Spectral Methods in

 Causal Dynamical Triangulations

 Causal Dynamical Triangulations
 a Numerical Approach to Quantum Gravity

Giuseppe Clemente

giuseppe.clemente@pi.infn.it

Istituto Nazionale di Fisica Nucleare

Università di Pisa

QFC conference, 25-27 October 2017

Quantum Gravity: open problem in theoretical physics:

Manifest difficulties:

- Standard perturbation theory fails to renormalize GR: dimensionful parameters in the Einstein action $\frac{1}{G}$ and $\frac{\Lambda}{G}$ give rise to divergences from the High-Energy (short-scales) sector.
- Gravitational quantum effects unreachable by experiments:

$$
E_{P I}=\sqrt{\frac{\hbar c}{G}} c^{2} \simeq 10^{19} G e V \text { (big bang or black holes) }
$$

Two lines of direction in QG approaches

- non-conservative: introduce new short-scale physics "by hand"
- conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative approach of non-perturbative renormalization of the Einstein gravity, based on Monte-Carlo simulations.

Lattice regularization

A regularization makes the renormalization procedure well posed.

- discretize spacetime introducing a minimal lattice spacing ' a '
- localize dynamical variables on lattice sites
- study how quantities diverge for $a \rightarrow 0$
- Cartesian grids approximate Minkowski space
- Regge triangulations approximate generic
 manifolds

Configuration space of CDT

A Lorentzian (causal) structure on \mathcal{T} can be enforced by using a foliation of spatial slices of constant proper time

- Vertices "live" in slices.
- d-simplexes fill spacetime between slices.
- Links can be spacelike with $\Delta s^{2}=a^{2}$, or timelike with $\Delta s^{2}=-\alpha a^{2}$.
- Only a finite number of simplex types.

- The α parameter is used later to perform a Wick-rotation from Lorentzian to Euclidean

$4 D$

$(3,2)$

Regge formalism: action discretization

Also the EH action must be discretized accordingly $\left(g_{\mu \nu} \rightarrow \mathcal{T}\right)$:

$$
\begin{gathered}
S_{E H}\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G}[\underbrace{\int d^{d} \times \sqrt{|g|} R}_{\text {Total curvature }}-2 \Lambda \underbrace{\int d^{d} x \sqrt{|g|}}_{\text {Total volume }}] \\
\forall \quad \begin{array}{c}
\text { discretization } \\
S_{\text {Regge }}[\mathcal{T}]=\frac{1}{16 \pi G}\left[\sum_{\sigma^{(d-2)} \in \mathcal{T}} 2 \varepsilon_{\sigma^{(d-2)}} V_{\sigma^{(d-2)}}-2 \Lambda \sum_{\sigma^{(d)} \in \mathcal{T}} V_{\sigma^{(d)}}\right],
\end{array},
\end{gathered}
$$

where $V_{\sigma^{(k)}}$ is the k-volume of the simplex $\sigma^{(k)}$.
Wick-rotation $i S_{\text {Lor }}(\alpha) \rightarrow-S_{E u c}(-\alpha)$
\Longrightarrow Monte-Carlo sampling $\mathcal{P}[\mathcal{T}] \equiv \frac{1}{Z} \exp \left(-S_{E u c}[\mathcal{T}]\right)$

Wick-rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

$$
S_{C D T}=-k_{0} N_{0}+k_{4} N_{4}+\Delta\left(N_{4}+N_{4}^{(4,1)}-6 N_{0}\right)
$$

- New parameters: $\left(k_{0}, k_{4}, \Delta\right)$, related respectively to G, Λ and α.
- New variables: N_{0}, N_{4} and $N_{4}^{(4,1)}$, counting the total numbers of vertices, pentachorons and type- $(4,1) /(1,4)$ pentachorons respectively (\mathcal{T} dependence omitted).

It is convenient to "fix" the total spacetime volume $N_{4}=V$ by fine-tuning $k_{4} \Longrightarrow$ actually free parameters $\left(k_{0}, \Delta, V\right)$.

Simulations at different volumes V allow finite-size scaling analysis.

For simulations at fixed volumes V the phase diagram of CDT is 2-dimensional, parametrized by $\left(k_{0}, \Delta\right)$.

Ultimate goal of CDT

Find in the phase diagram of CDT a second order critical point with diverging correlation length \Longrightarrow continuum limit

Phase diagram of CDT in 4D

Problem: lack of geometric observables

Observables currently employed in CDT

- Spatial volume per slice: $V_{s}(t)$ (number of spatial tetrahedra at the slice labeled by t)
- Order parameters for transitions:
- $\operatorname{conj}\left(k_{0}\right)=N_{0} / N_{4}$ for the $A \mid C_{d S}$ transition
- $\operatorname{conj}(\Delta)=\left(N_{4}^{(4,1)}-6 N_{0}\right) / N_{4}$ for the $B \mid C_{b}$ transition
- OP_{2} for the $C_{b} \mid C_{d S}$ transition [Ambjorn et al. arXiv:1704.04373]
- Fractal dimensions:
- spectral dimension
- Hausdorff dimension

No observable characterizing geometries at all lattice scales!!

Proposed solution: spectral analysis

Analysis of eigenvalues and eigenvector of the Laplace-Beltrami operator: $-\nabla^{2}$

- Spectral analysis on smooth manifolds $\left(\mathcal{M}, g_{\mu \nu}\right)$:
$-\nabla^{2} f \equiv-\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} g^{\mu \nu} \partial_{\nu} f\right)=\lambda f$, with boundary conditions
Can one hear the shape of a drum?

Spectral graph analysis on CDT spatial slices

Observation

One can define graphs associated to spatial slices of triangulations.

- spatial tetrahedra become vertices of associated graph
- adjacency relations between tetrahedra become edges
- The Laplace matrix can be defined on the graph associated to spatial slices as described previously

- Eigenvalue problem $L \vec{f}=\lambda \vec{f}$ solved

2D slice and its dual graph by numerical routines

Laplacian embedding

Laplacian embedding: embedding of graph in k-dimensional
(Euclidean) space, solution to the optimization problem:
$\min _{\overrightarrow{f^{1}}, \ldots, \ldots, \vec{f}^{k}}\left\{\sum_{(v, w) \in E} \sum_{s=1}^{k}\left[f^{s}(v)-f^{s}(w)\right]^{2} \mid \vec{f}^{s} \cdot \vec{f}^{p}=\delta_{s, p}, \vec{f}^{s} \cdot \overrightarrow{1}=0 \forall s, p=1, \ldots, k\right\}$,
where for each vertex $v \in V$ the value $f^{s}(v)$ is its s-th coordinate in the embedding.

The solution $\left\{f^{s}(v)\right\}_{s=1}^{k}$ is exactly the (orthonormal) set of the first k eigenvectors of the Laplace matrix $\left\{e_{s}(v)\right\}_{s=1}^{k}$!

Laplacian embedding: example torus $T^{2}=S^{1} \times S^{1}$

For each graph-vertex $v \in V$ plot the tuple of coordinates:
$2 \mathrm{D}:\left(e_{1}(v), e_{2}(v)\right) \in \mathbb{R}^{2}$
$3 D:\left(e_{1}(v), e_{2}(v), e_{3}(v)\right) \in \mathbb{R}^{3}$

(a) 2D embedding

(b) 3D projected embedding

Laplacian embedding of spatial slices in $C_{d S}$ phase

The first three eigenstates are not enough to probe the geometry of substructures

Result: spectral clustering of $C_{d S}$ spatial slices

Spectral clustering: recursive application of min-cut procedure

Qualitative picture (2D)

Observation: fractality
Self-similar filamentous structures in $C_{d S}$ phase (S^{3} topology)

Other evidences of fractality: spectral dimension D_{S}

Computed from the return probability for random-walks on manifold or graph: $P_{r}(\tau) \propto \tau^{-\frac{D_{S}}{2}} \Longrightarrow D_{S}(\tau) \equiv-2 \frac{d \log P_{r}(\tau)}{d \log \tau}$.

- Usual integer value on regular spaces: e.g. $D_{S}(\tau)=d$ on \mathbb{R}^{d}
- τ-independent fractional value on true fractals
- τ-dependent fractional value on multi-fractals (not self-similar)

Equivalent definition of return probability: $P_{r}=\frac{1}{|V|} \sum_{k} e^{-\lambda_{n} t}$
\Longrightarrow Nice interpretation of return probability in terms of diffusion processes (random-walks): smaller eigenvalues \leftrightarrow slower modes. The smallest non-zero eigenvalue λ_{1} represents the algebraic connectivity of the graph.

The spectral dimension on $C_{d S}$ slices

Compare P_{r} obtained by explicit diffusion processes or by the LB eigenspectrum

fractional value $D_{S}(\tau) \simeq 1.6 \Longrightarrow$ fractal distribution of space.
A spectral analysis of the full spacetime is required.

Comparing spectral gap λ_{1} of $C_{d S}$ and B phases

Histogram of eigenspectra for C phase slices

3D embedding of slice in B phase ($V=40 k, \lambda_{1} \simeq 0.11$)

Observation
Unlike $C_{d S}$ phase, B phase has high spectral gap \Longrightarrow high connectivity (spectral dimension shows multi-fractal behaviour).
$\Longrightarrow \lambda_{1}$ could be used as an alternative order parameter of the $B \mid C$ transition.

Many other results have been obtained by spectral analyzing CDT slices (a paper will soon pop up, so stay tuned!)

Future work

- Implement the spectral analysis of the full spacetime triangulations (not merely spatial slices)
\Longrightarrow more involved coding based on Finite Element Methods.
- Apply spectral methods to perform Fourier analysis of any local function, like scalar curvature or matter fields living on triangulations simplexes.
- Analyze phase transitions in CDT using spectral observables instead of the ones currently employed.

Expectations

Provide CDT of more meaningful observables to characterize geometries of full spacetimes, especially giving a definition of correlation length \Longrightarrow powerful tool for continuum limit analysis!

Thank you for the attention!

Additional slides

Regge formalism: curvature for equilateral triangles (2D)

Monte-Carlo method: sum over causal geometries

Configuration space in CDT: triangulations with causal structure Lorentzian (causal) structure on \mathcal{T} enforced by means of a foliation of spatial slices of constant proper time.

Path-integral over causal geometries/triangulations \mathcal{T} using Monte-Carlo sampling by performing local updates. E.g., in 2D:

flipping timelike link

creating/removing vertex

Continuum limit

Continuum limit
The system must forget the lattice discreteness: second-order critical point with divergent correlation length $\hat{\xi} \equiv \xi / a \rightarrow \infty$

Asymptotic freedom (e.g. QCD):

$$
\vec{g}_{c} \equiv \lim _{a \rightarrow 0} \vec{g}(a)=\overrightarrow{0}
$$

Asymptotic safety (maybe QG):

$$
\vec{g}_{c} \equiv \lim _{a \rightarrow 0} \vec{g}(a) \neq \overrightarrow{0}
$$

 --- 0 O --
 --

$C_{d S}$: de Sitter phase

- Time-extended distribution of the triangulation/Universe (blob)
- Average of blob profiles over configurations has the same distribution of the de Sitter cosmological model: the best description of the physical Universe dominated by dark energy!
- Fluctuations of spatial volume interpreted as quantum effects

Lorentzian: $\quad-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=R^{2}$ $\Downarrow \quad$ analytic continuation \Downarrow
Euclidean: $\quad+x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=R^{2}$
De Sitter spatial volume distribution

$$
V_{s}^{(d S)}(t)=\frac{V_{t o t}}{2} \frac{3}{4} \frac{1}{\widetilde{s}\left(V_{t o t}\right)^{\frac{1}{4}}} \cos ^{3}\left(\frac{t}{\widetilde{s}\left(V_{t o t}\right)^{\frac{1}{4}}}\right)
$$

Dimensional reduction in CDT

Spectral dimension as diffusion process on the full spacetime:

Dimensional reduction from 4-dimensions at large scales to 2-dimensions at shorter ones, observed in many QG approaches. ['t Hooft, arXiv:gr-qc/9310026; Carlip, arXiv:1605.05694]

Standard definitions of order parameters in CDT

Recall 4D action: $S=-k_{0} N_{0}+k_{4} N_{4}+\Delta\left(N_{4}+N_{4}^{(4,1)}-6 N_{0}\right)$

- $A C_{d S}$ transition: $\operatorname{conj}\left(k_{0}\right) \equiv \frac{N_{0}}{N_{4}}$
- $B C_{b}$ transition: $\operatorname{conj}(\Delta) \equiv \frac{N_{4}^{(4,1)}-6 N_{0}}{N_{4}}$
- $C_{b} C_{d S}$ transition:
$\mathrm{OP}_{2}=\frac{1}{2}\left[\left|O_{\max }\left(t_{0}\right)-O_{\max }\left(t_{0}+1\right)\right|+\left|O_{\max }\left(t_{0}\right)-O_{\max }\left(t_{0}-1\right)\right|\right]$,
where $O_{\max }(t)$ is the highest coordination number for vertices in the slice t, and t_{0} is the slice label maximizing $O_{\max }$ amongst slices, that is $O_{\max }\left(t_{0}\right)=\max _{t} O_{\max }(t)$.

Spectral graph analysis

Graph: tuple $G=(V, E)$ where
V set of vertices v
E set of edges, unordered pairs of adjacent vertices $e=\left(v_{1}, v_{2}\right)$

Laplace matrix acting on functions of vertices $\vec{f}=(f(v)) \in \mathbb{R}^{|V|}$:

$$
L=D-A
$$

- $D_{v, v}=$ "order of the vertex v (number of departing edges)"

- $A_{v_{1}, v_{2}}=1$ if $\left(v_{1}, v_{2}\right) \in E$, zero otherwise

Interpretations of the first eigenvalue and eigenvector

Fiedler value and vector

First (non-null) eigenvalue λ_{1} and associated eigenvector e_{1}.
The Fiedler value, or spectral gap, λ_{1} measures the connectivity of the graph: the larger, the more connections between vertices. Applications of the Fiedler vector e_{1} :

- Min-cut: minimal set of edges disconnecting the graph if cut
- Fiedler ordering on regular graphs (like CDT slices): core of the Google Search engine, and paramount reason for the Google's rise to success.
- many others...

3D Laplacian embedding of T^{3} torus

