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Motivations from Quantum Gravity

The formulation of a quantum theory of gravity leads to technical as well as
conceptual difficulties

Quantization problems
Incompatibility between the foundational principles of GR and QT
Standard quantization prescriptions require a fixed, non-dynamical
background metric
GR: spacetime is a physical and dynamical system + diff invariance

⇒ Background independent quantum field theory

Interpretational problems
The problem of time
Lack of a manifest local description of dynamics
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The standard formulation of QT has limitations that obstruct its application in a
general relativistic context.

Question
Can we sufficiently extend the standard formulation of QT in order to render it
compatible with the symmetries of GR?

no explicit reference to a background (space)time
description of physics in a manifestly local way
ability to reproduce known physics

YES, using:
The mathematical framework of topological quantum field theory.
A generalization of the Born rule.
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Basic structures and axioms - I
In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime in dimension d):
hypersurfaces: oriented manifolds of dimension d− 1
regions: oriented manifolds of dimension d with boundary

These manifolds may carry additional structure: differentiable, metric, etc.

M

Σ

ρM

O
ρO

M

HΣ

Algebraic structures:
To Σ a Hilbert spaceHΣ

To M a linear amplitude map
ρM :H∂ M →C

As in AQFT, observables are
associated to spacetime regions: In a
region M, an observable O is a linear
map ρO

M :H∂ M →C.
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Axioms - II

If Σ denote Σ with opposite orientation,
thenHΣ =H

∗
Σ

.

HΣ

H ∗
Σ

Σ

Σ

Decomposition rule: If Σ=Σ1 ∪Σ2,
thenHΣ =HΣ1

⊗HΣ2
.

Gluing rule: M tN

ρMtN (ψM ⊗ψN )
= ρM ◦ρN (ψM ⊗ψN )

=
∑

i

ρM (ψM ⊗ ξi)ρN (ξ
∗

i ⊗ψN )

where ψM ∈HM , ψN ∈HN and {ξi} is an
ON-basis ofHΣ.

Σ ΣΣM

ΣN
M N

ΣΣM

ΣN

M tN
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Axioms - III

A special region is the empty region Σ̂
Σ Σ

Σ̂

ρΣ̂(ψ⊗η) = 〈ψ|η〉
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Probability interpretation

In quantum theory, probabilities are generally conditional probabilities depending
on two type of data: preparation and observation.

In the GBF, both type of data encoded through closed subspaces ofH∂ M :

preparation : S ⊂H∂ M observation : A ⊂H∂ M

The probability that the system is described byA given that it is described by S is:

P(A|S ) =
|ρM ◦PS ◦PA |2

|ρM ◦PS |2
=

∑

i∈J |ρM (ξi)|2
∑

i∈I |ρM (ξi)|2

PS and PA are the orthogonal projectors onto the subspaces.
{ξi}i∈I is an ON-basis of S , {ξi}i∈J is an ON-basis ofA .
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Recovering of standard transition probability
The expression of the generalized probability reduces to a standard transition
probability for a standard transition amplitude.

Spacetime region: M = [t1, t2]×R3

Boundary: ∂ M =Σt1
∪Σt2

State space: H∂ M =Ht1
⊗H ∗

t2 t1

t2

M

Σ2 → H ∗
t2
3 ηt2

Σ1 → Ht1
3ψt1

x

t

ρ[t1,t2]
(ψt1
⊗ηt2

) = 〈η|U(t1, t2)|ψ〉

preparation: S =ψ⊗Ht2
⊂H∂ M observation: A =Ht1

⊗η⊂H∂ M

P(A|S ) =
|ρM ◦PS ◦PA |2

|ρM ◦PS |2
=
|ρM (ψ⊗η)|2

1
= |〈η|U(t1, t2)|ψ〉|

2

Daniele Colosi (UNAM) General boundary formulation of quantum theory QFC17 9 / 17



Observables

The observable map ρO
M allows to define the expectation value of the observable O

depending on the preparation of the system encoded in the subspace S ⊂H∂ M as

〈O〉S =
|ρM ◦ρO

M ◦PS |2

|ρM ◦PS |2
=

∑

i∈I ρM (ξi)ρ
O
M (ξi)

∑

i∈I |ρM (ξi)|2

where {ξi}i∈I is an ON-basis of S .

This formula reduces to the standard expectation
value in empty region Σ̂ at time t, settingS =ψ⊗
H ∗:

〈O〉S =
ρO
Σ̂
(ψ⊗ψ∗)

1
= 〈ψ|O|ψ〉

t
Σ̂

ψ∗

ψ

x

t
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GBF and QFT

quantization processClassical
field theory

GBQFT

HolomorphicSchrödinger-Feynman

Results:
An isomorphism can be constructed between the Hilbert spaces in the two
representations
The GBF axioms are satisfied by these quantization prescriptions
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Schrödinger-Feynman quantization
Schrödinger representation + Feynman path integral quantization
The state spaceHΣ for a hypersurface Σ is the space of functions on field
configurations KΣ on Σ.
Inner product,

〈ψ2|ψ1〉=
∫

KΣ

Dϕψ1(ϕ)ψ2(ϕ).

Amplitude for a region M, ψ ∈H∂ M ,

ρM (ψ) =
∫

K∂ M

Dϕψ(ϕ)ZM (ϕ), where ZM (ϕ) =
∫

KM ,φ|∂ M=ϕ
Dφ eiSM (φ).

A classical observable F in M is modelled as a function on KM . The
quantization of F is the linear map ρF

M :H∂ M →C defined as

ρF
M (ψ) =

∫

K∂ M

Dϕψ(ϕ)ZF
M (ϕ), where ZF

M (ϕ) =
∫

KM ,φ|∂ M=ϕ
DφF(φ)eiSM (φ).
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Holomorphic quantization

Linear field theory: LΣ is the vector space of solutions near the hypersurface Σ.
LΣ carries a non-degenerate symplectic structureωΣ and a complex structure
JΣ : LΣ→ LΣ compatible with the symplectic structure:

J2
Σ
=−idΣ and ωΣ(JΣ(·), JΣ(·)) =ωΣ(·, ·).

JΣ andωΣ combine to a real inner product gΣ(·, ·) = 2ωΣ(·, JΣ·) and to a
complex inner product {·, ·}Σ = gΣ(·, ·)+ 2iωΣ(·, ·) which makes LΣ into a
complex Hilbert space.
The Hilbert spaceHΣ associated with Σ is the space of holomorphic functions
on LΣ with the inner product

〈ψ,ψ′〉Σ =
∫

LΣ

ψ(φ)ψ′(φ)exp
�

−
1

2
gΣ(φ,φ)

�

dµ(φ),

where µ is a (fictitious) translation-invariant measure on LΣ.
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Holomorphic quantization (II)

The amplitude map ρM :H∂ M →C associated with the spacetime region M for
a state ψ ∈H∂ M is given by

ρM (ψ) =
∫

LΣ

ψ(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).

The observable map associated to a classical observable F in a region M is

ρF
M (ψ) =

∫

LΣ

ψ(φ)F(φ)exp
�

−
1

4
g∂ M (φ,φ)

�

dµM̃ (φ).
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Klein-Gordon theory in Minkowski

The S-matrix technique is used to describe interacting QFT:

Spacetime region:
M = [t1, t2]×R3

Boundary: ∂ M =Σ1 ∪Σ2
State space: H∂ M =HΣ1

⊗H ∗
Σ2

t1

t2

M

ψ2

ψ1
x

t

Assume interaction is relevant only between the initial time t1 and the final time t2.
The S-matrix is the asymptotic limit of the amplitude between free states at early
and at late time:

〈ψ2|S |ψ1〉= lim
t1→−∞

t2→+∞
〈ψ2|Uint(t1, t2)|ψ1〉= lim

t1→−∞
t2→+∞

ρU
[t1,t2]×R3(ψ1⊗ψ

∗
2)
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Spatially asymptotic S-matrix

Similarly, we can describe interacting QFT via a
spatially asymptotic amplitude. Assume interac-
tion is relevant only within a radius R from the
origin in space (but at all times). Consider then the
asymptotic limit of the amplitude of a free state on
the hypercylinder when the radius goes to infinity:

S (ψ) = lim
R→∞

ρU
R (ψ)

ψ

x

t

M

Result
The S-matrices are equivalent when both are valid.
Cross-symmetry of S-matrix is a prediction of the GBF.
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Conclusions
The GBF is a new versatile formulation of quantum theory:
É offers new perspectives on QT
É can treat situations where standard techniques fail
É may solve conceptual problems of QG

Many results have been obtained:
É quantisation prescriptions [Oeckl 2008,2012]
É general structure of the vacuum state and complex structure for GBQFT in curved

spaces [DC 2009,DC, Dohse 2017]
É unitarity of evolution for QFT in curved space and new representations for

Feynman propagators and S-matrices [DC, Oeckl 2007,2009]
É evanescent states [in progress]
É GBQFT in Euclidean space [DC, Oeckl 2008], de Sitter (derivation of the Polyakov

propagator) [DC 2015], Anti de Sitter (S-matrix from hypercylinder geometry)
[DC, Dohse, Oeckl 2012], Rindler [DC, Raetzel 2013], general curved space [DC,
Dohse 2017]

É Unruh effect [DC, Raetzel 2013], Casimir effect [in progress]

QG: the GBF is already used in some approach (Spin foam models), 3d gravity
is topological
It is a work in progress... ’
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