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BCS-BEC crossover in 3D and 2D (I)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold

gases made of two-component fermionic 40K or 6Li atoms.1

This crossover is obtained using a Fano-Feshbach resonance to change
the 3D s-wave scattering length aF of the inter-atomic potential.

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



BCS-BEC crossover in 3D and 2D (II)

Recently also the 2D BEC-BEC crossover has been achieved
experimentally2 with a Fermi gas of two-component 6Li atoms. In 2D
attractive fermions always form biatomic molecules with bound-state
energy

ǫB ≃
~

2

maF
2
, (1)

where aF is the 2D s-wave scattering length, which is experimentally
tuned by a Fano-Feshbach resonance.
The fermionic single-particle spectrum is given by

Esp(k) =

√

(

~2k2

2m
− µ

)2

+ ∆2
0 , (2)

where ∆0 is the energy gap and µ is the chemical potential: µ > 0
corresponds to the BCS regime while µ < 0 corresponds to the BEC
regime. Moreover, in the deep BEC regime µ → −ǫB/2.

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); I. Boettcher et al., PRL 116, 045303 (2016).



2D equation of state (I)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration3. The partition function Z of the uniform system
with fermionic fields ψs(r, τ) at temperature T , in a 2-dimensional
volume L2, and with chemical potential µ reads

Z =

∫

D[ψs , ψ̄s ] exp

{

−
S

~

}

, (3)

where (β ≡ 1/(kBT ) with kB Boltzmann’s constant)

S =

∫

~β

0

dτ

∫

L2

d2r L (4)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[

~∂τ −
~

2

2m
∇2 − µ

]

ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (5)

where g is the attractive strength (g < 0) of the s-wave coupling.
3N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999)



2D equation of state (II)

Through the usual Hubbard-Stratonovich transformation the Lagrangian
density L, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field ∆(r, τ). In this way
the effective Euclidean Lagrangian density reads

Le = ψ̄s

[

~∂τ −
~

2

2m
∇2 − µ

]

ψs + ∆̄ψ↓ ψ↑ + ∆ψ̄↑ ψ̄↓ −
|∆|2

g
. (6)

We investigate the effect of fluctuations of the pairing field ∆(r, t)
around its mean-field value ∆0 which may be taken to be real. For this
reason we set

∆(r, τ) = ∆0 + η(r, τ) , (7)

where η(r, τ) is the complex field which describes pairing fluctuations.



2D equation of state (III)

In particular, we are interested in the grand potential Ω, given by

Ω = −
1

β
ln (Z) ≃ −

1

β
ln (Zmf Zg ) = Ωmf + Ωg , (8)

where

Zmf =

∫

D[ψs , ψ̄s ] exp

{

−
Se(ψs , ψ̄s ,∆0)

~

}

(9)

is the mean-field partition function and

Zg =

∫

D[ψs , ψ̄s ]D[η, η̄] exp

{

−
Sg (ψs , ψ̄s , η, η̄,∆0)

~

}

(10)

is the partition function of Gaussian pairing fluctuations.



2D equation of state (IV)

After functional integration over quadratic fields, one finds that the
mean-field grand potential reads4

Ωmf = −
∆2

0

g
L2+

∑

k

(

~
2k2

2m
− µ− Esp(k) −

2

β
ln (1 + e−β Esp(k))

)

(11)

where

Esp(k) =

√

(

~2k2

2m
− µ

)2

+ ∆2
0 (12)

is the spectrum of fermionic single-particle excitations.

4A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ.
Press, 2006).



2D equation of state (V)

The Gaussian grand potential is instead given by

Ωg =
1

2β

∑

Q

ln det(M(Q)) , (13)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs
and Q = (q, iΩm) is the 4D wavevector with Ωm = 2πm/β the
Matsubara frequencies and q the 3D wavevector.5

The sum over Matsubara frequencies is quite complicated and it does not
give a simple expression. An approximate formula6 is

Ωg ≃
1

2

∑

q

Ecol(q) +
1

β

∑

q

ln (1 − e−β Ecol (q)) , (14)

where
Ecol(q) = ~ ω(q) (15)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (16)
5R.B. Diener, R. Sensarma, M. Randeria, PRA 77, 023626 (2008).
6E. Taylor, A. Griffin, N. Fukushima, Y. Ohashi, PRA 74, 063626 (2006).



2D equation of state (VI)

In our approach (Gaussian pair fluctuation theory7), given the grand
potential

Ω(µ, L2,T ,∆0) = Ωmf (µ, L
2,T ,∆0) + Ωg (µ, L2,T ,∆0) , (17)

the energy gap ∆0 is obtained from the (mean-field) gap equation

∂Ωmf (µ, L
2,T ,∆0)

∂∆0
= 0 . (18)

The number density n is instead obtained from the number equation

n = −
1

L2

∂Ω(µ, L2,T ,∆0(µ,T ))

∂µ
(19)

taking into account the gap equation, i.e. that ∆0 depends on µ and T :
∆0(µ,T ). Notice that the Nozieres and Schmitt-Rink approach8 is quite
similar but in the number equation it forgets that ∆0 depends on µ.

7H. Hu, X-J. Liu, P.D. Drummond, EPL 74, 574 (2006).
8P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).



Zero-temperature 2D results (I)

Scaled pressure P/Pid vs scaled binding energy ǫB/ǫF . Notice that
P = −Ω/L2 and Pid is the pressure of the ideal 2D Fermi gas. Filled
squares with error bars: experimental data of Makhalov et al. 9. Solid
line: the regularized Gaussian theory10. Dashed line: Popov equation of
state of bosons with mass mB = 2m.

9V. Makhalov et al. PRL 112, 045301 (2014)
10G. Bighin and LS, PRB 93, 014519 (2016); G. Bighin and LS, J. Supercond.

Novel Magn. 29, 3103 (2016).



Zero-temperature 2D results (II)

In the analysis of the two-dimensional attractive Fermi gas one must
remember that, contrary to the 3D case, 2D realistic interatomic
attractive potentials have always a bound state. In particular11, the
binding energy ǫB > 0 of two fermions can be written in terms of the
positive 2D fermionic scattering length aF as

ǫB =
4

e2γ

~
2

maF
2
, (20)

where γ = 0.577... is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy ǫB > 0 of a fermion pair in vacuum by the expression12

−
1

g
=

1

2L2

∑

k

1
~2k2

2m
+ 1

2 ǫB
. (21)

11C. Mora and Y. Castin, 2003, PRA 67, 053615.
12M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



Zero-temperature 2D results (III)

At zero temperature, including Gaussian fluctuations, the pressure is

P = −
Ω

L2
=

mL2

2π~2
(µ+

1

2
ǫB)2 + Pg (µ, L2,T = 0) , (22)

with

Pg (µ, L2,T = 0) = −
1

2

∑

q

Ecol(q) . (23)

In the full 2D BCS-BEC crossover, from the regularized version of Eq.
(13), we obtain numerically the zero-temperature pressure13

Notice that the energy of bosonic collective excitations becomes

Ecol(q) =

√

~2q2

2m

(

λ
~2q2

2m
+ 2mc2

s

)

(24)

in the deep BEC regime, with λ = 1/4 and mc2
s = µ+ ǫB/2.

13G. Bighin and LS, PRB 93, 014519 (2016).



Zero-temperature 2D results (IV)

In the deep BEC regime of the 2D BCS-BEC crossover, where the
chemical potential µ becomes strongly negative, the corresponding
regularized pressure (dimensional regularization 14) reads

P =
m

64π~2
(µ+

1

2
ǫB)2 ln

(

ǫB

2(µ+ 1
2 ǫB)

)

. (25)

This is exactly the Popov equation of state of 2D Bose gas with chemical
potential µB = 2(µ+ ǫB/2), mass mB = 2m. In this way we have
identified the two-dimensional scattering length aB of composite boson as

aB = 1
21/2e1/4 aF . (26)

The value aB/aF = 1/(21/2e1/4) ≃ 0.551 is in full agreement with
aB/aF = 0.55(4) obtained by Monte Carlo calculations15.

14LS and F. Toigo, PRA 91, 011604(R) (2015); LS, PRL 118, 130402 (2017).
15G. Bertaina and S. Giorgini, PRL 106, 110403 (2011).



Quantized vortices and 2D superfluid density (I)

At the beginning we have written the pairing field as

∆(r, τ) = ∆0 + η(r, τ) , (27)

where η(r, τ) is the complex field of pairing fluctuations.
A quite different approach16 is the following

∆(r, τ) = (∆0 + σ(r, τ)) e iθ(r,τ ) , (28)

where σ(r, τ) is the real field of amplitude fluctuations and θ(r, τ) is the
angular field of phase fluctuations.
However, Taylor-expanding the exponential of the phase, one has

(∆0 + σ(r, τ)) e iθ(r,τ ) = ∆0 + σ(r, τ) + i ∆0 θ(r, τ) + ... . (29)

Thus, at the Gaussian level, we can write

η(r, τ) = σ(r, τ) + i ∆0 θ(r, τ) . (30)

16LS, P.A. Marchetti, and F. Toigo, PRA 88, 053612 (2013).



Quantized vortices and 2D superfluid density (II)

After functional integration over σ(r, τ), the Gaussian action becomes

Sg =

∫

~β

0

dτ

∫

L2

d2r

{

J

2
(∇θ)2 +

χ

2

(

∂θ

∂τ

)2
}

(31)

where J is the phase stiffness and χ is the compressibility. The superfluid
density is related to the phase stiffness J by the simple formula

ns =
4m

~2
J . (32)

At the Gaussian level J depends only on fermionic single-particle
excitations Esp(k).17 Beyond the Gaussian level also bosonic collective
excitations Ecol(q) contribute.18 Thus, we assume the following
Landau-type formula

ns(T ) = n−β

∫

d
2k

(2π)2
k2 eβEsp(k)

(eβEsp(k) + 1)2
−
β

2

∫

d
2q

(2π)2
q2 eβEcol (q)

(eβEcol (q) − 1)2
.

(33)
17E. Babaev and H.K. Kleinert, PRB 59, 12083 (1999).
18L. Benfatto, A. Toschi, and S. Caprara, PRB 69, 184510 (2004).



Quantized vortices and 2D superfluid density (III)

It is important to stress that the compactness of the phase angle θ(r)
implies that

∮

C

∇θ(r) · dr = 2π
∑

i

qi , (34)

where qi is the integer number associated to quantized vortices

(qi > 0) and antivortices (qi < 0) encircled by C. One can write19

∇θ(r) = ∇θ0(r) − ∇ ∧ (uz ψv (r)) (35)

where ∇θ0(r) has zero circulation (no vortices) while ψv (r) encodes the
contribution of quantized vortices and anti-vortices, namely

ψv (r) =
∑

i

qi ln

(

|r − ri |

ξ

)

, (36)

where ri is the position of the i-th vortex and ξ is a cutoff length.

19Alternatively, one has θ(r) = θ0(r) + θv (r) with θv (r) =
P

i qi arctan ( y−yi
x−xi

)

because ∇arctan (y/x) = −∇∧ (uz ln (
p

x2 + y2/ξ)).



Quantized vortices and 2D superfluid density (IV)

The analysis of Kosterlitz and Thouless20 on the 2D gas of quantized
vortices shows that:

As the temperature T increases vortices start to appear in
vortex-antivortex pairs (mainly with q = ±1).

The pairs are bound at low temperature until at the critical
temperature Tc = TBKT an unbinding transition occurs above which
a proliferation of free vortices and antivortices is predicted.

The phase stiffness J and the vortex energy µv are renormalized.

The renormalized superfluid density ns,R = JR(4m/~2) decreases by
increasing the temperature T and jumps to zero at Tc = TBKT .

20J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



Quantized vortices and 2D superfluid density (V)

The renormalized phase stiffness JR is obtained from the bare one J by
solving the Kosterlitz renormalization group equations21.

d

dℓ
K (ℓ) = −4π3K (ℓ)2y(ℓ)2 (37)

d

dℓ
y(ℓ) = (2 − πK (ℓ)) y(ℓ) (38)

for the running variables K (ℓ) and y(ℓ), as a function of the adimensional
scale ℓ subjected to the initial conditions K (ℓ = 0) = J/β and
y(ℓ = 0) = exp(−βµv ), with µv = π2J/4 the vortex energy.22 The
renormalized phase stiffness is then

JR = β K (ℓ = +∞) , (39)

and the corresponding renormalized superfluid density reads

ns,R =
4m

~2
JR . (40)

21D.R. Nelson and J.M. Kosterlitz, PRL 39, 1201 (1977)
22W. Zhang, G.D. Lin, and L.M. Duan, PRA 78, 043617 (2008).



Quantized vortices and 2D superfluid density (VI)

Superfluid fraction ns/n vs scaled temperature T/TF in the 2D
BEC-BEC crossover.23 Solid lines: renormalized superfluid density.
Dashed lines: bare superfluid density. TF = ǫF/kB is the Fermi
temperature. Gray dotted line: Kosterlitz-Nelson condition
kBT = (π/2)J(T ) = (~2π/(8m))ns(T ).

23G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



Quantized vortices and 2D superfluid density (VII)
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Theoretical predictions for the Berezinskii-Kosterlitz-Thouless (BTK)
critical temperature TBKT . Red lines obtained by using24 the
Nelson-Kosterlitz (NK) criterion on the bare superfluid density:
kBTBKT = (~2π/(8m))ns(TBKT ). Blue lines obtained by solving25 the
renormalization group (RG) equations of Kosterlitz.

24G. Bighin and LS, PRB 93, 014519 (2016).
25G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



Conclusions

After regularization26 beyond-mean-field Gaussian fluctuations give
remarkable effects for superfluid fermions in the 2D BCS-BEC
crossover at zero temperature:
– logarithmic behavior of the equation of state in the deep BEC
regime
– good agreement with (quasi) zero-temperature experimental data

Also at finite temperature beyond-mean-field effects, with the
inclusion of quantized vortices and antivortices, become relevant
in the strong-coupling regime of 2D BCS-BEC crossover:
– bare ns and renormalized ns,R superfluid density
– Berezinskii-Kosterlitz-Thouless critical temperature TBKT

Finite-range effects of the inter-atomic potential could be included
within an effective-field-theory (EFT) approach.27

26For a recent comprehensive review see LS and F. Toigo, Phys. Rep. 640, 1 (2016).
27EFT for 2D dilute bosons: LS, PRL 118, 130402 (2017).
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