First results from Advanced LIGO and Advanced Virgo

Barbara Patricelli^{1,2}

Scuola Normale Superiore di Pisa ²INFN - Sezione di Pisa

1st Quantum gases, fundamental interactions and cosmology Conference October 25-27, 2017 Pisa

Summary

- Advanced LIGO and Advanced Virgo first results: BBHs
- Q GW170817: the first GW detection of a BNS
- The gamma-ray signal associated with GW170817

The EM follow-up campaign

- Optical and Infrared
- X-rays
- Radio
- Neutrinos

5 Implications

6 Conclusions

Advanced LIGO and Advanced Virgo first results: BBHs

GW170817: the first GW detection of a BNS The gamma-ray signal associated with GW170817 The EM follow-up campaign Implications Conclusions

GW150914: the first GW detection

- Combined SNR: 24
- FAR: 1 event per 203 000 years significance $> 5.1 \sigma$

•
$$D_L = 410^{+160}_{-180} \text{ Mpc}$$

- $m_1=36^{+5}_{-4} M_{\odot}; m_2=29^{+4}_{-4} M_{\odot};$
- Final BH mass: 62^{+4}_{-4} M_{\odot}

Abbott et al., PRL, 116, 061102 (2016)

After the first GW detection, other BBH mergers have been observed...

Image credit: LIGO, ARC Centre of Excellence for Gravitational Wave Discovery

GW170814

On August 1st, 2017 Virgo joined Advanced LIGO.

On August 14: the first three-detector observation of a GW signal!

Abbott et al., PRL, 119, 141101 (2017)

Advanced LIGO and Advanced Virgo first results: BBHs

GW170817: the first GW detection of a BNS The gamma-ray signal associated with GW170817 The EM follow-up campaign Implications Conclusions

The sky localization of the GW events

Sky localization:

- rapid loc., HL: 1160 deg²
- rapid loc., HLV: 100 deg^2
- final loc., HLV: 60 deg^2

Image credit:

LIGO/CALTECH/MIT/L. Singer/A. Mellinger Abbott et al., PRL, 119, 141101 (2017)

Virgo significantly improved the sky localization!

Advanced LIGO and Advanced Virgo first results: BBHs

GW170817: the first GW detection of a BNS The gamma-ray signal associated with GW170817 The EM follow-up campaign Implications Conclusions

The first multi-messenger detection of a BNS system

GW170817

On August 17, 2017 at 12:41:04 UTC Advanced LIGO and Advanced Virgo made their first observation of a binary neutron star (BNS) inspiral!

- GW170817 swept through the detectors' sensitive band for $\sim 100 \text{ s} (f_{\text{start}} = 24 \text{ Hz})$
- The SNR is 18.8, 26.4 and 2.0 in the LIGO-Hanford, LIGO-Livingston and Virgo data respectively;

the combined SNR is 32.4

 \Rightarrow This is the loudest signal yet observed!

• The F.A.R. is less than one per 8×10^4 years

Abbott et al., PRL, 119, 161101 (2017)

B. Patricelli

BNS detection: component masses

Estimated masses (m_1 and m_2) within the range of known NS masses and below those of known BHs \Rightarrow this suggests the source was composed of two NSs

Abbott et al., PRL, 119, 161101 (2017)

Where did the BNS merger occur?

This is the closest and most precisely localized gravitational-wave signal!

Abbott et al., PRL, 119, 161101 (2017)

Which are the expected EM counterparts?

• Short GRBs:

Prompt γ-ray emission (< 2 s).

• Multiwavelegth *afterglow* emission: X-ray, optical and radio (minutes, hours, days, months).

- Kilonova: optical and NIR (days-weeks).
- Late blast wave emission: radio (~ months, years).

Image credit: Metzger & Berger, ApJ, 746, 48 (2012)

Gamma-rays: short GRB

A GRB (GRB170817A) was independently detected by Fermi-GBM and INTEGRAL

- The start of the gamma-ray emission relative to the merger time is ~ 1.7 s
- GRB 170817A is \sim 3 times more likely to be a short GRB than a long GRB
- $\mathsf{E}_{\mathrm{iso}}^{\gamma} \sim 10^{46}$ erg: between 2 and 6 orders of magnitude less energetic than other observed bursts with measured redshift.

off-axis GRB? structured jet?...

Abbott et al., ApJ, 848, 13 (2017)

Gamma-rays: short GRB

90 % Fermi-GBM sky localization (1100 deg^2)

90 % sky localization from Fermi and INTEGRAL timing

LIGO-Virgo 90 % credible region (28 deg²)

The probability that GRB 170817A and GW170817 occurred this close in time and with this level of location agreement by chance is 5.0×10^{-8} : a 5.3 σ Gaussian-equivalent significance

 \Rightarrow First direct evidence that BNS mergers are progenitors of (at least some) short GRBs!

Abbott et al., ApJ, 848, 13 (2017)

70817 X-ra paign Rad ations Neu usions

The EM follow-up campaign

A wide-ranging EM follow-up campaign started in the hours immediately after the observation of GW170817 and GRB170817A

GW				
LIGO, Virgo				
γ-ray 🔹	-			
Petiti, INTEGRAL, ABROSA, IPV, IIBQIT-PANIT, C	SWIT, AGLE, GALE I, H.E.B.B., HAWG, KI	Juds-Wild		
X-ray swit, MAXIVGSC, NuSTAR, Chandra, NTEGRAL				•
UV swit, HST			•	
Optical			• •	
Swape, DECam, DLT 40, REM-ROS2, HST, Las C HCT, TZAC, LSGT, T17, Gemini-South, NTT, GRK BOOTES-5, Zadko, ITdescope.Net, AAT, PI of the	umbres, SkyMapper, VISTA, MASTER, M IND, SOAR, ESO-VLT, KMTNet, ESO-VS Sky, AST3-2, ATLAS, Darish Tel, DFN, T	agelan, Subaru, Pan-STARRS1, T, VIRT, S.ALT, CHILESCOPE, TOROS, 805, EABA		
IR BEMBOS2 VISTA CertificSouth 2MASS Sola	NTT GROND SOME NOT ESOALT	Kanata Telescope, HST	•	• ·
Radio				-
ATCA, VLA, ASKAP, VLBA, GMRT, MWA, LOFAR	, LWA, ALMA, OVRO, EVN, &MERLIN, M	leerKAT, Parkes, S.R.T, Elfelsberg		
-100 -50 0 50	10-2	10-1	100	101
$t-t_c$ (s)	<i>t-t_c</i> (days)			

Abbott et al, ApJ Letters, 848, 12 (2017)

Optical and Infrare X-rays Radio Neutrinos

The identification of the host galaxy

An associated **optical transient** (SSS17a/AT 2017gfo) has been discovered on August 18, 2017; the transient is located at \sim 10" from the center of the galaxy NGC 4993, at a distance of 40 Mpc

The discovery has been reported by 6 teams:

- SWOPE (10.86 h)
- DLT40 (11.08 h)
- VISTA (11.24 h)
- MASTER (11.31 h)
- DECam (11.40 h)
- Las Cumbres (11.57 h)

Abbott et al, ApJ Letters, 848, 12 (2017)

W170817 campaign plications onclusions

Optical and Infrared

The optical transient

The optical transient was later observed in different bands...

Pian et al., Nature, in press (2017)

0817 X-ray aign Radi ions Neut

The spectroscopic identification of the kilonova

(Loading Video...)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO

GW170817 **p campaign** Implications Conclusions **Optical and Infrared** X-rays Radio Neutrinos

The spectroscopic identification of the kilonova

- observational data
- lanthanide-rich dynamical ejecta region
- wind region with mixed (lanthanide-free and lanthanide-rich) composition
- wind region with lanthanide-free composition
- sum of the three model components

(Models from Tanaka et al. 2017)

The evolution of the observed spectrum with time is in a good match with the expectations for kilonovae \Rightarrow this is the first spectroscopic identification of a kilonova!

Pian et al., Nature, in press (2017)

up campaign Implications Conclusions Optical and Infrared X-rays Radio Neutrinos

X-ray observations

9 days after the GW trigger, an X-ray counterpart has been discovered with Chandra

The x-ray light curve is consistent with the afterglow of a GRB viewed off-axis

Troja et al., Nature, in press (2017)

W170817 X-rays campaign Radio pplications Neutri onclusions

Radio observations

A radio counterpart detection consistent with the HST position of SSS17a/AT 2017gfo was observed 16 days after GW170817

Light curve consistent with:

- emission from an ultra-relativistic jet viewed off-axis;
- emission from a "cocoon" of mildly relativistic ejecta

Future observations will distinguish between these two models

Hallinan et al., Science, in press (2017)

Optical and In X-rays Radio Neutrinos

Neutrinos

Search for coincident neutrino candidates with data of IceCube, ANTARES and Pierre Auger

Within \pm 500 s of GW170817:

- ANTARES neutrino candidates: 5
- IceCube neutrino candidates: 6
- Pierre Auger neutrino candidates:
 0

- No one directionally coincident with GW150914

The non-detection of neutrinos is consistent with model predictions of short GRBs observed off-axis

Albert et al., submitted to ApJ, 2017

GW170817: Implications for Cosmology

GW170817 as a standard siren:

the association with the host galaxy NGC 4993 and the luminosity distance directly measured from the GW signal have been used to determine the **Hubble constant**

 $H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1}$

Abbott et al., Nature, in press (2017)

> Multi-messenger astronomy has just begun, many discoveries are expected in the near future!

Backup slides

BH and **NS** masses

Image credit: LIGO-Virgo/Frank Elavsky/Northwestern University

LIGO and Virgo antenna patterns

(Loading Video...)

Credit: L. Singer

A kilonova detection for GRB 130603B?

B. Patricelli

F606W/optical NIR/F160W

- blue curve: optical afterglow
- orange curves: kilonova NIR model

ejected masses: $10^{-2} \text{ M}_{\odot}$ and $10^{-1} \text{ M}_{\odot}$

cyan curve: kilonova optical model

 solid red curves: afterglow+kilonova

Tanvir et al, Nature, 500, 547 (2013)

First results from Advanced LIGO and Advan