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BCS-BEC crossover in 3D and 2D (1)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold
gases made of two-component fermionic “°K or °Li atoms.!
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This crossover is obtained using a Fano-Feshbach resonance to change
the 3D s-wave scattering length ar of the inter-atomic potential.

LC.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).




BCS-BEC crossover in 3D and 2D (lI)

Recently also the 2D BEC-BEC crossover has been achieved
experimentally? with a Fermi gas of two-component °Li atoms. In 2D
attractive fermions always form biatomic molecules with bound-state

energy
h2

B~ 1
& mag?’ (1)

where ar is the 2D s-wave scattering length, which is experimentally
tuned by a Fano-Feshbach resonance.
The fermionic single-particle spectrum is given by

Esp(k) = \/<@ - u>2 +43, (2)

2m

where Ay is the energy gap and p is the chemical potential: p >0
corresponds to the BCS regime while u < 0 corresponds to the BEC
regime. Moreover, in the deep BEC regime y — —eg/2.

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); 1. Boettcher et al., PRL 116, 045303 (2016).



2D equation of state (1)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration3. The partition function Z of the uniform system
with fermionic fields 1s(r, 7) at temperature T, in a 2-dimensional
volume L2, and with chemical potential ;. reads

2= [Pl id eo{-3}. ©)

where (8 = 1/(kgT) with kg Boltzmann's constant)

hB
S= / dr / d’r L (4)
0 L2

is the Euclidean action functional with Lagrangian density
R _,
L =1s {ﬁa —5V —u] bs + g1y by Uy (5)

where g is the attractive strength (g < 0) of the s-wave coupling.
3N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999)




2D equation of state (Il)

Through the usual Hubbard-Stratonovich transformation the Lagrangian

density £, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field A(r, 7). In this way
the effective Euclidean Lagrangian density reads

- 2
ﬁe:d}s a__v2_ﬂ ¢5+AM¢T+A¢TM—%' (6)

We investigate the effect of fluctuations of the pairing field A(r, t)
around its mean-field value Ag which may be taken to be real. For this
reason we set

A(rv T) = Ao + n(rv T) ) (7)

where n(r, 7) is the complex field which describes pairing fluctuations.



2D equation of state (llI)

In particular, we are interested in the grand potential 2, given by

Q:_%In(Z)’—“_%'”(meZg):me+9gv (8)
where S N
me = /D[w57’¢_}s] exp {_M} (9)
is the mean-field partition function and
. Se (s, Ps, 0, 7, A
2, = / Dy, 7] Dln, 7] exp {— eleoten ] O)} (10)

is the partition function of Gaussian pairing fluctuations.



2D equation of state (IV)

After functional integration over quadratic fields, one finds that the
mean-field grand potential reads*

h2k?

A? 2
Qup = ——212 = Ep(k)— S In(1+e PEM)) (11
= +§kj(2m b= Eplk) = Sin(14 e B0 ) (1)

E(k) = \/ (5 - u)z Y (12)

is the spectrum of fermionic single-particle excitations.

where

4A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ.
Press, 2006).



2D equation of state (V)

The Gaussian grand potential is instead given by
1
Q, = 35 EQ: Indet(M(Q)) , (13)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs
and Q = (q,iQ,,) is the 4D wavevector with Q,, = 2rm/( the
Matsubara frequencies and q the 3D wavevector.®

The sum over Matsubara frequencies is quite complicated and it does not
give a simple expression. An approximate formula® is

0= 53 El@)+ 5 S on(1 - e PE) (19)
q q
where
Ecol(q) =h w(q) (15)
is the spectrum of bosonic collective excitations with w(q) derived from
det(M(q,w)) =0. (16)

5R.B. Diener, R. Sensarma, M. Randeria, PRA 77, 023626 (2008).
6. Taylor, A. Griffin, N. Fukushima, Y. Ohashi, PRA 74, 063626 (2006).



2D equation of state (VI)

In our approach (Gaussian pair fluctuation theory”), given the grand
potential

Q(M? L27 T7 AO) = me(ﬂv L27 Tv AO) + Qg(ﬂv L27 Tv AO) ) (17)
the energy gap Ay is obtained from the (mean-field) gap equation

anf(,U, L27 T7 AO)

. ~0. (18)

The number density n is instead obtained from the number equation

_i 69(#7 L27 T7 AO(N? T))
12 o

n= (19)
taking into account the gap equation, i.e. that Ay depends on p and T:
Ao(p, T). Notice that the Nozieres and Schmitt-Rink approach® is quite
similar but in the number equation it forgets that Ag depends on .

"H. Hu, X-J. Liu, P.D. Drummond, EPL 74, 574 (2006).
8P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).
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Scaled pressure P/Pj4 vs scaled binding energy eg/er. Notice that
P = —Q/L? and P4 is the pressure of the ideal 2D Fermi gas. Filled
squares with error bars: experimental data of Makhalov et al. °. Solid
line: the regularized Gaussian theory'®. Dashed line: Popov equation of
state of bosons with mass mg = 2m.

9V. Makhalov et al. PRL 112, 045301 (2014)

10G. Bighin and LS, PRB 93, 014519 (2016); G. Bighin and LS, J. Supercond.
Novel Magn. 29, 3103 (2016).




Zero-temperature 2D results (II)

In the analysis of the two-dimensional attractive Fermi gas one must
remember that, contrary to the 3D case, 2D realistic interatomic
attractive potentials have always a bound state. In particular!!, the
binding energy ¢z > 0 of two fermions can be written in terms of the
positive 2D fermionic scattering length ar as
4 n?

B= 2 mar? (20)
where v = 0.577... is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to

the binding energy ¢z > 0 of a fermion pair in vacuum by the expression'?
1 1 1
S =oE ) e T (21)
g 2047 5T+ 3es

1C. Mora and Y. Castin, 2003, PRA 67, 053615.
12M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



Zero-temperature 2D results (l1I)

At zero temperature, including Gaussian fluctuations, the pressure is

Q ml? 1
P=_20 - Zeg)? + Pg(p, L2, T = 22
L2 27Th2 (‘LL + 2FB) + g(‘U, ’ O) ’ ( )
with
Pe(u, 2, T =0)=—= § Ecol(q (23)

In the full 2D BCS-BEC crossover, from the regularized version of Eq.
(13), we obtain numerically the zero-temperature pressure'3
Notice that the energy of bosonic collective excitations becomes

hQ 2 hQ
Ecoi(q) = \/% ( W + 2mC2> (24)

in the deep BEC regime, with A = 1/4 and mc? = pu + ¢g /2.

13G. Bighin and LS, PRB 93, 014519 (2016).



Zero-temperature 2D results (V)

In the deep BEC regime of the 2D BCS-BEC crossover, where the
chemical potential u becomes strongly negative, the corresponding
regularized pressure (dimensional regularization 1#) reads

i (M+EEB)2 In (6781)> . (25)

= 64nh2 2(p+ z¢8

This is exactly the Popov equation of state of 2D Bose gas with chemical
potential g = 2(p + €5/2), mass mg = 2m. In this way we have
identified the two-dimensional scattering length ag of composite boson as

ap = W ar . (26)

The value ag/ar = 1/(2%/?€!/*) =~ 0.551 is in full agreement with
ag/ar = 0.55(4) obtained by Monte Carlo calculations®®.

141S and F. Toigo, PRA 91, 011604(R) (2015); LS, PRL 118, 130402 (2017).
15G. Bertaina and S. Giorgini, PRL 106, 110403 (2011).



Quantized vortices and 2D superfluid density (1)

At the beginning we have written the pairing field as
A(I’, T) = Ao+ 77("7 T) ’ (27)

where 7(r, 7) is the complex field of pairing fluctuations.
A quite different approach!® is the following

Ar,7) = (Do + o(r, 7)) edrr) (28)

where o(r, 7) is the real field of amplitude fluctuations and 6(r, 7) is the
angular field of phase fluctuations.
However, Taylor-expanding the exponential of the phase, one has

(Do +a(r, 7)) €T = Ag+o(r,7)+i Do O(r,7) + ... (29)
Thus, at the Gaussian level, we can write

n(r,7) =o(r,7)+i Do O(r,7) . (30)

16LS, P.A. Marchetti, and F. Toigo, PRA 88, 053612 (2013).



Quantized vortices and 2D superfluid density (I1)

After functional integration over o(r, 7), the Gaussian action becomes

sg—/ohﬁdT/Bd% {é(ve)%% (%)2} (31)

where J is the phase stiffness and x is the compressibility. The superfluid
density is related to the phase stiffness J by the simple formula

ne=—1J. (32)

At the Gaussian level J depends only on fermionic single-particle
excitations Ep(k).!” Beyond the Gaussian level also bosonic collective
excitations E.o/(q) contribute.’® Thus, we assume the following
Landau-type formula

d2k eBEsp(k) ﬂ 7 eBEcoi(q)
=n- ,6/ eﬁEsp(k —|— 1 / eﬂEcol(q) — ]_)2 ’

(33)

17E. Babaev and H.K. Kleinert, PRB 59, 12083 (1999).
18|, Benfatto, A. Toschi, and S. Caprara, PRB 69, 184510 (2004).



Quantized vortices and 2D superfluid density (I11)

It is important to stress that the compactness of the phase angle 6(r)

implies that
7{ Vo(r) - dr = 27TZ i s (34)
¢ i

where g; is the integer number associated to quantized vortices
(gi > 0) and antivortices (g; < 0) encircled by C. One can write!®

Vo(r) = V(r) — V A (u; ¥, (r)) (35)

where Vy(r) has zero circulation (no vortices) while ¢, (r) encodes the
contribution of quantized vortices and anti-vortices, namely

50 =L ain (%) , (36)

where r; is the position of the i-th vortex and & is a cutoff length.

19 Alternatively, one has 6(r) = 6o(r) + 6, (r) with 6,(r) = >, g;arctan (X=£)
because Varctan (y/x) = =V A (uz In(y/x2 + y2/£)).



Quantized vortices and 2D superfluid density (1V)

The analysis of Kosterlitz and Thouless?® on the 2D gas of quantized
vortices shows that:

@ As the temperature T increases vortices start to appear in
vortex-antivortex pairs (mainly with g = £1).

@ The pairs are bound at low temperature until at the critical
temperature T, = TpgkT an unbinding transition occurs above which
a proliferation of free vortices and antivortices is predicted.

@ The phase stiffness J and the vortex energy p, are renormalized.

@ The renormalized superfluid density ns g = Jr(4m/h?) decreases by
increasing the temperature T and jumps to zero at T, = Tgkr.

Superfluid (T < T) Normal state (T > T¢)

Bound vortex-antivortex pairs Proliferation of free vortices

20J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



Quantized vortices and 2D superfluid density (V)

The renormalized phase stiffness Jg is obtained from the bare one J by

solving the Kosterlitz renormalization group equations??.

d

SK(O) = —473K(0)%y(0)? (37)
SN = (- mKO) () (38)

for the running variables K (¢) and y(¢), as a function of the adimensional
scale ¢ subjected to the initial conditions K(¢ =0) = J/f and

y(¢ = 0) = exp(—fBuy), with u, = 72J/4 the vortex energy.?? The
renormalized phase stiffness is then

Jr=0 K =+4x), (39)
and the corresponding renormalized superfluid density reads

dm
TR =g

21D.R. Nelson and J.M. Kosterlitz, PRL 39, 1201 (1977)
2W. Zhang, G.D. Lin, and L.M. Duan, PRA 78, 043617 (2008).

Jr . (40)




Quantized vortices and 2D superfluid density (VI)
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Superfluid fraction ns/n vs scaled temperature T/ TF in the 2D

BEC-BEC crossover.? Solid lines: renormalized superfluid density.

Dashed lines: bare superfluid density. Tg = e¢r/kg is the Fermi

temperature. Gray dotted line: Kosterlitz-Nelson condition
kg T = (7/2)J(T) = (R?7/(8m))ns(T).

23G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



Quantized vortices and 2D superfluid density (VII)
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Theoretical predictions for the Berezinskii-Kosterlitz-Thouless (BTK)
critical temperature Tgx7. Red lines obtained by using®* the
Nelson-Kosterlitz (NK) criterion on the bare superfluid density:
kg Text = (R?7/(8m))ns(TekT). Blue lines obtained by solving® the
renormalization group (RG) equations of Kosterlitz.

24G. Bighin and LS, PRB 93, 014519 (2016).
25G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



Conclusions

@ After regularization®® beyond-mean-field Gaussian fluctuations give
remarkable effects for superfluid fermions in the 2D BCS-BEC
crossover at zero temperature:

— logarithmic behavior of the equation of state in the deep BEC
regime
— good agreement with (quasi) zero-temperature experimental data

@ Also at finite temperature beyond-mean-field effects, with the
inclusion of quantized vortices and antivortices, become relevant
in the strong-coupling regime of 2D BCS-BEC crossover:

— bare n; and renormalized ns g superfluid density
— Berezinskii-Kosterlitz-Thouless critical temperature TgxT

9 Finite-range effects of the inter-atomic potential could be included
within an effective-field-theory (EFT) approach.?’

26For a recent comprehensive review see LS and F. Toigo, Phys. Rep. 640, 1 (2016).
2TEFT for 2D dilute bosons: LS, PRL 118, 130402 (2017).
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