Phenomenology of TMDs

Alexei Prokudin

Nucleon landscape

Nucleon is a many body dynamical system of quarks and gluons

Changing \times we probe different aspects of nucleon wave function

How partons move and how they are distributed in space is one of the directions of development of nuclear physics

Technically such information is encoded into Generalised Parton Distributions (GPDs) and Transverse Momentum Dependent distributions (TMDs)

These distributions are also referred to as 3D (three-dimensional) distributions

Why TMDs, factorization, and evolution

TMD factorization

TMD factorization

TMD factorization

TMDs evolve

Just like collinear PDFs, TMDs also depend on the scale of the probe = evolution

Collinear PDF

$$
F(x, Q)
$$

\checkmark DGLAP evolution

```
\(\checkmark \operatorname{Resum}\left[\alpha_{s} \ln \left(Q^{2} / \mu^{2}\right)\right]^{n}\)
```

\checkmark Kernel: purely perturbative

$$
\stackrel{\text { TADs }}{F\left(x, k_{\perp} ; Q\right)}
$$

\checkmark Collins-Soper/rapidity evolution equation
\checkmark Resum $\left[\alpha_{s} \ln ^{2}\left(Q^{2} / k_{\perp}^{2}\right)\right]^{n}$
\checkmark Kernel: can be non-perturbative when

$$
\begin{gathered}
F\left(x, k_{\perp}, Q_{i}\right) \\
R^{\mathrm{TMD}}\left(x, k_{\perp}, Q_{i}, Q_{f}\right) \\
F\left(x, k_{\perp}, Q_{f}\right)
\end{gathered}
$$

TMD evolution and non-perturbative component

- Fourier transform back to the momentum space, one needs the whole b region (large b): need some non-perturbative extrapolation
- Many different methods/proposals to model this non-perturbative part
$F\left(x, k_{\perp} ; Q\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} b e^{i k_{\perp} \cdot b} F(x, b ; Q)=\frac{1}{2 \pi} \int_{0}^{\infty} d b b J_{0}\left(k_{\perp} b\right) F(x, b ; Q)$
Collins, Soper, Sterman 85, ResBos, Qiu, Zhang 99, Echevarria, Idilbi, Kang,Vitev, I4,
Aidala, Field, Gamberg, Rogers, I4, Sun, Yuan I4, D'Alesio, Echevarria, Melis, Scimemi, I4, Rogers, Collins, I5, Vladimirov, Scimemi I7...
- Eventually evolved TMDs in b-space
 kinematics, we can use unpolarized data to constrain/ extract key ingredients for the non-perturbative part

TMD distributions

QuarkTMDs

Kotzinian (I995), Mulders, Tangerman (I995), Boer, Mulders (I998)

8 functions in total (at leading twist)

Each represents different aspects of partonic structure

Each depends on Bjorken-x, transverse momentum, the scale

Each function is to be studied

Sivers function

Non universal

Collins function

Universal

Definitions

Sivers function: unpolarized quark distribution inside a transversely polarized nucleon

$f_{q / h^{\uparrow}}\left(x, \vec{k}_{\perp}, \vec{S}\right)=f_{q / h}\left(x, k_{\perp}^{2}\right)-\frac{1}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right) \vec{S} \cdot\left(\hat{P} \times \vec{k}_{\perp}\right)$

Spin independent

Spin dependent

Collins function: unpolarized hadron from a transversely polarized quark

Collins 1992

$D_{q / h}\left(z, \vec{p}_{\perp}, \vec{s}_{q}\right)=D_{q / h}\left(z, p_{\perp}^{2}\right)+\frac{1}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}^{2}\right) \vec{s}_{q} \cdot\left(\hat{k} \times \vec{p}_{\perp}\right)$

Definitions

Sivers function: $\quad f_{1 T}^{\perp q}$ describes strength of correlation

$$
\vec{S} \cdot\left(\hat{P} \times \vec{k}_{\perp}\right)
$$

Sivers 1989
Collins function: $\quad H_{1}^{\perp q}$ describes strength of correlation

$$
\vec{s}_{q} \cdot\left(\hat{k} \times \vec{p}_{\perp}\right)
$$

Collins 1992
Both functions extensively studied experimentally, phenomenologically, theoretically

$$
\ell P \rightarrow \ell^{\prime} \pi X
$$

Sivers function and Collins function can give rise to Single Spin Asymmetries in scattering processes. For instance in Semi Inclusive Deep Inelastic process
$d \sigma(S) \sim \sin \left(\phi_{h}+\phi_{S}\right) h_{1} \otimes H_{1}^{\perp}+\sin \left(\phi_{h}-\phi_{S}\right) f_{1 T}^{\perp} \otimes D_{1}+\ldots$

Sivers function

Large $-\mathrm{N}_{\mathrm{c}}$ result $\quad f_{1 T}^{\perp u}=-f_{1 T}^{\perp d}$
Pobylitsa 2003
\rightarrow Confirmed by phenomenological extractions
\rightarrow Confirmed by experimental measurements

Relation to GPDs (E) and anomalous magnetic moment

$$
f_{1 T}^{\perp q} \sim \kappa^{q}
$$

\rightarrow Predicted correct sign of Sivers asymmetry in SIDIS
\rightarrow Shown to be model-dependent
\rightarrow Used in phenomenological extractions

Sivers function

Sum rule
\rightarrow Conservation of transverse momentum
\rightarrow Average transverse momentum shift of a quark inside a transversely polarized nucleon

$$
\begin{aligned}
& \left\langle k_{T}^{i, q}\right\rangle=\varepsilon_{T}^{i j} S_{T}^{j} f_{1 T}^{\perp(1) q}(x) \\
& f_{1 T}^{\perp(1) q}(x)=\int d^{2} k_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)
\end{aligned}
$$

\rightarrow Sum rule

$$
\sum_{a=q, g} \int_{0}^{1} d x\left\langle k_{T}^{i, a}\right\rangle=0 \quad \sum_{a=q, g} \int_{0}^{1} d x f_{1 T}^{\perp(1) a}(x)=0
$$

Sivers function

Extractions

\rightarrow Many extractions without taking into account TMD evolution
Efremov et al 2005, Vogelsang, Yuan 2005, Anselmino et al 2005,
Collins et al 2006, Anselmino et al 2009, 20 I I, 20 I 6, Bacchetta Radici 20 I।
\rightarrow Extractions with TMD evolution
Echevarria et al 2014, Sun Yuan 2013
\rightarrow Relation to the tomography of the nucleon

\rightarrow Agreement with the sum rule and large N_{c} prediction

Sign change of Sivers function

Colored objects are surrounded by gluons, profound consequence of gauge invariance: Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before quark annihilates (Drell-Yan)

Brodsky,Hwang,Schmidt;
Belitsky,ji,Yuan;
Collins;
Boer,Mulders,Pijlman;
Kang, Qiu;
Kovchegov, Sievert;
etc

$$
f_{1 T}^{\perp S I D I S}=-f_{1 T}^{\perp D Y}
$$

Crucial test ofTMD factorization and collinear twist-3 factorization Several labs worldwide aim at measurement of Sivers effect in Drell-Yan BNL, CERN, GSI, IHEP, JINR, FERMILAB etc Barone et al., Anselmino et al., Yuan,Vogelsang, Schlegel et al., Kang, Qiu, Metz,Zhou etc The verification of the sign change is an NSAC (DOE and NSF) milestone

Process dependence of Sivers function

\rightarrow Indication on process dependence of Sivers functions from analysis of A_{N} in $\ell N^{\uparrow} \rightarrow \ell X$
\rightarrow Indication on process dependence from AnDY data on A_{N} in $p^{\uparrow} p \rightarrow \operatorname{jet} X$

Gamberg, Kang, AP 2013
D'Alesio et al 2013

Process dependence of Sivers function

STAR 2016
\rightarrow First experimental hint on the sign change: A_{N} in W and Z production
STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

$p^{\uparrow} p \rightarrow W^{ \pm} X$
$p^{\uparrow} p \rightarrow Z^{0} X$
\rightarrow No sign change

$$
\begin{aligned}
\chi^{2} / \text { d.o.f } \sim 1.2 & \rightarrow \text { Large uncertainties of predictions } \\
\chi^{2} / \text { d.o.f } \sim 3.2 & \rightarrow \text { No antiquark Sivers functions }
\end{aligned}
$$

Process dependence of Sivers function

\rightarrow First experimental hint on the sign change: A_{N} in W and Z production

$$
p^{\uparrow} p \rightarrow W^{ \pm} X
$$

\rightarrow Results with sign change
\rightarrow NoTMD evolution
\rightarrow Antiquark Sivers functions included
\rightarrow STAR results hint on sign change

Process dependence of Sivers function

\rightarrow First experimental hint on the sign change in Drell-Yan

Sivers function

Expectation of JLab 12

Sivers function

Expectation of EIC

Update of this estimate is needed and work is in progress

Collins function

Schafer-Teryaev sum rule
\rightarrow Conservation of transverse momentum
$\left\langle P_{T}^{i}(z)\right\rangle \sim H_{1}^{\perp(1)}(z) \quad H_{1}^{\perp(1)}(z)=\int d^{2} p_{\perp} \frac{p_{\perp}^{2}}{2 z^{2} M_{h}^{2}} H_{1}^{\perp}\left(z, p_{\perp}^{2}\right)$
\rightarrow Sum rule

$$
\sum_{h} \int_{0}^{1} d z\left\langle P_{T}^{i}(z)\right\rangle=0
$$

\rightarrow If only pions are considered $H_{1}^{\perp f a v}(z) \sim-H_{1}^{\perp u n f}(z)$

Metz 2002, Metz, Collins 2004, Yuan 2008 Gamberg, Mukherjee, Mulders 201 I
Boer, Kang, Vogelsang, Yuan 2010
$\left.H_{1}^{\perp}(z)\right|_{S I D I S}=\left.H_{1}^{\perp}(z)\right|_{e^{+} e^{-}}=\left.H_{1}^{\perp}(z)\right|_{p p}$
\rightarrow Very non trivial results
\rightarrow Agrees with phenomenology, allows global fits

Transversity and Collins FF

- SIDIS and e+e-: combined global analysis

$$
\begin{aligned}
& F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} \sim \begin{array}{c}
h_{1}\left(x_{B}, k_{\perp}\right) H_{1}^{\perp}\left(z_{h}, p_{\perp}\right) \\
\text { transversity } \quad \text { Collins } \\
\text { function }
\end{array} \\
& \frac{d \sigma\left(S_{\perp}\right)}{d x_{B} d y d z_{h} d^{2} P_{h \perp}}=\sigma_{0}\left(x_{B}, y, Q^{2}\right)\left[F_{U U}+\sin \left(\phi_{h}+\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}+\ldots\right]
\end{aligned}
$$

$$
\left.\underset{\text { Collins }}{Z_{\text {collins }}^{h_{1} h_{2}} \sim H_{1}^{\perp}\left(z_{1}, p_{1 \perp}\right)} \underset{\text { Cunction }}{\text { Collins }} \text { function }\right) ~ H_{1}^{\perp}\left(z_{2}, p_{2 \perp}\right)
$$

$$
\frac{d \sigma^{e^{+}} e^{-} \rightarrow h_{1} h_{2}+X}{d z_{h 1} d z_{h 2} d^{2} P_{h \perp} d \cos \theta}=\frac{N_{c} \pi \alpha_{\mathrm{em}}^{2}}{2 Q^{2}}\left[\left(1+\cos ^{2} \theta\right) Z_{u u}^{h_{1} h_{2}}+\sin ^{2} \theta \cos \left(2 \phi_{0}\right) Z_{\mathrm{collins}}^{h_{1} h_{2}}\right]
$$

Transversity and Collins FF

- Fitted quark transversity and Collins function: x (z) -dependence

- Coluns tunction: pt-aepenaence

Compatible with LO extraction
Anselmino et al 2009, 2013, 2015

Precision of extraction depends on precision of calculations

Leading Log (LL):	$A^{(1)}$			
Next-to Leading Log	$(\mathrm{NLLL}):$	$A^{(1,2)}$	$B^{(1)}$	$C^{(1)}$
Next-to-Next-to Leading Log (NNLL):	$A^{(1,2,3)}$	$B^{(1,2)}$	$C^{(1)}$	

Kang, AP, Sun, Yuan 2015
Echevarria, Scimemi, Vladimirov 2016
Precision is important!
$C^{(1)}$ means that one should use NLO collinear distributions

What do we expect from JLab 12?

Bayesian statistics is used to estimate the improvement from new data
Current knowledge corresponds to a fit with TMD evolution Kang et al., P.R. D93 (16) 014009

What do we expect from JLab 12 ?

The errors grow outside of the future data region as expected

What do we expect from JLab 12 ?

Only combination of proton and neutron target measurements will ensure similar improvement for both u and d quark transversity

TMDs and lattice

$$
g_{T}=\delta u-\delta d \quad \text { isovector tensor charge }
$$

First combined new methodology fir of SIDIS data using lattice constraints:
Lattice and SIDIS data are compatible and including lattice data improves extraction of g_{T}
Lin, Melnitchouk, AP, Sato 2017

RHIC: the process $\mathrm{p}+\mathrm{p}^{\uparrow} \rightarrow \pi+\mathrm{X}$

Twist-3 factorization, fragmentation contributions

Kanazawa, Koike, Metz, Pitonyak
(2014)

Gamberg, Kang, Pitonyak, AP PLB 770 (2017)

$$
\begin{aligned}
& \frac{E_{h} d \sigma^{F r a g}\left(S_{P}\right)}{d^{3} \vec{P}_{h}}=-\frac{4 \alpha_{s}^{2} M_{h}}{S} \epsilon^{P P P_{h} S_{P}} \sum_{i} \sum_{a, b, c} \int_{0}^{1} \frac{d z}{z^{3}} \int_{0}^{1} d x^{\prime} \int_{0}^{1} d x \delta(\hat{s}+\hat{t}+\hat{u}) \\
& \times \frac{1}{\hat{s}\left(-x^{\prime} \hat{t}-x \hat{u}\right)} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right)\left\{\left[H_{1}^{\perp(1), \pi / c}(z)-z \frac{d H_{1}^{\perp(1), \pi / c}(z)}{d z}\right] S_{H_{1}^{1}}^{i}+\frac{1}{z} H^{\pi / c}(z) S_{H}^{i}\right. \\
& \left.\quad+\frac{2}{z} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\left(\frac{1}{z}-\frac{1}{z_{1}}\right)^{2}} \hat{H}_{F U}^{\pi / c, s}\left(z, z_{1}\right) S_{\hat{H}_{F U}}^{i}\right\},
\end{aligned}
$$

Integration over \mathbf{x} for transversity, conservation of momenta in $a b \rightarrow c d: \quad x_{\text {min }}=-(U / z) /(T / z+S)$.
$\int_{x_{\text {min }}}^{1} \frac{d x}{x}$
RHIC data is sensitive to high-x behavior of transversity quark-gluon channel is dominant contribution for large x_{F}

More complicated structure of cross-section, additional functions to study

> Improving errors in large-× region? Analysis in progress.

Hadron within a jet

- Consider a process P P scattering where jet is produced and a hadron is measured inside the jet
$p^{\uparrow}\left[\vec{S}_{\perp}\left(\phi_{S}\right)\right]+p \rightarrow\left[\right.$ jet $\left.h\left(\phi_{H}\right)\right]+X$
Feng Yuan (2008), D'Alesio, Murgia, Pisano (2014)

- Azimuthal modulation is related to convolution of Collins FF and transversity

Kang, Prokudin, Sun, Yuan (2015)
$\frac{d \sigma}{d y d^{2} p_{\perp}^{\mathrm{jet}} d z d^{2} j_{T}}=F_{U U}+\sin \left(\phi_{S}-\phi_{H}\right) F_{U T}^{\sin \left(\phi_{S}-\phi_{H}\right)}$
$F_{U T}^{\sin \left(\phi_{S}-\phi_{H}\right)} \propto h_{1}^{a}\left(x_{1}\right) \otimes f_{b / B}\left(x_{2}\right) \otimes \frac{j_{T}}{z M_{h}} H_{1}^{\perp c}\left(z, j_{T}^{2}\right) \otimes H_{a b \rightarrow c}^{\text {Collins }}(\hat{s}, \hat{t}, \hat{u})$
j_{T} : hadron transverse momentum with respect to the jet direction

Kang, Prokudin, Ringer, Yuan PLB 774 (2017)

Asymmetry should depend on Q^{2}

Test of QCD evolution

Kang, Prokudin, Ringer, Yuan (2017)

- Compute the asymmetry without TMD evolution
functions: Anselmino et al (2015)

- Similar results for 200 GeV and 500 GeV
- Results are compatible with data within uncertainties

Test of QCD evolution

Kang, Prokudin, Ringer, Yuan (2017)

- Compute the asymmetry with TMD evolution

functions: Kang, Prokudin, Sun, Yuan (2015)

- Slight reduction for 500 compared to 200 GeV due to TMD evolution
- Results are compatible with data within uncertainties

Complementarity of SIDIS, e+e- and Drell-Yan, and hadron-hadron

Various processes allow study and test of evolution, universality and extractions of distribution and fragmentation functions. We need information from all of them

$$
\begin{aligned}
& \text { Semi Inclusive DIS - } \\
& f(x) \otimes D(z) \\
& \text { convolution of distribution functions and } \\
& \text { fragmentation functions } \\
& \ell+P \rightarrow \ell^{\prime}+h+X \\
& f\left(x_{1}\right) \otimes f\left(x_{2}\right) \quad \text { Drell-Yan - convolution of distribution } \\
& \text { functions } \\
& P_{1}+P_{2} \rightarrow \bar{\ell} \ell+X \\
& D\left(z_{1}\right) \otimes D\left(z_{2}\right) \quad \begin{array}{l}
\text { e+ e- annihilation }- \text { convolution of } \\
\text { fragmentation functions }
\end{array} \\
& \bar{\ell}+\ell \rightarrow h_{1}+h_{2}+X \\
& f\left(x_{1}\right) \otimes f\left(x_{2}\right) \otimes D(z) \\
& \text { Hadron-hadron - convolutions of PDF and } \\
& \text { fragmentation functions } \\
& h_{1}+h_{2} \rightarrow h_{3}(\gamma, j e t, W, \ldots)+X
\end{aligned}
$$

- TMD related studies have been extremely active in the past few years, lots of progress have been made
- We look forward to the future experimental results from COMPASS, RHIC, Jefferson Lab, LHC, Fermilab, future Electron Ion Collider
- Many TMD related groups are created throughout the world:

Italy, Netherlands, Belgium, Germany, Japan, China, Russia, and the USA Several postdoc positions. 2 tenure track positions:Temple, NMSU Support of undergraduates.

The TMD Collaboration
Spokespersons: William Detmold (MIT) and Jianwei Qiu (BNL)
Co-Investigators - (in alphabetical order of institutions):
Jianwei Qiu and Raju Venugopalan (Brookhaven National Laboratory)
Thomas Mehen (Duke University)
Ted Rogers (Jefferson Laboratory and Old Dominion University)
Alexei Prokudin (Jefferson Laboratory and Penn State University at Berks)
Feng Yuan (Lawrence Berkeley National Laboratory)
Christopher Lee and Ivan Vitev (Los Alamos National Laboratory)
William Detmold, John Negele and Iain Stewart (MIT)
Matthias Burkardt and Michael Engelhardt (New Mexico State University)
Leonard Gamberg (Penn State University at Berks)
Andreas Metz (Temple University)
Sean Fleming (University of Arizona)
Keh-Fei Liu (University of Kentucky)
Xiangdong Ji (University of Maryland)
Simonetta Liuti (University of Virginia)
$\diamond 5$ years of funding
\diamond I8 institutions
\diamond Theory, phenomenology, lattice QCD
\diamond Several postdoc and tenure track positions are created
\diamond "To address the challenges of extracting novel quantitative information about the nucleon's internal landscape"
\diamond "To provide compelling research, training, and career opportunities for young nuclear theorists"

