A new axiomatic formulation for quantum theory: the general boundary formulation

Daniele Colosi

Escuela Nacional de Estudios Superiores, Unidad Morelia Universidad Nacional Autónoma de México

> QFC17 Pisa, 27 October 2017

Contents

Motivations from Quantum Gravity

2 The General Boundary Formulation of Quantum Theory

- GBF: basic structures and core axioms
- Generalized probability interpretation and transition probability
- Observables and expectation values
- GBF and QFT: Schrödinger-Feynman and holomorphic quantizations

General Boundary QFT in Minkowski spacetime

- Standard setting
- Hypercylinder: Spatially asymptotic S-matrix

4 Conclusions

Motivations from Quantum Gravity

The formulation of a quantum theory of gravity leads to technical as well as conceptual difficulties

Quantization problems

- Incompatibility between the foundational principles of GR and QT
- Standard quantization prescriptions require a fixed, non-dynamical background metric
- GR: spacetime is a physical and dynamical system + diff invariance

 \Rightarrow Background independent quantum field theory

Interpretational problems

- The problem of time
- Lack of a manifest local description of dynamics

The standard formulation of QT has limitations that obstruct its application in a general relativistic context.

Question

Can we sufficiently extend the standard formulation of QT in order to render it compatible with the symmetries of GR?

- no explicit reference to a background (space)time
- description of physics in a manifestly local way
- ability to reproduce known physics

The standard formulation of QT has limitations that obstruct its application in a general relativistic context.

Question

Can we sufficiently extend the standard formulation of QT in order to render it compatible with the symmetries of GR?

- no explicit reference to a background (space)time
- description of physics in a manifestly local way
- ability to reproduce known physics

YES, using:

- The mathematical framework of topological quantum field theory.
- A generalization of the Born rule.

Basic structures and axioms - I

In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime in dimension *d*):

- hypersurfaces: oriented manifolds of dimension d-1
- regions: oriented manifolds of dimension *d* with boundary

These manifolds may carry additional structure: differentiable, metric, etc.

Basic structures and axioms - I

In the GBF algebraic structures are associated to geometric ones.

Geometric structures (representing pieces of spacetime in dimension *d*):

- hypersurfaces: oriented manifolds of dimension d-1
- regions: oriented manifolds of dimension *d* with boundary

These manifolds may carry additional structure: differentiable, metric, etc.

Algebraic structures:

- To Σ a Hilbert space \mathscr{H}_{Σ}
- To *M* a linear amplitude map $\rho_M : \mathscr{H}_{\partial M} \to \mathbb{C}$
- As in AQFT, observables are associated to spacetime regions: In a region M, an observable O is a linear map $\rho_M^O : \mathcal{H}_{\partial M} \to \mathbb{C}$.

Axioms - II

- If Σ denote Σ with opposite orientation, then ℋ_Σ = ℋ_Σ^{*}.
- Decomposition rule: If $\Sigma = \Sigma_1 \cup \Sigma_2$, then $\mathscr{H}_{\Sigma} = \mathscr{H}_{\Sigma_1} \otimes \mathscr{H}_{\Sigma_2}$.
- Gluing rule: $M \sqcup N$

$$\begin{split} \rho_{M \sqcup N}(\psi_M \otimes \psi_N) \\ &= \rho_M \circ \rho_N(\psi_M \otimes \psi_N) \\ &= \sum_i \rho_M(\psi_M \otimes \xi_i) \rho_N(\xi_i^* \otimes \psi_N) \end{split}$$

where $\psi_M \in \mathcal{H}_M, \psi_N \in \mathcal{H}_N$ and $\{\xi_i\}$ is an ON-basis of \mathcal{H}_{Σ} .

$$M \sqcup N$$

Axioms - III

A special region is the *empty region* $\hat{\Sigma}$

 $\rho_{\hat{\Sigma}}(\psi \otimes \eta) = \langle \psi | \eta \rangle$

Probability interpretation

In quantum theory, probabilities are generally conditional probabilities depending on <u>two</u> type of data: *preparation* and *observation*.

In the GBF, both type of data encoded through closed subspaces of $\mathscr{H}_{\partial M}$:

 $preparation: \mathscr{G} \subset \mathscr{H}_{\partial M} \qquad observation: \mathscr{A} \subset \mathscr{H}_{\partial M}$

The probability that the system is described by \mathscr{A} given that it is described by \mathscr{S} is:

$$P(\mathscr{A}|\mathscr{S}) = \frac{|\rho_{\mathcal{M}} \circ P_{\mathscr{S}} \circ P_{\mathscr{A}}|^{2}}{|\rho_{\mathcal{M}} \circ P_{\mathscr{S}}|^{2}} = \frac{\sum_{i \in I} |\rho_{\mathcal{M}}(\xi_{i})|^{2}}{\sum_{i \in I} |\rho_{\mathcal{M}}(\xi_{i})|^{2}}$$

• $P_{\mathcal{S}}$ and $P_{\mathcal{A}}$ are the orthogonal projectors onto the subspaces.

• $\{\xi_i\}_{i\in I}$ is an ON-basis of \mathscr{S} , $\{\xi_i\}_{i\in I}$ is an ON-basis of \mathscr{A} .

Recovering of standard transition probability

The expression of the generalized probability reduces to a standard transition probability for a standard transition amplitude.

 $\rho_{[t_1,t_2]}(\psi_{t_1} \otimes \eta_{t_2}) = \langle \eta | U(t_1,t_2) | \psi \rangle$

preparation: $\mathscr{S} = \psi \otimes \mathscr{H}_{t_2} \subset \mathscr{H}_{\partial M}$ observation: $\mathscr{A} = \mathscr{H}_{t_1} \otimes \eta \subset \mathscr{H}_{\partial M}$

$$P(\mathscr{A}|\mathscr{S}) = \frac{|\rho_{\mathcal{M}} \circ P_{\mathscr{S}} \circ P_{\mathscr{A}}|^{2}}{|\rho_{\mathcal{M}} \circ P_{\mathscr{S}}|^{2}} = \frac{|\rho_{\mathcal{M}}(\psi \otimes \eta)|^{2}}{1} = |\langle \eta | U(t_{1}, t_{2}) | \psi \rangle|^{2}$$

Observables

The observable map ρ_M^O allows to define the expectation value of the observable *O* depending on the preparation of the system encoded in the subspace $\mathscr{S} \subset \mathscr{H}_{\partial M}$ as

$$\langle O \rangle_{\mathscr{S}} = \frac{|\rho_{\mathcal{M}} \circ \rho_{\mathcal{M}}^{O} \circ P_{\mathscr{S}}|^{2}}{|\rho_{\mathcal{M}} \circ P_{\mathscr{S}}|^{2}} = \frac{\sum_{i \in I} \overline{\rho_{\mathcal{M}}(\xi_{i})} \rho_{\mathcal{M}}^{O}(\xi_{i})}{\sum_{i \in I} |\rho_{\mathcal{M}}(\xi_{i})|^{2}}$$

where $\{\xi_i\}_{i \in I}$ is an ON-basis of \mathscr{S} .

This formula reduces to the standard expectation value in empty region $\hat{\Sigma}$ at time *t*, setting $\mathscr{S} = \psi \otimes \mathscr{H}^*$:

$$\langle O \rangle_{\mathcal{S}} = \frac{\rho^{O}_{\hat{\Sigma}}(\psi \otimes \psi^{*})}{1} = \langle \psi | O | \psi \rangle$$

GBF and QFT

GBF and QFT

Results:

- An isomorphism can be constructed between the Hilbert spaces in the two representations
- The GBF axioms are satisfied by these quantization prescriptions

Schrödinger-Feynman quantization

- Schrödinger representation + Feynman path integral quantization The state space \mathscr{H}_{Σ} for a hypersurface Σ is the space of functions on field configurations K_{Σ} on Σ .
- Inner product,

$$\langle \psi_2 | \psi_1 \rangle = \int_{K_{\Sigma}} \mathscr{D}\varphi \, \psi_1(\varphi) \overline{\psi_2(\varphi)}.$$

• Amplitude for a region $M, \psi \in \mathscr{H}_{\partial M}$,

$$\rho_{M}(\psi) = \int_{K_{\partial M}} \mathscr{D}\varphi \,\psi(\varphi) Z_{M}(\varphi), \quad \text{where} \quad Z_{M}(\varphi) = \int_{K_{M}, \phi|_{\partial M} = \varphi} \mathscr{D}\phi \,e^{\mathrm{i}S_{M}(\phi)}.$$

• A classical observable F in M is modelled as a function on K_M . The quantization of F is the linear map $\rho_M^F : \mathscr{H}_{\partial M} \to \mathbb{C}$ defined as

$$\rho_M^F(\psi) = \int_{K_{\partial M}} \mathscr{D}\varphi \,\psi(\varphi) Z_M^F(\varphi), \quad \text{where} \quad Z_M^F(\varphi) = \int_{K_M, \phi|_{\partial M} = \varphi} \mathscr{D}\phi \,F(\phi) e^{\mathrm{i}S_M(\phi)}.$$

Holomorphic quantization

- Linear field theory: L_{Σ} is the vector space of solutions near the hypersurface Σ .
- L_{Σ} carries a non-degenerate symplectic structure ω_{Σ} and a complex structure $J_{\Sigma}: L_{\Sigma} \rightarrow L_{\Sigma}$ compatible with the symplectic structure:

$$J_{\Sigma}^2 = -\mathrm{id}_{\Sigma}$$
 and $\omega_{\Sigma}(J_{\Sigma}(\cdot), J_{\Sigma}(\cdot)) = \omega_{\Sigma}(\cdot, \cdot).$

- J_Σ and ω_Σ combine to a real inner product g_Σ(·,·) = 2ω_Σ(·,J_Σ·) and to a complex inner product {·,·}_Σ = g_Σ(·,·) + 2iω_Σ(·,·) which makes L_Σ into a complex Hilbert space.
- The Hilbert space ℋ_Σ associated with Σ is the space of holomorphic functions on L_Σ with the inner product

$$\langle \psi, \psi' \rangle_{\Sigma} = \int_{L_{\Sigma}} \overline{\psi(\phi)} \psi'(\phi) \exp\left(-\frac{1}{2}g_{\Sigma}(\phi, \phi)\right) d\mu(\phi),$$

where μ is a (fictitious) translation-invariant measure on L_{Σ} .

Holomorphic quantization (II)

• The amplitude map $\rho_M : \mathscr{H}_{\partial M} \to \mathbb{C}$ associated with the spacetime region *M* for a state $\psi \in \mathscr{H}_{\partial M}$ is given by

$$\rho_M(\psi) = \int_{L_{\Sigma}} \psi(\phi) \exp\left(-\frac{1}{4}g_{\partial M}(\phi,\phi)\right) d\mu_{\tilde{M}}(\phi).$$

• The observable map associated to a classical observable F in a region M is

$$\rho_M^F(\phi) = \int_{L_{\Sigma}} \psi(\phi) F(\phi) \exp\left(-\frac{1}{4} g_{\partial M}(\phi, \phi)\right) d\mu_{\tilde{M}}(\phi).$$

Klein-Gordon theory in Minkowski

The S-matrix technique is used to describe interacting QFT:

Assume interaction is relevant only between the initial time t_1 and the final time t_2 . The S-matrix is the asymptotic limit of the amplitude between free states at early and at late time:

$$\langle \psi_2 | \mathscr{S} | \psi_1 \rangle = \lim_{\substack{t_1 \to \infty \\ t_2 \to +\infty}} \langle \psi_2 | U_{int}(t_1, t_2) | \psi_1 \rangle = \lim_{\substack{t_1 \to \infty \\ t_2 \to +\infty}} \rho^U_{[t_1, t_2] \times \mathbb{R}^3}(\psi_1 \otimes \psi_2^*)$$

Spatially asymptotic S-matrix

Similarly, we can describe interacting QFT via a spatially asymptotic amplitude. Assume interaction is relevant only within a radius R from the origin in space (but at all times). Consider then the asymptotic limit of the amplitude of a free state on the hypercylinder when the radius goes to infinity:

$$\mathscr{S}(\psi) = \lim_{R \to \infty} \rho_R^U(\psi)$$

Result

The S-matrices are equivalent when both are valid. Cross-symmetry of S-matrix is a prediction of the GBF.

Conclusions

- The GBF is a new versatile formulation of quantum theory:
 - offers new perspectives on QT
 - can treat situations where standard techniques fail
 - may solve conceptual problems of QG
- Many results have been obtained:
 - quantisation prescriptions [Oeckl 2008,2012]
 - general structure of the vacuum state and complex structure for GBQFT in curved spaces [DC 2009,DC, Dohse 2017]
 - unitarity of evolution for QFT in curved space and new representations for Feynman propagators and S-matrices [DC, Oeckl 2007,2009]
 - evanescent states [in progress]
 - GBQFT in Euclidean space [DC, Oeckl 2008], de Sitter (derivation of the Polyakov propagator) [DC 2015], Anti de Sitter (S-matrix from hypercylinder geometry) [DC, Dohse, Oeckl 2012], Rindler [DC, Raetzel 2013], general curved space [DC, Dohse 2017]
 - ► Unruh effect [DC, Raetzel 2013], Casimir effect [in progress]
- QG: the GBF is already used in some approach (Spin foam models), 3d gravity is topological
- It is a work in progress... '