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Quantum Gravity: open problem in theoretical physics:

Manifest difficulties:

e Standard perturbation theory fails to renormalize GR:

dimensionful parameters in the Einstein action % and % give

rise to divergences from the High-Energy (short-scales) sector.
e Gravitational quantum effects unreachable by experiments:
Ep; = /% c? ~ 10'°GeV (big bang or black holes)

Two lines of direction in QG approaches

e non-conservative: introduce new short-scale physics “by hand”

e conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative
approach of non-perturbative renormalization of the Einstein
gravity, based on Monte-Carlo simulations.



Lattice regularization
A regularization makes the renormalization procedure well posed.

o discretize spacetime introducing a minimal
lattice spacing ‘a’

e localize dynamical variables on lattice sites

o study how quantities diverge for a — 0
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e Cartesian grids approximate Minkowski space I:I:I:
e Regge triangulations approximate generic a
manifolds
0 - simplex 1 - simplex 2 - simplex
(point) (edge) (triangle)
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Configuration space of CDT

A Lorentzian (causal) structure on 7 can be enforced by using a
foliation of spatial slices of constant proper time

Vertices “live” in slices.

d-simplexes fill spacetime between 2D

slices.

Links can be spacelike with As? = a2,

or timelike with As? = —aa?.

3D
Only a finite number of simplex types.
The « parameter is used later to
perform a Wick-rotation from
Lorentzian to Euclidean AD
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Regge formalism: action discretization

Also the EH action must be discretized accordingly (g, — 7T):

Senlguw] = -G /ddX g|R2/\/ddX |g|]
Total curvature Total volume
[ discretization [}
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where V) is the k-volume of the simplex ok,
Wick-rotation iS; (@) = —Sguc(—a)

= Monte-Carlo sampling P[T] = % exp (—Seuc[T])



Wick-rotated action in 4D
At the end of the day [Ambjorn et al., arXiv:1203.3591]:

Scot = —koNo + kaNa + A(Ng + Ny’l) — 6MNp)

e New parameters: (ko, ka, AA), related respectively to G, A and
a.

e New variables: Ny, Ns and Nz(f’l), counting the total numbers
of vertices, pentachorons and type-(4,1)/(1,4) pentachorons
respectively (7 dependence omitted).

It is convenient to “fix" the total spacetime volume Ny = V by
fine-tuning ks = actually free parameters (ko, A, V).

Simulations at different volumes V allow finite-size scaling analysis.



For simulations at fixed volumes V' the phase diagram of CDT is
2-dimensional, parametrized by (ko, A).

Ultimate goal of CDT

Find in the phase diagram of CDT a second order
critical point with diverging correlation length
—> continuum limit



Phase diagram of CDT in 4D
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Main CDT result

The average of profiles in C s phase fits well “ \
with a de Sitter cosmological model! . \
(5* in Euclidean space)



Problem: lack of geometric observables

Observables currently employed in CDT

e Spatial volume per slice: V(t)
(number of spatial tetrahedra at the slice labeled by t)
e Order parameters for transitions:
e conj(kg) = No/Njy for the A|Cys transition
e conj(A) = (Nf’l) — 6MNg) /Ny for the B|Cp transition
e OP, for the Cp|Cys transition
[Ambjorn et al. arXiv:1704.04373]
e Fractal dimensions:

e spectral dimension
e Hausdorff dimension

No observable characterizing geometries at all lattice scales!!



Proposed solution: spectral analysis
Analysis of eigenvalues and eigenvector of the Laplace-Beltrami

operator: —V?

e Spectral analysis on smooth manifolds (M, g,,,,):

—V?%f=— 0u(V/|g|g"" 0, f) = Af, with boundary conditions
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Spectral graph analysis on CDT spatial slices

Observation

One can define graphs associated to spatial slices of triangulations.

e spatial tetrahedra become vertices
of associated graph

e adjacency relations between
tetrahedra become edges

e The Laplace matrix can be defined
on the graph associated to spatial
slices as described previously

e Eigenvalue problem Lf = Af solved
by numerical routines

)

2D slice and its dual graph



Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:

k 5 o S o
min{ SO [F(v) - W) | Fo - FP =6, fs.1:ovs,p:1,...,k},
L fc Y (v,w)eE s=1

where for each vertex v € V the value f*(v) is its s-th coordinate
in the embedding.

The solution {f*(v)}X_; is exactly the (orthonormal) set of the
first k eigenvectors of the Laplace matrix {es(v)}5_;!



Laplacian embedding: example torus 72 = S* x S!

For each graph-vertex v € V plot the tuple of coordinates:
2D: (e1(v), e2(v)) € R2
3D: (er(v), ex(v), e3(v)) € R3

(a) 2D embedding (b) 3D projected embedding



Laplacian embedding of spatial slices in Cys phase
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The first three eigenstates are not enough to probe the geometry
of substructures



Result: spectral clustering of Cys spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality
Self-similar filamentous structures in Cys phase (S° topology)



Other evidences of fractality: spectral dimension Ds

Computed from the return probability for random-walks on

manifold or graph: P,(7) o 7 — Ds(7) = —2%’;&)

e Usual integer value on regular spaces: e.g. Ds(7) = d on R?

e 7-independent fractional value on true fractals

e 7-dependent fractional value on multi-fractals (not
self-similar)

Equivalent definition of return probability: P, = ﬁ Dok e Mt

= Nice interpretation of return probability in terms of diffusion
processes (random-walks): smaller eigenvalues <> slower modes.
The smallest non-zero eigenvalue A; represents the algebraic
connectivity of the graph.



The spectral dimension on Cys slices

Compare P, obtained by explicit diffusion processes or by the LB
eigenspectrum

0.8 1

D(1)

0.6 4
0.4

0.2
—— Diffusion
0.0 —— LB eigenvalues

T T T T T T T T T
0 25 50 75 100 125 150 175 200
T

fractional value Ds(7) ~ 1.6 = fractal distribution of space.

A spectral analysis of the full spacetime is required.



Comparing spectral gap A\; of C4s and B phases

of (T ~Cyg phase spectral gap (absent)

B phase spectral gap

3D embedding of slice in B
r N ) phase (V = 40k, \; ~ 0.11)
Histogram of eigenspectra for C phase slices
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Observation
Unlike Cys phase, B phase has high spectral gap = high
connectivity (spectral dimension shows multi-fractal behaviour).

— A1 could be used as an alternative order parameter of the
B|C transition.



Many other results have been obtained by spectral analyzing CDT
slices (a paper will soon pop up, so stay tuned!)

Future work

e Implement the spectral analysis of the full spacetime
triangulations (not merely spatial slices)
= more involved coding based on Finite Element Methods.
e Apply spectral methods to perform Fourier analysis of any
local function, like scalar curvature or matter fields living on
triangulations simplexes.

e Analyze phase transitions in CDT using spectral observables
instead of the ones currently employed.

Expectations

Provide CDT of more meaningful observables to characterize
geometries of full spacetimes, especially giving a definition of
correlation length = powerful tool for continuum limit analysis!



Thank you for the attention!



Additional slides



Regge formalism: curvature for equilateral triangles (2D)
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Monte-Carlo method: sum over causal geometries

Configuration space in CDT: triangulations with causal structure

Lorentzian (causal) structure - \\

on 7T enforced by means of a
foliation of spatial slices of ’
T .

constant proper time.

Path-integral over causal geometries/triangulations 7 using
Monte-Carlo sampling by performing local updates. E.g., in 2D:

T

creating/removing vertex

flipping timelike link



Continuum limit

ooooooo

Continuum limit

The system must forget the lattice
discreteness: second-order critical
point with divergent correlation
length £ = ¢/a — oo

Asymptotic freedom (e.g. QCD):

g.=limg(a)=0 ”




Cys: de Sitter phase

e Time-extended distribution of the triangulation/Universe (blob)

o Average of blob profiles over configurations has the same
distribution of the de Sitter cosmological model: the best
description of the physical Universe dominated by dark energy!

e Fluctuations of spatial volume interpreted as quantum effects

Lorentzian: — X+ X+ X3+ X5 +x3 = R?
\[8 analytic continuation (-
Euclidean: + X2+ X2+ X3+ X3 +xi = R?

De Sitter spatial volume distribution




Dimensional reduction in CDT

Spectral dimension as diffusion process on the full spacetime:

Dimensional reduction from 4-dimensions at large scales to
2-dimensions at shorter ones, observed in many QG approaches.
['t Hooft, arXiv:gr-qc/9310026; Carlip, arXiv:1605.05694]



Standard definitions of order parameters in CDT

Recall 4D action: S = —koNo + kaNg + A(Ng + Ny’l) —6N\p)

e ACys transition: conj(kp) = %
(4,1)

" _ NED e

e BC,, transition: conj(A) = 4T460

e (C,Cys transition:

OP, — % HOmaX(to) — Opmax(to + 1)‘ n ‘omax(ro) — Opmax(to — 1)

I

where Opmax(t) is the highest coordination number for vertices
in the slice t, and ty is the slice label maximizing Opax
amongst slices, that is Omax(tO) = max; Omax(t) )



Spectral graph analysis

Graph: tuple G = (V, E) where
V' set of vertices v
E set of edges, unordered pairs of adjacent vertices
€ = (Vl, V2)

Laplace matrix acting on functions
of vertices f = (f(v)) € RIVI:

L=D-A

e D, , ="order of the vertex v
(number of departing edges)”

e A, = 1if (v1,w) € E, zero otherwise



Interpretations of the first eigenvalue and eigenvector

Fiedler value and vector
First (non-null) eigenvalue A; and associated eigenvector e;.
The Fiedler value, or spectral gap, A1 measures the connectivity
of the graph: the larger, the more connections between vertices.
Applications of the Fiedler vector e;:
e Min-cut: minimal set of edges
disconnecting the graph if cut
e Fiedler ordering on regular graphs (like
CDT slices): core of the Google Search
engine, and paramount reason for the
Google's rise to success.

e many others...




3D Laplacian embedding of T3 torus
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