A global fit of partonic Transverse Momentum Dependent distributions

Filippo Delcarro

In collaboration with A. Bacchetta, C. Pisano, M. Radici, A. Signori

3DSPIN: structure of the nucleon

Repl. $105\left(\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}\right)$
0.05

distribution of partons? 0.10

$\rho\left(\mathrm{GeV}^{-2}\right)$

Difference between flavors?

Does it get wider at low x?
missing spin budget?

x

Transverse Momentum Distributions: PDF

quark pol.

Unpolarized		U	L	T
í	U	f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
$\begin{aligned} & \text { U } \\ & \text { U } \end{aligned}$	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

TMD Parton Distribution Functions [TMD PDFs]

Transverse Momentum Distributions: PDF

Unpolarized	quark pol.			
		U	L	T
O	U	f_{1}		h_{1}^{\perp}
\%	L		$g_{1 L}$	$h_{1 L}^{\perp}$
仡	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

dependence on:
longitudinal momentum fraction \boldsymbol{X} transverse momentum \boldsymbol{k}_{\perp} energy scale

Why studying unpolarized TMDs?

nucleon tomography

\rightarrow improve our knowledge of 1D and 3D hadron structure
\rightarrow have a reliable baseline to investigate polarized TMDs via spin asymmetries

High-energy phenomenology

\rightarrow fundamental to predict qT spectra and to improve our investigations of BSM physics

Extraction from SIDIS \& Drell-Yan

Drell-Yan \Z production

$$
A+B \rightarrow \gamma^{*} \rightarrow l^{+} l^{-} \quad A+B \rightarrow Z \rightarrow l^{+} l^{-}
$$

Extraction from SIDIS \& Drell-Yan

Semi-inclusive Deep Inelastic Scattering

TMDs: Fragmentation Function

quark pol.

TMD Fragmentation Functions [TMD FFs]

dependence on:
longitudinal momentum fraction z
transverse momentum \boldsymbol{P}_{\perp}
energy scale

Structure functions and TMDs

multiplicities

$m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\frac{d \sigma_{N}^{h} /\left(d x d z d \boldsymbol{P}_{h T}^{2} d Q^{2}\right)}{d \sigma_{D I S} /\left(d x d Q^{2}\right)} \approx \frac{\pi F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{F_{T}\left(x, Q^{2}\right)}$

$$
\begin{array}{r}
F_{U U, T}\left(x, z, P_{h T}^{2}, Q^{2}\right)=\sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d^{2} k_{T} d^{2} P_{T} f_{1}^{a}\left(x, k_{T}^{2} ; \mu^{2}\right) D_{1}^{h / a}\left(z, P_{T}^{2} ; \mu^{2}\right) \\
\cdot \delta^{2}\left(z k_{T}-P_{h T}+P_{T}\right)+Y_{U U, T}\left(Q^{2}, P_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)
\end{array}
$$

Structure functions and TMDs

$$
\begin{aligned}
F_{U U, T}\left(x, z, P_{h T}^{2}, Q^{2}\right)= & \sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d^{2} k_{T} d^{2} P_{T} f_{1}^{a}\left(x, k_{T}^{2} ; \mu^{2}\right) D_{1}^{h / a}\left(z, P_{T}^{2} ; \mu^{2}\right) \\
& . \delta^{2}\left(z k_{T}-P_{h T}+P_{T}\right)+Y_{U U, T}\left(Q^{2}, P_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)
\end{aligned}
$$

At our accuracy level (LO-NLL):

$$
\begin{gathered}
\mathcal{H}_{U U, T} \simeq \mathcal{O}\left(\alpha_{s}^{0}\right) \\
Y_{U U, T}\left(Q^{2}, P_{h}^{2} T\right) \simeq 0
\end{gathered}
$$

Structure functions and TMDs

TMD Evolution

HERMES, $\mathrm{Q} \approx 1.5 \mathrm{GeV}$

CDF, Q $\approx 91 \mathrm{GeV}$

Aaltonen et al., PRD86 (2012)

Width of TMDs changes of one order of magnitude \rightarrow Evolution

Evolved TMDs

Fourier transform: $\xi_{\text {T space }}$

Non-perturbative contributions have to be extracted from experimental data, after parametrization

Model: non perturbative elements

input TMD PDF $\left(\mathrm{Q}^{2}=I \mathrm{GeV}^{2}\right)$

$\hat{f}_{N P}^{a}=\mathcal{F} . \mathcal{T}$. of

$$
(\underline{e^{-\frac{k_{T}^{2}}{g 1 a}}+\underbrace{\lambda k_{T}^{2} e^{-\frac{k_{T}^{2}}{g 1 a}}}) .}
$$

sum of two different gaussians
with kinematic dependence on transverse momenta
width x-dependence

$$
g_{1}(x)=N_{1} \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

where

$$
\begin{gathered}
N_{1} \equiv g_{1}(\hat{x}) \\
\hat{x}=0.1
\end{gathered}
$$

Model: non perturbative elements

input TMD FF $\left(\mathrm{Q}^{2}=I \mathrm{GeV}^{2}\right)$
$\hat{D}_{1 N P}^{a \rightarrow h}=$ F.T. of $\frac{1}{g_{3 a \rightarrow h}+\left(\lambda_{F} / z^{2}\right) g_{4 a \rightarrow h}^{2}}\left(e^{-\frac{P_{\perp}^{2}}{g_{3 a \rightarrow h}}}+\lambda_{F} \frac{P_{\perp}^{2}}{z^{2}} e^{-\frac{P_{\perp}^{2}}{g_{4 a \rightarrow h}}}\right)$
sum of two different gaussians
with different variance
with kinematic dependence on transverse momenta
width z-dependence

$$
\begin{aligned}
g_{3,4}(z)=N_{3,4} \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}} & \text { where }
\end{aligned} \quad N_{3,4} \equiv g_{3,4}(\hat{z})
$$

Average transverse momenta

$$
\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)=\frac{g_{1}(x)+2 \lambda g_{1}^{2}(x)}{1+\lambda g_{1}(x)}
$$

$$
\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle(z)=\frac{g_{3}^{2}(z)+2 \lambda_{F} g_{4}^{3}(z)}{g_{3}(z)+\lambda_{F} g_{4}^{2}(z)}
$$

Model: non perturbative elements

Free parameters

$$
\begin{array}{cc}
N_{1}, \alpha, \sigma, \lambda & 4 \text { for TMD PDF } \\
N_{3}, N_{4}, \beta, \delta, \gamma, \lambda_{F} & 6 \text { for TMD FF }
\end{array}
$$

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2}
$$

1 for NP contribution to TMD evolution

In total we have 11 parameters, for intrinsic transverse momentum (4 PDFs, 6 FFs) and evolution (g2)

Evolution and b_{T} regions

$$
\begin{aligned}
\mu_{b}= & 2 e^{-\gamma_{E}} / b_{*} \\
& \quad \text { alternative notation: } \xi_{T}\left(b_{T} ; b_{\min }, b_{\max }\right)=b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4}
\end{aligned}
$$

$$
\begin{aligned}
b_{\max } & =2 e^{-\gamma_{E}} \\
b_{\min } & =2 e^{-\gamma_{E}} / Q
\end{aligned}
$$

The phenomenological importance of bmin is a signal that, especially in SIDIS data at low \mathbf{Q}, we are exiting the proper TMD region and approaching the region of collinear factorization

Experimental data

SIDIS $\mu \mathrm{N}$ 6252

Drell-Yan 203

SIDIS eN
data points

Z Production
90
data points

Data selection and analysis

$$
\begin{aligned}
& \mathrm{Q} 2>1.4 \mathrm{GeV}^{2} \\
& 0.2<\mathrm{z}<0.7 \\
& \mathrm{P}_{\mathrm{hT}}, \mathrm{q}^{2}<\operatorname{Min}[0.2 \mathrm{Q}, 0.7 \mathrm{Qz}]+0.5 \mathrm{GeV}
\end{aligned}
$$

Motivations behind kinematical cuts
TMD factorization ($\mathrm{Ph}_{T} / \mathrm{z} \ll \mathrm{Q}^{2}$) Avoid target fragmentation (low z) and exclusive contributions (high z)

Experimental data

SIDIS $\mu \mathrm{N}$ 6252

Drell-Yan
203
data points

Total: 8059 data

Z Production

90

Data region

Data region

Z production

	Framework	SIDIS HERMES	SIDIS COMPASS	DY	\mathbf{Z} production	\# points
KN 2006	NLL/NLO	x	x	\checkmark	\checkmark	98
Pavia 2013	No Evo	\checkmark	x	x	x	1539
Torino 2014	No Evo	(separately) (sepparately)	x	x	$576(\mathrm{H})$ $6284(\mathrm{C})$	
DEMS 2014	NNLL/NLO	X	x	\checkmark	\checkmark	223
Pavia 2017	NLL/LO	\checkmark	\checkmark	\checkmark	\checkmark	8059
SV 2017	NNLL/NNLO	x	x	\checkmark	\checkmark	309

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 [+ JLab]	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

Features

heading towards a global fit of quark unpolarized TMDs
Flexible functional form (beyond gaussians) includes TMD evolution
replica methodology

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 [+ JLab]	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

Cons

no "pure" info on TMD FFs
(would require e+e- annihilation)
TMD accuracy: not the state of the art (LO-NLL) still undetermined flavor dependence

An almost global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 [+ JLab]	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

[JHEP06(20I7)08I]

Summary of results

Total number of data points: 8059
Total number of free parameters: 11
$\rightarrow 4$ for TMD PDFs $\rightarrow 6$ for TMD FFs
$\rightarrow 1$ for TMD evolution

$$
\chi^{2} / d . o f .=1.55 \pm 0.05
$$

Hermes data pion production

$\chi^{2} /$ dof
4.83
Hermes data kaon production

COMPASS data SIDIS h^{+}

to avoid known problems with Compass data normalization:

Observable $\frac{m_{N}^{h}\left(x, z, P_{h}^{2}, Q^{2}\right)}{m_{N}^{h}\left(x, z, \min \left[P^{2} T_{N}\right], Q^{2}\right)}$

COMPASS data SIDIS h ${ }^{+}$

Revised Data:

 arXiv:1709.07374Observable: $\frac{m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)}{m_{N}^{h}\left(x, z, \min \left[\boldsymbol{P}_{h T}^{2}\right], Q^{2}\right)}$

Drell-Yan data

Q^{2} Evolution: The peak is now at about 1 GeV , it was at 0.4 GeV for SIDIS

Z-boson production data

normalization : fixed from DEMS fit, different from exp. [not really relevant for TMD parametrizations)
$\chi^{2} /$ dof $\quad 1.36$
I.II
2.00
1.73

Q2 Evolution: The peak is now at about 4 GeV
B

Best fit values

TMD PDFs	N_{1} $\left[\mathrm{GeV}^{2}\right]$	α	σ		λ $\left[\mathrm{GeV}^{-2}\right]$	
All replicas	0.28 ± 0.06	2.95 ± 0.05	0.17 ± 0.02		0.86 ± 0.78	
Replica 105 $]$	0.285	2.98	0.173		0.39	
TMD FFs	N_{3} $\left[\mathrm{GeV}^{2}\right]$	β	δ	γ	λ_{F} $\left[\mathrm{GeV}^{-2}\right]$	N_{4} $\left[\mathrm{GeV}^{2}\right]$
All replicas	0.21 ± 0.02	1.65 ± 0.49	2.28 ± 0.46	0.14 ± 0.07	5.50 ± 1.23	0.13 ± 0.01
Replica 105	0.212	2.10	2.52	0.094	5.29	0.135

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at $Q=1 \mathrm{GeV}$.

Flavor independent scenario:

$$
\begin{aligned}
& \mathrm{N}_{1}=0.28 \pm 0.06 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{3}=0.21 \pm 0.02 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{4}=0.13 \pm 0.01 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
\begin{gathered}
g_{2}=0.13 \pm 0.01 \mathrm{GeV}^{2} \\
\text { best value from } 200 \text { replicas } \\
\text { compatible with other extractions }
\end{gathered}
$$

Mean transverse momentum

Change in TMD width x-dependence

In TMD PDF

In TMD FF
$\mathrm{Q}^{2}=1 \mathrm{GeV}_{34}^{2}$

Shape uncertainties in replicas

Stability of our results

Test of our default choices

How does the χ^{2} of a single replica change if we modify them?

Original $X^{2} /$ dof $=1.51$
Normalization of HERMES data as done for COMPASS:
$\mathrm{X}^{2} / \mathrm{dof}=1.27$
Parametrizations for collinear PDFs (NLO GJR 2008 default choice): NLO MSTW 2008 (1.84), NLO CJ12 (1.85)

More stringent cuts (TMD factorization better under control) $\mathrm{X}^{2} / \mathrm{dof} \rightarrow 1$
Ex: Q2 > 1.5 GeV²; $0.25<\mathrm{z}<0.6 ; \mathrm{PhT}<0.2 \mathrm{Qz} \Rightarrow \mathrm{X}^{2} / \mathrm{dof}=1.02(477$ bins)

Conclusions

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well
(most of the discrepancies come from normalization)

Conclusions

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

> We tested the universality and applicability of the TMD framework and it works quite well (most of the discrepancies come from normalization)

Conclusions

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD from more than 8000 data points

We tested the universality and applicability of the TMD framework and it works quite well (most of the discrepancies come from normalization)

Conclusions and open issues

For the first time we demonstrated that it is possible to fit simultaneously SIDIS, DY and Z boson

We extracted TMDs from more than 8000 data points
We tested the universality and applicability of the TMD framework and it works quite well

TO DO:

- NLO+NLL calculation in progress
-problems with normalizations theory/experiment
-flavor dependence and more flexible forms
-new data sets

BACKUP

Best fit values

TMD PDFs	N_{1} $\left[\mathrm{GeV}^{2}\right]$	α	σ		λ $\left[\mathrm{GeV}^{-2}\right]$	
All replicas	0.28 ± 0.06	2.95 ± 0.05	0.17 ± 0.02		0.86 ± 0.78	
Replica 105 $]$	0.285	2.98	0.173		0.39	
TMD FFs	N_{3} $\left[\mathrm{GeV}^{2}\right]$	β	δ	γ	λ_{F} $\left[\mathrm{GeV}^{-2}\right]$	N_{4} $\left[\mathrm{GeV}^{2}\right]$
All replicas	0.21 ± 0.02	1.65 ± 0.49	2.28 ± 0.46	0.14 ± 0.07	5.50 ± 1.23	0.13 ± 0.01
Replica 105	0.212	2.10	2.52	0.094	5.29	0.135

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at $Q=1 \mathrm{GeV}$.
Flavor independent scenario:

$$
\begin{aligned}
& \mathrm{N}_{1}=0.28 \pm 0.06 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{3}=0.21 \pm 0.02 \mathrm{GeV}^{2} \\
& \mathrm{~N}_{4}=0.13 \pm 0.01 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
\begin{gathered}
g_{2}=0.13 \pm 0.01 \mathrm{GeV}^{2} \\
\text { best value from } 200 \text { replicas } \\
\text { compatible with other extractions }
\end{gathered}
$$

The replica method

Example of original data

The replica method

Example of original data

The replica method

Data are replicated (with Gaussian distribution)

The replica method

The fit is performed on the replicated data

The replica method

The procedure is repeated 200 times

The replica method

For each point, a central 68\% confidence interval is identified

Previous fit studies

	Framework	HERMES	COMPASS	DY	Z production	N of points
$\text { KN } 2006$ hep-ph/0506225	LO-NLL	x	x	\checkmark	\checkmark	98
Pavia 2013 (+Amsterdam, Bilbao) arXiv:1309.3507	No evo (QPM)	\checkmark	x	x	x	1538
Torino 2014 (+JLab) arXiv:1312.6261	No evo (QPM)	(separately)	(separately)	x	x	$\begin{gathered} 576(\mathrm{H}) \\ 6284(\mathrm{C}) \end{gathered}$
DEMS 2014 arXiv:1407.3311	NLO-NNLL	x	x	\checkmark	\checkmark	223
EIKV 2014 arXiv:1401.5078	LO-NLL	$1\left(x, Q^{2}\right)$ bin	$1\left(x, Q^{2}\right)$ bin	\checkmark	\checkmark	500 (?)
$\begin{gathered} \text { Pavia } 2017 \\ \text { [+ JLab] } \end{gathered}$	LO-NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059

Data selection

	HERMES $p \rightarrow \pi^{+}$	HERMES $p \rightarrow \pi^{-}$	HERMES $p \rightarrow K^{+}$	HERMES $p \rightarrow K^{-}$
Reference	$Q^{2}>1.4 \mathrm{GeV}^{2}$			
Cuts	$0.2<z<0.7$			
Points	188	186	187	185
Max. Q^{2}	$9.2 \mathrm{GeV}^{2}$			
x range	$0.06<x<0.4$			
Notes				

Motivations behind kinematical cuts

TMD factorization ($\mathrm{Ph}_{\mathrm{T}} / \mathrm{z} \ll \mathrm{Q}^{2}$)
Avoid target fragmentation (low z) and exclusive contributions (high z)

Data selection

SIDIS
deuteron-target
data

Data selection

	E288 200	E288 300	E288 400	E605
	$q_{T}<0.2 Q+0.5 \mathrm{GeV}$			
Cuts				
Points	45	45	78	35
\sqrt{s}	19.4 GeV	23.8 GeV	27.4 GeV	38.8 GeV
Q range	$4-9 \mathrm{GeV}$	$4-9 \mathrm{GeV}$	$5-9,11-14 \mathrm{GeV}$	$7-9,10.5-18 \mathrm{GeV}$
Kin. var.	$y=0.4$	$y=0.21$	$y=0.03$	$-0.1<x_{F}<0.2$

Drell-Yan data

		CDF Run I	D0 Run I	CDF Run II	D0 Run II
Z production data					
	Cuts	$q_{T}<0.2 Q+0.5 \mathrm{GeV}=18.7 \mathrm{GeV}$			
	Points	31	14	37	8
d from DEMS fit,	\sqrt{s}	1.8 TeV	1.8 TeV	1.96 TeV	1.96 TeV
different from exp.	Normalization	1.114	0.992	1.049	1.048
[not really relevant for TMD parametrizations]					51

u and $b *$ prescriptions

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

u and $b *$ prescriptions

Choice Choice

$\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{(}\left(b_{;} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)}$

u and $b *$ prescriptions

$$
\begin{align*}
& \text { Choice Choice } \\
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)} \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{T}^{4}}{b_{\max }^{2}}}\right)^{1 / 4} \quad \begin{array}{l}
\text { Bacchetta, Echevarria, Mulders, Radici, Signori } \\
\text { arXiv:1508.00402 }
\end{array} \\
& \mu_{b}=Q_{0}+q_{T} \quad b_{*}=b_{T} \tag{DEMS 2014}
\end{align*}
$$

u and $b *$ prescriptions

$$
\begin{align*}
& \text { Choice Choice } \\
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{T}^{4}}{b_{\max }}}\right)^{1 / 4} \quad \begin{array}{l}
\text { Bacchetta, Echerarric, Mulders, Radici, Signori } \\
\text { arरivi. 1508.00402 }
\end{array} \\
& \mu_{b}=Q_{0}+q_{T} \quad b_{*}=b_{T} \tag{DEMS 2014}
\end{align*}
$$

Nonperturbative ingredients 1

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Nonperturbative ingredients 1

Nonperturbative ingredients 1

$$
\begin{aligned}
& \text { Choice } \\
& L \\
& \widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& \text { almost everybody } \\
& \text { Pavia 2013, KN } 2006 \\
& \text { DEMS } 2014
\end{aligned}
$$

Low-bT modifications

$$
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)
$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

Low-bT modifications

$$
\begin{aligned}
& \log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) \quad \begin{array}{l}
\text { see, e.g., Bozzi, Catani, De Florian, Grazzini } \\
\text { hep-phi0302104 }
\end{array} \\
& b_{*}\left(b_{c}\left(b_{T}\right)\right)=\sqrt{\frac{b_{T}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{T}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \quad b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
\end{aligned}
$$

Collins et al.
arXiv: 1605.00671

Data selection

$$
\begin{aligned}
& Q^{2}>1.4 \mathrm{GeV}^{2} \\
& 0.2<z<0.7 \\
& P_{h T}, q_{T}<0.2 Q+0.5 \mathrm{GeV} \quad P_{h T}<0.8 \mathrm{GeV}(\text { if } z<0.3)
\end{aligned}
$$

Data selection

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<0.2 Q+0.5 \mathrm{GeV} \quad P_{h T}<0.8 \mathrm{GeV}($ if $z<0.3)$

Total number of data points: 8156
Total $\mathrm{X}^{2 / d o f}=1.45$

Pavia 2016 perturbative ingredients

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Mean transverse momentum

In TMD PDF

In TMD FF

$$
\mathrm{Q}^{2}=1 \mathrm{Ge}_{5} \mathrm{y}^{2}
$$

