCb results [4],

$$R_{K^*}^{\text{low}} = \frac{\mathcal{B}(B \to K^* \mu \mu)_{q^2 \in [0.045, 1.1] \text{GeV}^2}}{\mathcal{B}(B \to K^* e e)_{q^2 \in [0.045, 1.1] \text{GeV}^2}} = 0.660 \pm_{0.070}^{0.110} \pm 0.024 \,,$$

$$R_{K^*}^{\text{central}} = \frac{\mathcal{B}(B \to K^* \mu \mu)_{q^2 \in [1.1,6] \text{GeV}^2}}{\mathcal{B}(B \to K^* e e)_{q^2 \in [1.1,6] \text{GeV}^2}} = 0.685 \pm_{0.069}^{0.113} \pm 0.047 \,, \tag{2}$$

VERY DIFFICULT TO EXPLAIN WITH HADRONIC UNCERTAINIES!!

Heavy to light semileptonic

New results after Lattice 2015:

Local operator contribution only

	Fermilab/MILC	Fermilab/MILC	Detmold and Meinel
process	$B ightarrow {\it KII}$,	$B ightarrow \pi II$	$\Lambda_b o \Lambda$
kinematics	full q ²	full q ²	full q ²
ensembles	MILC asqtad	MILC asqtad	RBC/UKQCD DWF
N_f	2+1	2 + 1	2 + 1
а	4/0.045-0.12	4/0.045-0.12	2/0.09-0.12
M_π^{\min}	260	260	227
light quark	asqtad	asqtad	DWF
<i>b</i> quark	Fermilab	Fermilab	RHQ
Ref.	PRD.93.025026	PRL.115.152002	PRD.93.074501

- PRD.93.034005 (Fermilab/MILC, *B* rare decay pheno)
- PRD.94.013007 (Meinel and van Dyk, Λ_b rare decay pheno)
- PRD.88.054509, PRL.111.162002 (HPQCD, $B \rightarrow K / / / ff$ and pheno), PRD.89.094501, PRL.112.212003 ($B \rightarrow K^* / / / ff$ and pheno)

nar

Standard Model predictions of B rare decays

• Standard-Model predictions of the differential decay rate in $B \rightarrow \pi II$ and $B \rightarrow KII$ process (PRL.115.152002, PRD.93.034005).

< ⊒ >

5900

There are good chances that the lattice calculation of the most important long distance contributions via a charm loop is possible M. Ciuchini, V.Lubicz, G.M., L. Silvestrini, S. Simula

RADIATIVE/RARE KAON DECAYS

G. Isidori, G. M., and P. Turchetti, Phys.Lett. B633, 75 (2006), *arXiv:hep-lat/0506026*

N.H. Christ X. Feng A. Portelli and C.T. Sachrajda *Phys.Rev. D92* (2015) no.9, 094512 <u>10.1103/PhysRevD.92.094512</u> *

$$K \to \pi l^+ l^- \qquad K \to \pi \nu \bar{\nu}$$

Conserved currents and GIM important

2.1 $K \rightarrow \pi \ell^+ \ell^-$ G. Isidori, G. M., and P. Turchetti (2007)

The main non-perturbative correlators relevant for these decays are those with the electromagnetic current. In particular, the relevant T-product in Minkowski space is [7, 8]

$$\left(\mathcal{T}_{i}^{j}\right)_{\mathrm{em}}^{\mu}(q^{2}) = -i \int d^{4}x \, e^{-i \, q \cdot x} \, \langle \pi^{j}(p) | T \left\{ J_{\mathrm{em}}^{\mu}(x) \left[Q_{i}^{u}(0) - Q_{i}^{c}(0) \right] \right\} | K^{j}(k) \rangle \,, \quad (11)$$

$$J_{\rm em}^{\mu} = \frac{2}{3} \sum_{q=u,c} \bar{q} \gamma^{\mu} q - \frac{1}{3} \sum_{q=d,s} \bar{q} \gamma^{\mu} q \qquad (12)$$

for i = 1, 2 and j = +, 0. Thanks to gauge invariance we can write

$$\left(\mathcal{T}_{i}^{j}\right)_{\rm em}^{\mu}\left(q^{2}\right) = \frac{w_{i}^{j}(q^{2})}{(4\pi)^{2}} \left[q^{2}(k+p)^{\mu} - (m_{k}^{2} - m_{\pi}^{2})q^{\mu}\right]$$
(13)

The normalization of (13) is such that the O(1) scale-independent low-energy couplings $a_{+,0}$ defined in [8] can be expressed as

$$a_j = \frac{1}{\sqrt{2}} V_{us}^* V_{ud} \left[C_1 w_1^j(0) + C_2 w_2^j(0) + \frac{2N_j}{\sin^2 \theta_W} f_+(0) C_{7V} \right] .$$
(14)

A detailed analysis of the extraction of the amplitude from lattice correlators by N.H. Christ X. Feng A. Portelli and C.T. Sachrajda

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: largest contribution from top quark loop, thus theoretically clean

$$\mathcal{H}_{eff} \sim \frac{G_F}{\sqrt{2}} \cdot \underbrace{\frac{\alpha_{\rm EM}}{2\pi \sin^2 \theta_W} \lambda_t X_t(x_t) \cdot (\bar{s}d)_{V-A} (\bar{\nu}\nu)_{V-A}}_{\mathcal{N} \sim 2 \times 10^{-5}}$$

Probe the new physics at scales of $\mathcal{N}^{-\frac{1}{2}}M_W = O(10 \text{ TeV})$

Past experimental measurement is 2 times larger than SM prediction

$$Br(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} \qquad [BNL \ E949, \ '08]$$
$$Br(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = 9.11 \pm 0.72 \times 10^{-11} \qquad [Buras \ et. \ al., \ '15]$$

but still consistent with > 60% exp. error

Results for charm quark contribution

Charm quark contribution P_c $P_{c} = P_{c}^{SD} + \delta P_{c}$ NNLO QCD [Buras, Gorbahn, Haisch, Nierste, '06]: $P_c^{\rm SD} = 0.365(12)$ Phenomenological ansatz [Isidori, Mescia, Smith, '05] $\delta P_{c,\mu} = 0.040(20)$ Lattice results $@m_{\pi} = 420$ MeV, $m_c = 860$ MeV [RBC-UKQCD, arXiv:1701.02858] $P_{c} = 0.2529(\pm 13)_{\text{stat}}(\pm 32)_{\text{scale}}(-45)_{\text{FV}}$ $P_{c} - P_{c}^{SD} = 0.0040(\pm 13)_{stat}(\pm 32)_{scale}(-45)_{FV}$

- As a smaller m_c is used, P_c is also smaller
- Cancellation in W-W and Z-exchange diag. leads to small $P_c P_c^{SD}$
- Important to perform the calculation at physical m_{π} and m_c

$K \rightarrow \pi \ell^+ \ell^-$: *CP* conserving chanel

CP conserving decay: $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ and $K_S \rightarrow \pi^0 \ell^+ \ell^-$

• Involve both γ - and Z-exchange diagram, but γ -exchange is much larger

- Unlike Z-exchange, the γ -exchange diagram is LD dominated
 - By power counting, loop integral is quadratically UV divergent
 - EM gauge invariance reduces divergence to logarithmic
 - c u GIM cancellation further reduces log divergence to be UV finite

First exploratory calculation on $K^+ \rightarrow \pi^+ \ell^+ \ell^-$

TESTING THE NEW PHYSICS SCALE Effective Theory Analysis ΔF=2

Effective Hamiltonian in the mixing amplitudes

$H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu)$	$+\sum_{i=1}^{3}\widetilde{C}_{i}(\mu)\widetilde{Q}_{i}(\mu)$
$Q_1 = \overline{q}_L^{\alpha} \gamma_\mu b_L^{\alpha} \overline{q}_L^{\beta} \gamma^\mu b_L^{\beta}$	(SM/MFV)
$Q_2 = \overline{q}^{\alpha}_{R} b^{\alpha}_{L} \overline{q}^{\beta}_{R} b^{\beta}_{L}$	$Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
$Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$	$Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
$\widetilde{Q}_1 = \overline{q}_R^{\alpha} \gamma_{\mu} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$	
$\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$	$\widetilde{Q}_{3} = \overline{q}_{L}^{\alpha} b_{R}^{\beta} \overline{q}_{L}^{\beta} b_{R}^{\beta}$

$$C_{j}(\Lambda) = \frac{LF_{j}}{\Lambda^{2}} \Rightarrow \Lambda = \sqrt{\frac{LF_{j}}{C_{j}(\Lambda)}}$$

 $C(\Lambda)$ coefficients are extracted from data

L is loop factor and should be : L=1 tree/strong int. NP L= α_s^2 or α_W^2 for strong/weak perturb. NP

> LATTICE CALCULATIONS ESSENTIAL IN THIS CASE !!

 $F_1 = F_{SM} = (V_{tq}V_{tb}^*)^2$ $F_{j=1} = 0$

 $|F_j| = F_{SM}$ arbitrary phases

NMFV

MFV

|F_j|=1 arbitrary phases

Flavour generic

Resolution of the discrepancy for B_4 , B_5

- Use both RI/MOM and SMOM \Rightarrow the former is significantly smaller
- Use two RI/SMOM schemes, (q, q) and $(\gamma_{\mu}, \gamma_{\mu}) \Rightarrow$ consistent results
- RI/(S)MOM result compatible with previous RI/(S)MOM calculation

Study suggests RI/MOM suffers from large IR artifacts \Rightarrow discrepancy

On-going project: [J. Kettle's talk, Wednesday 11:30@Seminarios 6+7]

• 64^3 and 48^3 ensembles with physical m_π and finer lattice spacing

results from the Wilson coefficients

To obtain the lower bound for loop-mediated contributions, one simply multiplies the bounds by α_s (~ 0.1) or by α_w (~ 0.03).

 $\label{eq:alpha} \begin{array}{l} \alpha \sim \alpha_{w} \text{ in case of loop coupling} \\ \text{through weak interactions} \\ \text{NP in } \alpha_{w} \text{ loops} \\ \Lambda > 1.5 \ 10^{4} \ \text{TeV} \end{array}$

Best bound from ϵ_{K} dominated by CKM error CPV in charm mixing follows, exp error dominant Best CP conserving from Δm_{K} , dominated by long distance B_d and B_s behind, errors from both CKM and B-parameters

results from the Wilson coefficients

NMFV: $C(\Lambda) = \alpha \times |F_{SM}|/\Lambda^2$, $F_i \sim |F_{SM}|$, arbitrary phase

 $\alpha \sim 1$ for strongly coupled NP

To obtain the lower bound for loop-mediated contributions, one simply multiplies the bounds by α_s (~ 0.1) or by α_w (~ 0.03).

 $\label{eq:alpha} \begin{array}{l} \alpha \sim \alpha_{w} \text{ in case of loop coupling} \\ \text{through weak interactions} \\ \text{NP in } \alpha_{w} \text{ loops} \\ \Lambda > 3.4 \text{ TeV} \end{array}$

If new chiral structures present, $\epsilon_{\rm K}$ still leading B_(s) mixing provides very stringent constraints, especially if no new chiral structures are present Constraining power of the various sectors depends on unknown NP flavour structure.

Marcella Bona

absence says more than presence FRANK HERBERT (Dune)

THANKS FOR YOUR ATTENTION

Neutron electric dipole moment in SuperSymmetry

The Simplest Example

COULD WE COMPUTE THIS PROCESS WITH SUFFICIENT COMPUTER POWER ?

THE ANSWER IS: NO

IT IS NOT ONLY A QUESTION OF COMPUTER POWER BECAUSE THERE ARE COMPLICATED FIELD THEORETICAL PROBLEMS

Euclide vs Minkowski

- Uncertainties in
- lattice QCD calculations

Continuum limit, discretization and finite volume errors

Physics Reach (Mainly Heavy Flavor Physics) many slides from Lattice Conferences

- charm physics directly accessible for some time now
- fraction of available ensembles used for HQ physics still limited

[FLAG 2013, Eur J Phys C74 (2014) 2890, arXiv:1310.8555v2]

(+ HPQCD results for f_{B_c} , not covered by FLAG) [PRD 86 (2012) 074503]

FLAG average for Standard Model B_K

- B_K in NDR- $\overline{\text{MS}}$ scheme: $B_K(\mu) = \frac{\langle \overline{K^0} | Q^{\Delta S=2}(\mu) | K^0 \rangle}{\frac{8}{3} f_K^2 m_K^2}$
- Renormalization group independent *B* parameter \hat{B}_{K} : $\hat{B}_{K} = \left(\frac{\bar{g}(\mu)^{2}}{4\pi}\right)^{-\gamma_{0}/(2\beta_{0})} \exp\left\{\int_{0}^{\bar{g}(\mu)} dg\left(\frac{\gamma(g)}{\beta(g)} + \frac{\gamma_{0}}{\beta_{0}g}\right)\right\} B_{K}(\mu)$

• $N_f = 2 + 1 + 1$: $\hat{B}_K = 0.717(24)$

•
$$N_f = 2 + 1$$
:
 $\hat{B}_K = 0.763(10)$

$$N_f = 2:$$

 $\hat{B}_K = 0.727(25)$

$$\epsilon'/\epsilon = (1.4 \pm 7.0) \cdot 10^{-4}$$
 $\left(\frac{\text{Re A}_0}{\text{Re A}_2}\right) = 31.0 \pm 6.6$

$$\left(\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}\right)_{exp} = 22.4$$

$$(\epsilon' \epsilon)_{exp} = (16.6 \pm 2.3) \cdot 10^{-4}$$

Results for $\operatorname{Re}[A_0]$, $\operatorname{Im}[A_0]$ and $\operatorname{Re}[\epsilon'/\epsilon]$

Xu Feng Lattice 2017

[RBC-UKQCD, PRL115 (2015) 212001]

- Determine the $K \rightarrow \pi \pi (I = 0)$ amplitude A_0
 - Lattice results

 $\begin{aligned} &\operatorname{Re}[A_0] = 4.66(1.00)_{\operatorname{stat}}(1.26)_{\operatorname{syst}} \times 10^{-7} \text{ GeV} \\ &\operatorname{Im}[A_0] = -1.90(1.23)_{\operatorname{stat}}(1.08)_{\operatorname{syst}} \times 10^{-11} \text{ GeV} \end{aligned}$

Experimental measurement

 $Re[A_0] = 3.3201(18) \times 10^{-7} GeV$ $Im[A_0]$ is unknown

• Determine the direct *CP* violation $\operatorname{Re}[\epsilon'/\epsilon]$

 $Re[\epsilon'/\epsilon] = 0.14(52)_{stat}(46)_{syst} \times 10^{-3}$ Lattice $Re[\epsilon'/\epsilon] = 1.66(23) \times 10^{-3}$ Experiment

2.1 σ deviation \Rightarrow require more accurate lattice results

Four dominant contributions to ϵ'/ϵ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

Assumes that ReA_0 and ReA_2 ($\Delta I=1/2$ Rule) fully described by SM (includes isospin breaking corrections)

ε[′]/ε from RBC-UKQCD

Calculate all contributions directly (no isospin breaking corrections)

$$\left[-\left(6.5\pm3.2\right)+25.3\cdot\mathsf{B}_{6}^{(1/2)}+\left(1.2\pm0.8\right)-10.2\cdot\mathsf{B}_{8}^{(3/2)}\right]\right]$$

ε'/ε from RBC-UKQCD

Anatomy: AJB, Gorbahn, Jäger, Jamin (2015)

Anatomy of
$$\varepsilon'/\varepsilon - A$$
 new flavour anomaly?
AJB, Gorbahn, Jäger, Jamin,, 1507.xxxx
RBC-UKQCD
 $\varepsilon'/\varepsilon = (1.4 \pm 7.0) \cdot 10^{-4}$
(3.2 σ) $\varepsilon'/\varepsilon = (2.2 \pm 3.8) \cdot 10^{-4}$
 $\varepsilon'/\varepsilon = (6.3 \pm 2.5) \cdot 10^{-4}$
 $\varepsilon'/\varepsilon = (9.1 \pm 3.3) \cdot 10^{-4}$
RBC-QCD values
 $B_6^{(1/2)} = 0.57 \pm 0.15$
 $B_8^{(3/2)} = 0.76 \pm 0.05$
large N bounds (AJB, Gérard)
 $B_6^{(1/2)} = B_8^{(3/2)} = 0.76$
large N bounds (AJB, Gérard)
 $B_6^{(1/2)} = B_8^{(3/2)} = 1.0$
exp: $\varepsilon'/\varepsilon = (16.6 \pm 3.3) \cdot 10^{-4}$

tensions? not really.. still that V_{ub} inclusive

