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    3DSPIN: structure of the nucleon

distribution of partons?

Difference between flavors?

Does it get wider at low x?

missing spin budget?

spin and partonic 
motion correlation?
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All our assumptions, the notation, and the general theoretical framework are briefly outlined in Sec. II. In Sec. III,

we describe our fitting procedure. In Sec. IV, we present our final results, and in Sec. V we draw some conclusions

and outlooks.

II. THEORETICAL FRAMEWORK

In one-particle semi-inclusive DIS, a lepton � with momentum l scatters to a final state with momentum l� off a

hadron target N with mass M and momentum P , producing (at least) one hadron h in the final state with mass Mh

and momentum Ph:

�(l) +N(P ) → �(l�) + h(Ph) +X . (1)

The space-like momentum transfer is q = l − l�, with Q2
= −q2. We introduce the usual invariants

x =
Q2

2P · q , y =
P · q
P · l , z =

P · Ph

P · q , γ =
2Mx

Q
. (2)

The available data refer to hadron multiplicities in semi-inclusive DIS, namely to the differential number of hadrons

produced per corresponding inclusive DIS event. In terms of cross sections, we define the multiplicities as

mh
N (x, z,P 2

hT , Q
2
) =

dσh
N/dxdzdP 2

hT dQ
2

dσDIS/dxdQ2
, (3)

where dσh
N is the differential cross section for the semi-inclusive DIS process and dσDIS is the corresponding inclusive

one, and where PhT is the component of Ph transverse to q. In the single-photon-exchange approximation, the

multiplicities can be written as ratios of structure functions (see [29] for details):

mh
N (x, z,P 2

hT , Q
2
) =

π FUU,T (x, z,P 2
hT , Q

2
) + π εFUU,L(x, z,P 2

hT , Q
2
)

FT (x,Q2) + εFL(x,Q2)
, (4)

where

ε =
1− y − 1

4γ
2y2

1− y + 1
2y

2 +
1
4γ

2y2
. (5)

We recall that the notation FXY,Z indicates the response of the hadron target with polarization Y to a lepton beam

with polarization X and for the virtual photon exchanged in the polarization state Z. Therefore, the numerator of

Eq. (4) involves semi-inclusive DIS processes with only unpolarized beam and target. We remark that the above

expressions assume a complete integration over the azimuthal angle of the detected hadron. Acceptance effects may

modify these formulae, due to the presence of azimuthal modulations in the cross section, though for the data used

here such effects were included in the systematic uncertainties.

We consider the limitsM2/Q2 � 1 and P 2
hT /Q

2 � 1. Within them, the longitudinal structure function FUU,L in the

numerator of Eq. (4) can be neglected [30]. In the denominator, the standard inclusive longitudinal structure function

FL is non negligible and contains contributions of order αS . However, in our analysis we assume a parton-model

picture and we neglect such contributions; hence, consistently we neglect the contribution of FL in the denominator

of Eq. (4). It may also be noted that in the transverse-momentum analysis of the data, FL induces a change in

normalization that depends on x, but is independent of z and P 2
hT , the kinematic variables most relevant in the

fitting procedure. Hence, we do not expect large effects on the resulting parameters.

To express the structure functions in terms of TMD PDFs and FFs, we rely on the factorized formula for semi-

inclusive DIS at low transverse momenta [31–39]:

FUU,T (x, z,P
2
hT , Q

2
) =

�

a

Ha
UU,T (Q

2
;µ2

)

�
dk⊥ dP⊥ fa

1

�
x,k2

⊥;µ
2
�
Da�h

1

�
z,P 2

⊥;µ
2
�
δ
�
zk⊥ − PhT + P⊥

�

+ YUU,T

�
Q2,P 2

hT

�
+O

�
M/Q

�
. (6)

Here, HUU,T is the hard scattering part; fa
1 (x,k

2
⊥;µ

2
) is the TMD PDF for an unpolarized parton of flavor a in an

unpolarized proton, carrying longitudinal momentum fraction x and transverse momentum k⊥ at the factorization

scale µ2
, which in the following we choose to be equal to Q2

. Da�h
1 (z,P 2

⊥;µ
2
) is the TMD FF for an unpolarized

dependence  on:

p

xp

kT

Unpolarized

x
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Why studying unpolarized TMDs?

nucleon tomography
➛ improve our knowledge of 1D and 3D hadron structure
➛ have a reliable baseline to investigate polarized TMDs via spin 
asymmetries

High-energy phenomenology
➛ fundamental to predict qT spectra and to improve our 
investigations of BSM physics
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FIG. 1. Diagram describing the relevant momenta involved in a semi-inclusive DIS event: a virtual photon (defining the
reference axis) strikes a parton inside a proton. The parton has a transverse momentum k⊥ (not measured). The struck
parton fragments into a hadron, which acquires a further transverse momentum P⊥ (not measured). The total measured
transverse-momentum of the final hadron is PhT . When Q2 is very large, the longitudinal components are all much larger than
the transverse components. In this regime, PhT ≈ zk⊥ + P⊥ (see also Ref. [42]).

parton of flavor a fragmenting into an unpolarized hadron h carrying longitudinal momentum fraction z and transverse

momentum P⊥; the term YUU,T is introduced to ensure a matching to the perturbative calculations at high transverse

momentum. The expression for FUU,T is known up to at least O(α2
S), including the resummation of at least next-

to-next-to-leading logarithms of the type log (P 2
hT /Q

2
). However, we are going to use here only the lowest-order

expression, which should still provide a good description at low P 2
hT and in a limited range of Q2

. Eventually, Eq. (6)

simplifies to (see, e.g., Refs. [29, 40, 41])

FUU,T (x, z,P
2
hT , Q

2
) =

�

a

e2a
�
fa
1 ⊗Da�h

1

�
(x, z,P 2

hT , Q
2
) , (7)

where the convolution upon transverse momenta is defined as

�
f ⊗D

�
(x, z,P 2

hT , Q
2
) = x

�
dk⊥ dP⊥ δ

�
zk⊥ + P⊥ − PhT

�
f(x,k2

⊥;Q
2
)D(z,P 2

⊥;Q
2
) . (8)

In Fig. 1, we describe our notation for the transverse momenta (in agreement with the notation suggested by the

white paper in Ref. [2]), which is also reproduced below for convenience:

Momentum Physical description

k 4-momentum of parton in distribution function

p 4-momentum of fragmenting parton

k⊥ light-cone transverse momentum of parton in distribution function

P⊥ light-cone transverse momentum of final hadron w.r.t. fragmenting parton

PhT light-cone transverse momentum of final hadron w.r.t. virtual photon

A. Flavor-dependent Gaussian ansatz

The Gaussian ansatz consists in assuming the following functional form for the transverse-momentum dependence

of both the TMD PDF fa
1 and the TMD FF Da�h

1 in Eq. (7):

fa
1 (x,k

2
⊥;Q

2
) =

fa
1 (x,Q

2
)

π�k2
⊥,a�

e−k2
⊥/�k2

⊥,a� Da�h
1 (z,P 2

⊥, Q
2
) =

Da�h
1 (z;Q2

)

π�P 2
⊥,a�h�

e−P 2
⊥/�P 2

⊥,a�h� . (9)

Unpolarized

dependence  on:



mh
N

�
x, z,P 2

hT , Q
2
�
=

dσh
N/

�
dxdzdP 2

hT dQ
2
�

dσDIS/ (dxdQ2)
≈

πFUU,T

�
x, z,P 2

hT , Q
2
�

FT (x,Q2)

Structure functions and TMDs

FUU,T

�
x, z, P 2

hT , Q
2
�
=

�

a

H
a
UU,T

�
Q2;µ2

� �
d2kT d2PT fa

1

�
x, k2T ;µ

2
�
Dh/a

1

�
z, P 2

T ;µ
2
�

·δ2(zkT − PhT + PT ) + YUU,T (Q
2, P 2

hT ) +O
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M2/Q2

�
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Structure functions and TMDs 
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Structure functions and TMDs
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TMD EvolutionTMD evolution
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Evolved TMDs

Non-perturbative contributions have to be extracted 
from experimental data, after parametrization

fa
1

�
x, ξT ;µ

2
�
=

�

i

�
C̃a/i ⊗ f i

1

� �
x, ξ̄∗;µb

�
eS̃(ξ̄∗;µb,µ)egK(ξT ) ln(µ/µ0)f̂a

NP (x, ξT )

collinear PDF
pQCD

(Sudakov 
form factor)

(Wilson 
Coefficient)

non-perturbative part 
of TMD

nonperturbative part
 of evolutionf̃a

1

�
x, ξT ;µ

2
�
=

13

Fourier transform: ξT space



Model: non perturbative elements

sum of two different gaussians
with kinematic dependence on transverse momenta

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
N1 ≡ g1(x̂)

width x-dependence

input TMD PDF (Q2=1GeV2)

where
x̂ = 0.1

�
e−

k2
T

g1a + λk2T e
− k2

T
g1a

�
f̂a
NP = F .T . of
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Model: non perturbative elements

sum of two different gaussians
with different variance
with kinematic dependence on transverse momenta

J
H
E
P
0
6
(
2
0
1
7
)
0
8
1

To NLL accuracy, we need the following terms [31, 52]

A1 = CF , A2 =
1

2
CF

[
CA

(
67

18
− π2

6

)
− 5

9
Nf

]
, B1 = −3

2
CF . (2.32)

We use the approximate analytic expression for αS at NLO with the ΛQCD = 340 MeV,
296 MeV, 214 MeV for three, four, five flavors, respectively, corresponding to a value of
αS(MZ) = 0.117. We fix the flavor thresholds at mc = 1.5GeV and mb = 4.7GeV. The
integration of the Sudakov exponent in eq. (2.30) can be done analytically (for the complete
expressions see, e.g., refs. [36, 53, 54]).

Following refs. [55–57], for the nonperturbative Sudakov factor we make the traditional
choice

gK(ξT ) = −g2ξ
2
T /2 (2.33)

with g2 a free parameter. Recently, several alternative forms have been proposed [58, 59].
Also, recent theoretical studies aimed at calculating this term using nonperturbative meth-
ods [60]. All these choices should be tested in future studies. In ref. [61], a good agreement
with data was achieved even without this term, but this is not possible when including data
at low Q2.

In this analysis, for the collinear PDFs fa
1 we adopt the GJR08FFnloE set [62] through

the LHAPDF library [63], and for the collinear fragmentation functions the DSS14 NLO
set for pions [64] and the DSS07 NLO set for kaons [65].3 We will comment on the use of
other PDF sets in section 4.3.

We parametrize the intrinsic nonperturbative parts of the TMDs in the following ways

f̃a
1NP(x, ξ

2
T ) =

1

2π
e−g1a

ξ2T
4

(
1− λg21a

1 + λg1a

ξ2T
4

)
, (2.34)

D̃a→h
1NP (z, ξ2T ) =

g3a→h e
−g3a→h

ξ2T
4z2 +

(
λF /z2

)
g24a→h

(
1− g4a→h

ξ2T
4z2

)
e−g4a→h

ξ2T
4z2

2πz2
(
g3a→h +

(
λF /z2

)
g24a→h

) . (2.35)

After performing the anti-Fourier transform, the f1NP and D1NP in momentum space cor-
respond to

fa
1NP(x,k

2
⊥) =

1

π

(
1 + λk2

⊥
)

g1a + λ g21a
e
− k2⊥

g1a , (2.36)

Da→h
1NP (z,P 2

⊥) =
1

π

1

g3a→h +
(
λF /z2

)
g24a→h

(
e
− P 2

⊥
g3a→h + λF

P 2
⊥

z2
e
− P 2

⊥
g4a→h

)
. (2.37)

The TMD PDF at the starting scale is therefore a normalized sum of a Gaussian with
variance g1 and the same Gaussian weighted by a factor λk2

⊥. The TMD FF at the starting
scale is a normalized sum of a Gaussian with variance g3 and a second Gaussian with
variance g4 weighted by a factor λFP 2

⊥/z
2. The choice of this particular functional forms

is motivated by model calculations: the weighted Gaussian in the TMD PDF could arise
3After the completion of our analysis, a new set of kaon fragmentation function was presented in ref. [66].
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1NP = F.T. of
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from the presence of components of the quark wave function with angular momentum
L = 1 [67–71]. Similar features occur in models of fragmentation functions [38, 67, 72].

The Gaussian width of the TMD distributions may depend on the parton flavor
a [23, 38, 73]. In the present analysis, however, we assume they are flavor independent.
The justification for this choice is that most of the data we are considering are not suffi-
ciently sensitive to flavor differences, leading to unclear results. We will devote attention
to this issue in further studies.

Finally, we assume that the Gaussian width of the TMD depends on the fractional
longitudinal momentum x according to

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
, (2.38)

where α, σ, and N1 ≡ g1(x̂) with x̂ = 0.1, are free parameters. Similarly, for fragmentation
functions we have

g3,4(z) = N3,4
(zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
, (2.39)

where β, γ, δ, and N3,4 ≡ g3,4(ẑ) with ẑ = 0.5 are free parameters.
The average transverse momentum squared for the distributions in eq. (2.36) and (2.37)

can be computed analytically:

〈
k2
⊥
〉
(x) =

g1(x) + 2λg21(x)

1 + λg1(x)
,

〈
P 2
⊥
〉
(z) =

g23(z) + 2λF g34(z)

g3(z) + λF g24(z)
. (2.40)

3 Data analysis

The main goals of our work are to extract information about intrinsic transverse momenta,
to study the evolution of TMD parton distributions and fragmentation functions over a large
enough range of energy, and to test their universality among different processes. To achieve
this we included measurements taken from SIDIS, Drell-Yan and Z boson production from
different experimental collaborations at different energy scales. In this section we describe
the data sets considered for each process and the applied kinematic cuts.

Table 1 refers to the data sets for SIDIS off proton target (Hermes experiment) and
presents their kinematic ranges. The same holds for table 2, table 3, table 4 for SIDIS
off deuteron (Hermes and Compass experiments), Drell-Yan events at low energy and
Z boson production respectively. If not specified otherwise, the theoretical formulas are
computed at the average values of the kinematic variables in each bin.

3.1 Semi-inclusive DIS data

The SIDIS data are taken from Hermes [74] and Compass [75] experiments. Both data
sets have already been analyzed in previous works, e.g., refs. [23, 76], however they have
never been fitted together, including also the contributions deriving from TMD evolution.

The application of the TMD formalism to SIDIS depends on the capability of identifying
the current fragmentation region. This task has been recently discussed in ref. [39], where
the authors point out a possible overlap among different fragmentation regions when the
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J
H
E
P
0
6
(
2
0
1
7
)
0
8
1

from the presence of components of the quark wave function with angular momentum
L = 1 [67–71]. Similar features occur in models of fragmentation functions [38, 67, 72].

The Gaussian width of the TMD distributions may depend on the parton flavor
a [23, 38, 73]. In the present analysis, however, we assume they are flavor independent.
The justification for this choice is that most of the data we are considering are not suffi-
ciently sensitive to flavor differences, leading to unclear results. We will devote attention
to this issue in further studies.

Finally, we assume that the Gaussian width of the TMD depends on the fractional
longitudinal momentum x according to

g1(x) = N1
(1− x)α xσ

(1− x̂)α x̂σ
, (2.38)

where α, σ, and N1 ≡ g1(x̂) with x̂ = 0.1, are free parameters. Similarly, for fragmentation
functions we have

g3,4(z) = N3,4
(zβ + δ) (1− z)γ
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this we included measurements taken from SIDIS, Drell-Yan and Z boson production from
different experimental collaborations at different energy scales. In this section we describe
the data sets considered for each process and the applied kinematic cuts.

Table 1 refers to the data sets for SIDIS off proton target (Hermes experiment) and
presents their kinematic ranges. The same holds for table 2, table 3, table 4 for SIDIS
off deuteron (Hermes and Compass experiments), Drell-Yan events at low energy and
Z boson production respectively. If not specified otherwise, the theoretical formulas are
computed at the average values of the kinematic variables in each bin.

3.1 Semi-inclusive DIS data

The SIDIS data are taken from Hermes [74] and Compass [75] experiments. Both data
sets have already been analyzed in previous works, e.g., refs. [23, 76], however they have
never been fitted together, including also the contributions deriving from TMD evolution.

The application of the TMD formalism to SIDIS depends on the capability of identifying
the current fragmentation region. This task has been recently discussed in ref. [39], where
the authors point out a possible overlap among different fragmentation regions when the
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(ẑβ + δ) (1− ẑ)γ
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to study the evolution of TMD parton distributions and fragmentation functions over a large
enough range of energy, and to test their universality among different processes. To achieve
this we included measurements taken from SIDIS, Drell-Yan and Z boson production from
different experimental collaborations at different energy scales. In this section we describe
the data sets considered for each process and the applied kinematic cuts.

Table 1 refers to the data sets for SIDIS off proton target (Hermes experiment) and
presents their kinematic ranges. The same holds for table 2, table 3, table 4 for SIDIS
off deuteron (Hermes and Compass experiments), Drell-Yan events at low energy and
Z boson production respectively. If not specified otherwise, the theoretical formulas are
computed at the average values of the kinematic variables in each bin.

3.1 Semi-inclusive DIS data

The SIDIS data are taken from Hermes [74] and Compass [75] experiments. Both data
sets have already been analyzed in previous works, e.g., refs. [23, 76], however they have
never been fitted together, including also the contributions deriving from TMD evolution.

The application of the TMD formalism to SIDIS depends on the capability of identifying
the current fragmentation region. This task has been recently discussed in ref. [39], where
the authors point out a possible overlap among different fragmentation regions when the
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Model: non perturbative elements

Models - intrinsic momenta and evolution

22

weighted sum of two different Gaussians,
both for distributions and fragmentations

In total we have 12 parameters, for intrinsic transverse momentum 
(5 PDFs, 6 FFs) and evolution (g2)

( Kinematic dependence of the average transverse momenta as in Pavia/Ams. 2013 )

gK = −g2
b2
T

2

F̃i,NP (x, bT ) =

�k2
⊥�i e−�k2

⊥�ib2
T/4 + λ�k�2

⊥�i
�
1− �k�2

⊥�i b
2
T
4

�
e−�k�2

⊥ �ib2
T/4

�k2
⊥�i + λ�k�2

⊥�i

g2 = 0.14± 0.01 GeV

estimate from 33 replicas

In total we have 11 parameters, for intrinsic transverse momentum
(4 PDFs, 6 FFs) and evolution (g2) 

N1, α, σ, λ

N3, N4, β, δ, γ, λF

Free parameters

4 for TMD PDF
6 for TMD FF

1 for NP contribution to
TMD evolution
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Evolution and bT regionsModels - bT prescription

23

b̄�(bT ; bmin, bmax) = bmax

�
1− e−b4T /b4max

1− e−b4T /b4min

�

These choices guarantee that for
Q=1 GeV the TMD coincides with 

the NP model 

bmax , bT → +∞

bmin , bT → 0

bmax = 2e−γE

bmin = 2e−γE/Q

 Nonperturbative TMD evolution
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The phenomenological 
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that, especially in
SIDIS data at low Q, we are 

exiting the proper TMD region 
and approaching the region of 

collinear factorization
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Experimental data

SIDIS μN

!"#$"%

SIDIS eN

E288

E605

Drell-Yan

CDF

Z Production

1514
data points

6252
data points

1514data points151415141514

203
data points

90
data points
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Data selection and analysis

Q2 > 1.4 GeV2

0.2 < z < 0.7

PhT , qT < Min[0.2Q , 0.7Qz] + 0.5 GeV

Motivations	
  behind	
  kinematical	
  cuts
TMD	
  factorization	
  (PhT/z	
  <<	
  Q2)

Avoid	
  target	
  fragmentation	
  (low	
  z)
and	
  exclusive	
  contributions	
  (high	
  z)
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Experimental data

SIDIS μN

!"#$"%

SIDIS eN

E288

E605

Drell-Yan

CDF

Z Production

1514data points

6252
data points

1514data points151415141514

203
data points

90
data points

Total:	
  8059 data
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Data region
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Fig. 2: Event distribution in the inclusive variables Q2
and xB j and the 23 bins of the hadron cross section

analysis. Within each bin, the fraction of events contained is indicated in %.
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Fig. 3: Hadron acceptances Ah− and Ah+ determined with the Monte Carlo simulation for Q2 > 1

(GeV/c)2
as a function of

lab pT and
labη for negative hadrons h− (left) and positive hadrons h+ (right).

The acceptances have been smoothed in order to reduce the granularity from the binning.

teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse

momentum
lab pT , the polar angle

labθ , and the pseudorapidity
labη = − ln(tan

labθ
2
) of the hadron are

defined with respect to the direction of the incoming muon. The choice of
labθ is particularly convenient

to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at
labθ = 70 mrad

for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the

differential multiplicities only depend on Ah(+,−) since Aincl cancels, see Eq. 2. Figure 3 shows the hadron

acceptances Ah− and Ah+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of

the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The

systematic effect on the extracted �p2

T � have been investigated and found to be negligible.

3 Results

The differential multiplicities d2nh±/dzd p2

T in bins of (Q2, xB j) are defined in the introduction in terms of

the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected

number of hadrons ∆4Nh±
in 8×40 (z, p2

T ) bins and 23 (∆xB j,∆Q2
) bins, divided by the number ∆2Nµ

� �
�
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�
�
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Q
2
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hermes

Adolph et al., EPJ C73 (13)
Airapetian et al., PRD87 (2013)

EIC?
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teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse

momentum
lab pT , the polar angle

labθ , and the pseudorapidity
labη = − ln(tan

labθ
2
) of the hadron are

defined with respect to the direction of the incoming muon. The choice of
labθ is particularly convenient

to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at
labθ = 70 mrad

for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the

differential multiplicities only depend on Ah(+,−) since Aincl cancels, see Eq. 2. Figure 3 shows the hadron

acceptances Ah− and Ah+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of

the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The

systematic effect on the extracted �p2

T � have been investigated and found to be negligible.

3 Results

The differential multiplicities d2nh±/dzd p2

T in bins of (Q2, xB j) are defined in the introduction in terms of

the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected

number of hadrons ∆4Nh±
in 8×40 (z, p2

T ) bins and 23 (∆xB j,∆Q2
) bins, divided by the number ∆2Nµ
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Framework SIDIS
HERMES

SIDIS
COMPASS

DY Z
production

# points

KN 
2006

NLL/NLO ✗ ✗ ✓ ✓ 98

Pavia 
2013

No Evo ✓ ✗ ✗ ✗ 1539

Torino 
2014

No Evo ✓
(separately)

✓
(separately)

✗ ✗
576 (H)
6284 (C)

DEMS 
2014

NNLL/NLO ✗ ✗ ✓ ✓ 223

Pavia 
2017

NLL/LO ✓ ✓ ✓ ✓ 8059

SV 
2017

NNLL/NNLO ✗ ✗ ✓ ✓ 309
22



An almost global fit

Features
heading	
  towards	
  a	
  global	
  fit	
  of	
  quark	
  unpolarized	
  TMDs

Flexible	
  functional	
  form	
  (beyond	
  gaussians)

includes	
  TMD	
  evolution

replica	
  methodology	
  

Pavia / Ams. 2016 : an almost global fit

16

Framework HERMES COMPASS DY Z 
production N of points

Pavia 2016
(+Amsterdam) LO-NLL ! ! ! ! 8156

A step closer to a global fit of 
quark unpolarized TMDs

Flexible functional form, beyond
the Gaussian assumption

PROs CONs

includes TMD evolution

no “pure” info on TMD FFs

accuracy of TMD evolution : 
not the state of the art

need for a light and fast analysis codereplica methodology (in progress)

kinematic and flavor dependence 
in intrinsic part of TMDs (in progress)

Pavia 2017
(+ JLab) 8059
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Cons

no	
  “pure”	
  info	
  on	
  TMD	
  FFs
	
  (would	
  require	
  e+e-­‐	
  annihilation)

TMD	
  accuracy:	
  not	
  the	
  state	
  of	
  the	
  art	
  (LO-­‐NLL)

still	
  undetermined	
  flavor	
  dependence

Pavia / Ams. 2016 : an almost global fit

16

Framework HERMES COMPASS DY Z 
production N of points

Pavia 2016
(+Amsterdam) LO-NLL ! ! ! ! 8156

A step closer to a global fit of 
quark unpolarized TMDs

Flexible functional form, beyond
the Gaussian assumption

PROs CONs

includes TMD evolution

no “pure” info on TMD FFs

accuracy of TMD evolution : 
not the state of the art

need for a light and fast analysis codereplica methodology (in progress)

kinematic and flavor dependence 
in intrinsic part of TMDs (in progress)

Pavia 2017
(+ JLab) 8059
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Summary	
  of	
  results

Total	
  number	
  of	
  data	
  points:	
  8059

Total	
  number	
  of	
  free	
  parameters:	
  11
➛	
  4	
  for	
  TMD	
  PDFs	
  	
  	
  ➛	
  6	
  for	
  TMD	
  FFs

➛	
  1	
  for	
  TMD	
  evolution

Pavia / Ams. 2016 : an almost global fit

16

Framework HERMES COMPASS DY Z 
production N of points

Pavia 2016
(+Amsterdam) LO-NLL ! ! ! ! 8156

A step closer to a global fit of 
quark unpolarized TMDs

Flexible functional form, beyond
the Gaussian assumption

PROs CONs

includes TMD evolution

no “pure” info on TMD FFs

accuracy of TMD evolution : 
not the state of the art

need for a light and fast analysis codereplica methodology (in progress)

kinematic and flavor dependence 
in intrinsic part of TMDs (in progress)

Pavia 2017
(+ JLab) 8059

χ2/d.of. = 1.55± 0.05

[ JHEP06(2017)081 ]
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Drell-Yan  data

χ2/dof 0.32 0.84 0.99 1.12

Q2 Evolution: The peak is now at about 1 GeV, it was at 0.4 GeV for SIDIS
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Z-boson production data

χ2/dof 1.36 1.11 2.00 1.73

Q2 Evolution: The peak is now at about 4 GeV
CDF

normalization : fixed from DEMS fit, different from exp.
(not really relevant for TMD  parametrizations)
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Best fit valuesBest-fit values

39

19

as the 68% C.L. envelope of the full sets of curves from the 200 replicas. Comparison with other extractions are
presented and the legenda is detailed in the caption of Fig. 7.

AS: shall we add plots for f1(x, k2⊥) and D1(z, P 2
⊥) to illustrate their shape at Q = 1 GeV in momentum space?

ζmax [GeV−1] ζmin [GeV−1] g2 [GeV2]

(fixed) (fixed)

All replicas 2e−γE [/GeV] 2e−γE/Q 0.13± 0.01

Replica 105 2e−γE [/GeV] 2e−γE/Q 0.128

TABLE X: Values of parameters common to TMD PDFs and TMD FFs.

TMD PDFs
�
k̂2
⊥
�

α σ λ

[GeV2] [GeV−2]

All replicas 0.28± 0.06 2.95± 0.05 0.17± 0.02 0.86± 0.78

Replica 105 0.285 2.98 0.173 0.39

TMD FFs
�
P̂ 2

⊥
�

β δ γ λF

�
P̂ �2

⊥
�

[GeV2] [GeV−2] [GeV2]

All replicas 0.21± 0.02 1.65± 0.49 2.28± 0.46 0.14± 0.07 5.50± 1.23 0.13± 0.01

Replica 105 0.212 2.10 2.52 0.094 5.29 0.135

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at Q = 1 GeV.

FIG. 7: Correlation between transverse momenta in TMD FFs, �P 2
⊥�(z = 0.5), and in TMD PDFs, �k2

⊥�(x = 0.1), in different
phenomenological extractions. The red region is the 68% C.L. area explored in this fit (1-red). The white boxes represent
the average values over the replicas for the transverse momenta. The other extractions are: (2-orange) [23], (3-blue) [78],
(4-brown) [63] for Hermes data, (5-red point) [63] for Hermes data at high z, (6-pink) [63] for normalized Compass data,
(7-purple) [63] for normalized Compass data at high z, (8-yellow) [15]. For more details, such as the value of the input scale
for the TMDs, see the respective references.
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Shape uncertainties in replicas
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Do we know the shape?

x-dependence of a single replica. 
Most of them are similar. 

Shape of four selected replicas. 
Still huge uncertainties.

Do we know the shape?

x-dependence of a single replica. 
Most of them are similar. 

Shape of four selected replicas. 
Still huge uncertainties.

x-dependence of a single replica.
Most of them are similar.

Shape of four selected replicas.
Still huge uncertainties.



Original χ2/dof = 1.51

Normalization of HERMES data as done for COMPASS:
 χ2/dof = 1.27

Parametrizations for collinear PDFs (NLO GJR 2008 default choice):
NLO MSTW 2008 (1.84), NLO CJ12 (1.85)

More stringent cuts (TMD factorization better under control) 
χ2/dof  → 1
Ex: Q2 > 1.5 GeV2; 0.25 < z < 0.6; PhT < 0.2Qz ⇒ χ2/dof = 1.02 (477 

bins)

Stability of our results

Test of our default choices 
How does the χ2 of a single replica change if we modify them?
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Conclusions

For the first time we demonstrated that it is possible 
to fit simultaneously SIDIS, DY and Z boson

We extracted a reasonable functional form for TMD 
from more than 8000 data points

We tested the universality and applicability of the 
TMD framework and it works quite well
(most of the discrepancies come from normalization)
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Conclusions and open issues

For the first time we demonstrated that it is possible to
fit simultaneously SIDIS, DY and Z boson

We extracted TMDs from more than 8000 data points

We tested the universality and applicability of the TMD 
framework and it works quite well

•NLO+NLL calculation in progress

•problems with normalizations theory/experiment
•flavor dependence and more flexible forms
•new data sets

.....

TO DO:
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Best fit valuesBest-fit values

39

19

as the 68% C.L. envelope of the full sets of curves from the 200 replicas. Comparison with other extractions are
presented and the legenda is detailed in the caption of Fig. 7.

AS: shall we add plots for f1(x, k2⊥) and D1(z, P 2
⊥) to illustrate their shape at Q = 1 GeV in momentum space?

ζmax [GeV−1] ζmin [GeV−1] g2 [GeV2]

(fixed) (fixed)

All replicas 2e−γE [/GeV] 2e−γE/Q 0.13± 0.01

Replica 105 2e−γE [/GeV] 2e−γE/Q 0.128

TABLE X: Values of parameters common to TMD PDFs and TMD FFs.

TMD PDFs
�
k̂2
⊥
�

α σ λ

[GeV2] [GeV−2]

All replicas 0.28± 0.06 2.95± 0.05 0.17± 0.02 0.86± 0.78

Replica 105 0.285 2.98 0.173 0.39

TMD FFs
�
P̂ 2

⊥
�

β δ γ λF

�
P̂ �2

⊥
�

[GeV2] [GeV−2] [GeV2]

All replicas 0.21± 0.02 1.65± 0.49 2.28± 0.46 0.14± 0.07 5.50± 1.23 0.13± 0.01

Replica 105 0.212 2.10 2.52 0.094 5.29 0.135

TABLE XI: 68% confidence intervals of best-fit values for parametrizations of TMDs at Q = 1 GeV.

FIG. 7: Correlation between transverse momenta in TMD FFs, �P 2
⊥�(z = 0.5), and in TMD PDFs, �k2

⊥�(x = 0.1), in different
phenomenological extractions. The red region is the 68% C.L. area explored in this fit (1-red). The white boxes represent
the average values over the replicas for the transverse momenta. The other extractions are: (2-orange) [23], (3-blue) [78],
(4-brown) [63] for Hermes data, (5-red point) [63] for Hermes data at high z, (6-pink) [63] for normalized Compass data,
(7-purple) [63] for normalized Compass data at high z, (8-yellow) [15]. For more details, such as the value of the input scale
for the TMDs, see the respective references.
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The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

Example of original data



The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

Example of original data

two targets

4 final hadrons

5 x bins

7 z bins



The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

Data are replicated (with Gaussian distribution)



The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

The fit is performed on the replicated data



The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

The procedure is repeated 200 times



The replica method

m�x,z,PhT ,Q2�, proton target
�x��0.15�Q2��2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
Π�

0.27�z�0.30
0.38�z�0.48

For each point, a central 68% confidence interval is identified



Previous fit studies

Framework HERMES COMPASS DY Z 
production N of points

KN 2006
 hep-ph/0506225

LO-NLL ! ! " " 98

Pavia 2013
(+Amsterdam, Bilbao)
 arXiv:1309.3507

No evo 
(QPM) " ! ! ! 1538

Torino 2014
(+JLab)

 arXiv:1312.6261

No evo 
(QPM)

"
(separately)

"
(separately) ! !

576 (H)
6284 (C)

DEMS 2014
arXiv:1407.3311

NLO-NNLL ! ! " " 223

EIKV 2014
 arXiv:1401.5078

LO-NLL 1 (x,Q2) bin 1 (x,Q2) bin " " 500 (?)

Pavia 2016
(+Amsterdam) LO-NLL " " " " 8156Pavia 2017
(+ JLab) 8059
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Data selection

3

We made the following choices for the nonperturbative terms

gK(bT ) = −g2b
2
T /2, with Q0 = 1 GeV (12)

f̂f
NP(x, bT ) =

�k2
⊥�e−�k

2
⊥�

b2T
4 + λ�k�2

⊥�
�
1− �k�2

⊥�
b2T
4

�
e−�k

�2
⊥�

b2T
4

(�k2
⊥�+ λ�k�2

⊥�)
(13)

with We choose the following functional form for the average square transverse momentum of flavor a:

�
k2
⊥,a

�
(x) =

�
k̂2
⊥,a

� (1− x)αxσ

(1− x̂)αx̂σ
, where

�
k̂2
⊥,a

�
≡

�
k2
⊥,a

�
(x̂), and x̂ = 0.1. (14)

�k̂2
⊥,a�, α, σ, are free parameters.

�
P 2
⊥,a�h

�
(z) =

�
P̂ 2
⊥,a�h

� (zβ + δ) (1− z)γ

(ẑβ + δ) (1− ẑ)γ
where

�
P̂ 2
⊥,a�h

�
≡

�
P 2
⊥,a�h

�
(ẑ), and ẑ = 0.5. (15)

The free parameters β, γ, and δ are equal for all kinds of fragmentation functions.

III. DATA SELECTION

HERMES HERMES HERMES HERMES

p→ π+ p→ π− p→ K+ p→ K−

Reference

Cuts

Q2 > 1.4 GeV
2

0.2 < z < 0.7

PhT < Min[0.2 Q, 0.6 Qz] + 0.5 GeV

Points 188 186 187 185

Max. Q2
9.2 GeV

2

x range 0.06 < x < 0.4

Notes

χ2/points

TABLE I: Semi-inclusive DIS proton-target data

IV. RESULTS

V. CONCLUSIONS AND OUTLOOK
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  contributions	
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Data selection

SIDIS
deuteron-target

data 4

HERMES HERMES HERMES HERMES COMPASS COMPASS

D → π+ D → π− D → K+ D → K− D → h+ D → h−

Reference

Cuts

Q2 > 1.4 GeV2

0.2 < z < 0.7

PhT < Min[0.2 Q, 0.6 Qz] + 0.5 GeV

Points 188 188 186 187 3024 3021

Max. Q2 9.2 GeV2 10 GeV2

x range 0.06 < x < 0.4 0.006 < x < 0.12

Notes Observable:
mh

N (x, z, P 2
hT , Q2)

mh
N (x, z, Min[P 2

hT ], Q2)

χ2/points

TABLE II: Semi-inclusive DIS deuteron-target data

E288 200 E288 300 E288 400 E605

Reference [? ] [? ] [? ] [? ]

Cuts qT < 0.2 Q + 0.5 GeV

Points 45 45 78 35
√

s 19.4 GeV 23.8 GeV 27.4 GeV 38.8 GeV

Q range 4-9 GeV 4-9 GeV 5-9, 11-14 GeV 7-9, 10.5-18 GeV

Kin. var. y=0.4 y=0.21 y=0.03 −0.1 < xF < 0.2

χ2/points 0.52 0.98 0.68 0.68

TABLE III: Drell-Yan data

CDF Run I D0 Run I CDF Run II D0 Run II

Reference [? ] [? ] [? ] [? ]

Cuts qT < 0.2 Q + 0.5 GeV = 18.7 GeV

Points 31 14 37 8
√

s 1.8 TeV 1.8 TeV 1.96 TeV 1.96 TeV

Normalization 1.114 0.992 1.049 1.048

χ2/points 0.52 0.98 0.68 0.68

TABLE IV: Z-production data

Points bmax

˙
k̂2
⊥

¸
α σ g2

(fixed) [GeV2] (random) [GeV2]

8156 2e−γE /GeV 0.34± 0.01 5.0± 1.0 0.25± 0.01 0.13± 0.01

χ2 bmin

˙
P̂ 2
⊥

¸
β δ γ

(fixed) [GeV2]

12100 2e−γE /Q 0.20± 0.01 2.7± 0.1 3.4± 0.1 0.041± 0.004

TABLE V: 68% confidence intervals of best-fit parameters for TMD PDFs.

to avoid problems 
with Compass data normalization
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Data selection

4

HERMES HERMES HERMES HERMES COMPASS COMPASS

D → π+ D → π− D → K+ D → K− D → h+ D → h−
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Cuts
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PhT < Min[0.2 Q, 0.6 Qz] + 0.5 GeV

Points 188 188 186 187 3024 3021

Max. Q2 9.2 GeV2 10 GeV2

x range 0.06 < x < 0.4 0.006 < x < 0.12

Notes Observable:
mh

N (x, z, P 2
hT , Q2)

mh
N (x, z, Min[P 2
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χ2/points 3.06 2.53 1.04 3.18 1.48 0.96
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Cuts

Q2 > 1.4 GeV2

0.2 < z < 0.7

PhT < Min[0.2 Q, 0.6 Qz] + 0.5 GeV

Points 188 188 186 187 3024 3021

Max. Q2 9.2 GeV2 10 GeV2

x range 0.06 < x < 0.4 0.006 < x < 0.12

Notes Observable:
mh

N (x, z, P 2
hT , Q2)

mh
N (x, z, Min[P 2

hT ], Q2)

χ2/points 3.06 2.53 1.04 3.18 1.48 0.96

TABLE II: Semi-inclusive DIS deuteron-target data

E288 200 E288 300 E288 400 E605

Reference

Cuts qT < 0.2 Q + 0.5 GeV

Points 45 45 78 35
√

s 19.4 GeV 23.8 GeV 27.4 GeV 38.8 GeV

Q range 4-9 GeV 4-9 GeV 5-9, 11-14 GeV 7-9, 10.5-18 GeV

Kin. var. y=0.4 y=0.21 y=0.03 −0.1 < xF < 0.2

χ2/points

TABLE III: Drell-Yan data

CDF Run I D0 Run I CDF Run II D0 Run II

Reference [? ] [? ] [? ] [? ]

Cuts qT < 0.2 Q + 0.5 GeV = 18.7 GeV

Points 31 14 37 8
√

s 1.8 TeV 1.8 TeV 1.96 TeV 1.96 TeV

Normalization 1.114 0.992 1.049 1.048

χ2/points 0.52 0.98 0.68 0.68

TABLE IV: Z-production data

Points bmax

˙
k̂2
⊥

¸
α σ g2

(fixed) [GeV2] (random) [GeV2]

8156 2e−γE /GeV 0.34± 0.01 5.0± 1.0 0.25± 0.01 0.13± 0.01

χ2 bmin

˙
P̂ 2
⊥

¸
β δ γ

(fixed) [GeV2]

12100 2e−γE /Q 0.20± 0.01 2.7± 0.1 3.4± 0.1 0.041± 0.004

TABLE V: 68% confidence intervals of best-fit parameters for TMD PDFs.

Drell-Yan
data

Z production
data

fixed from DEMS fit,
different from exp.
(not really relevant for TMD
parametrizations)
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μ and b∗ prescriptions

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )
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μ and b∗ prescriptions

�fa
1 (x, bT ;µ2) =
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�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ
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Choice Choice

b∗ ≡
bT�

1 + b2
T /b2

max

b∗ ≡ bmax

�
1− e

− b4T
b4max

�1/4

µb = 2e−γE /b∗

µb = Q0 + qT b∗ = bT

µb = 2e−γE /b∗

Collins, Soper, Sterman, NPB250 (85)

DEMS 2014

Bacchetta, Echevarria, Mulders, Radici, Signori
arXiv:1508.00402
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μ and b∗ prescriptions
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Collins, Soper, Sterman, NPB250 (85)

DEMS 2014

Bacchetta, Echevarria, Mulders, Radici, Signori
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Laenen, Sterman, Vogelsang, PRL 84 (00)Complex-b prescription
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Nonperturbative ingredients 1

�fa
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Nonperturbative ingredients 1

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Choice

almost everybody

Pavia 2013, KN 2006

DEMS 2014

e
− b2T

�b2
T
�

J
H
E
P
1
1
(
2
0
1
4
)
0
9
8

• It has to be such that

lim
bT→0

F̃NP
q/N = 1 , (2.33)

in order to guarantee that the perturbative series is not altered where its convergence

properties are sound.

We have not included a dependence on x, as data eventually do not need such correction

and to keep the model simple enough. In eq. (2.33) we are assuming that the values of x

are not extremely small (say x > 10−3), in which case the whole TMD formalism should

be re-considered.

We have studied several parametrizations of the non-perturbative part (Gaussian, poly-

nomial, etc.) and the final one which better provides a good fit of the data, with the

minimum set of parameters and DNP = 0, is

F̃NP
q/N (x, bT ;Q) = e−λ1bT

(
1 + λ2b

2
T

)
. (2.34)

As discussed below in the text the data for Z-boson production are basically sensitive just

to the parameter λ1, that is to the exponential factor and not to the second power-like term

that, controlling the large-bT region, is more sensitive to small-qT data. The global fit so

performed allows to fix, to a certain precision, the value of this non-perturbative constant.

In other words, this fit can be used to fix the amount of non-perturbative QCD corrections

in the transverse momentum spectra. As commented above, the parameter λ2 corrects the

behavior of the TMDPDF at high values of bT and results necessary to describe the data

at low dilepton invariant mass and low qT .

Considering now a nonzero DNP, this results in a Q-dependent factor in the non-

perturbative model (see the studies of refs. [23, 24] and more recently refs. [5, 8]). Thus,

from eqs. (2.31) and (2.34), by setting DNP = λ3b2T /2, we have

F̃NP
q/N (x, bT ;Q) = e−λ1bT

(
1 + λ2b

2
T

)(Q2

Q2
0

)−λ3
2 b2T

. (2.35)

We anticipate here that the sensitivity of the data to this extra factor with λ3 is not

very strong, although we observe an improvement in the χ2. This is a consequence of the

fact that the fully resummed D function is actually valid on a region of impact parameter

space which is broad enough for the analysis of the sets of available data (notice that we

have in all cases a dilepton invariant mass Q > 4GeV). It might be that at lower values

of Q such corrections could be more significant. On the other hand one expects that also

the factorization theorem should be revised when the values of Q become of the order

of the hadronization scale. It is then possible that the non-perturbative corrections to

the evolution kernel happen there where the basic hypothesis of the factorization theorem

(Q ! qT ∼ ΛQCD ∼ O(1 GeV)) become weaker and so are more difficult to extract. A

more detailed study in this direction is beyond the scope of this paper.

Finally in figure 2 we show the effect of the model of eq. (2.34) on the TMDPDF at

low scale, Q = 2GeV, where we expect that its impact is more substantial. We see that the

– 11 –

e
− b2T

�b2
T

(x)�
a
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Low-bT modifications

log
�
Q2b2

T

�
→ log

�
Q2b2

T + 1
�

see talks by Collins, Boglione, (Rogers?)

see, e.g., Bozzi, Catani, De Florian, Grazzini 
hep-ph/0302104
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Low-bT modifications

log
�
Q2b2

T

�
→ log

�
Q2b2

T + 1
�

see talks by Collins, Boglione, (Rogers?)

10

lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

Ξ

(

qT
Q

, η

)

= exp

[

−

(

qT
ηQ

)aΞ
]

, (39)

with aΞ > 2.
The only differences between the old and new W -term

are: i) the use of bc(bT) rather than bT in W̃ , and ii) the
multiplication by Ξ(qT/Q, η). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There Ξ
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and η approach infinity.
Finally, we will present a fully optimized formula for

WNew(qT, Q; η, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).
But first it will be convenient to construct some auxil-

iary results.
Naturally, b∗ is to be replaced by

b∗(bc(bT)) =

√

b2T + b20/(C
2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ≡ b∗(bc(0)) =
b0

C5Q

√

1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ≈
b0

C5Q
. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b∗(bc(bT)) −→











bmin bT % bmin

bT bmin % bT % bmax

bmax bT & bmax .

(43)

For bT % 1/Q, b∗(bc(bT)) ≈ b∗(bT). Instead of µb∗ , we
will ultimately use the scale

µ̄ ≡
C1

b∗(bc(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
off on the renormalization scale equal to

µc ≡ lim
bT→0

µ̄ =
C1C5Q

b0

√

1 +
b20

C2
5 b

2
maxQ

2
≈

C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc = C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; η, C5) are as follows. Equation (32) becomes

WNew(qT, Q; η, C5) = Ξ

(

qT
Q

, η

)
∫

d2bT
(2π)2

eiqT·bTW̃NP(bc(bT), Q)W̃ (b∗(bc(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT → bc(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (bc(bT), Q) = H(µQ, Q)
∑

j′i′

∫ 1

xA

dx̂

x̂
C̃pdf

j/j′ (xA/x̂, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))fj′/A(x̂; µ̄)×

×

∫ 1

zB

dẑ

ẑ3
C̃ff

i′/j(zB/ẑ, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))dB/i′ (ẑ; µ̄)×

× exp

{

ln
Q2

µ̄2
K̃(b∗(bc(bT)); µ̄) +

∫ µQ

µ̄

dµ′

µ′

[

2γ(αs(µ
′); 1)− ln

Q2

µ′2
γK(αs(µ

′))

]}

× exp

{

−gA(xA, bc(bT); bmax)− gB(zB, bc(bT); bmax)− 2gK(bc(bT); bmax) ln

(

Q

Q0

)}

. (48)

This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.
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Data selection

Q2 > 1.4 GeV2

0.2 < z < 0.7
PhT , qT < 0.2 Q + 0.5 GeV PhT < 0.8 GeV (if z < 0.3)
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Data selection

Q2 > 1.4 GeV2

0.2 < z < 0.7
PhT , qT < 0.2 Q + 0.5 GeV PhT < 0.8 GeV (if z < 0.3)

Total number of data points: 8156
Total χ2/dof = 1.45 Preliminary

55



Pavia 2016 perturbative ingredients

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

A1

�
O(α1

S)
�

A2

�
O(α2

S)
�

A3

�
O(α3

S)
�

. . .

B1

�
O(α1

S)
�

B2

�
O(α2

S)
�

. . .

C0

�
O(α0

S)
�

C1

�
O(α1

S)
�

C2

�
O(α2

S)
�

. . .

H0

�
O(α0

S)
�

H1

�
O(α1

S)
�

H2

�
O(α2

S)
�

. . .

Y1

�
O(α1

S)
�

Y2

�
O(α2

S)
�

. . .

✔ ✔

✔

✔

✔
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Mean transverse momentum

Q2=1GeV2

! !

!
"

!
"

In TMD PDF

In TMD FF
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