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Nucleon landscape 
 

Nucleon is a many body dynamical system of 
quarks and gluons  

Changing x we probe different aspects of nucleon 
wave function  

How partons move and how they are
distributed in space is one of the directions of 
development of nuclear physics

Technically such information is encoded into 
Generalised Parton Distributions (GPDs) and 
Transverse Momentum Dependent distributions 
(TMDs)
   
   
These distributions are also referred to as 3D 
(three-dimensional) distributions               
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Why TMDs, factorization, and evolution
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proton

lepton lepton

pion

electron

positron
pion

Collins, Soper (1983) 
Collins, Soper, Sterman (1985) 

Collins (2011) 

TMD evolution equations

Collins, Soper (1983) 
Collins (2011)

Meng, Olnes, Soper (1992) 
Ji, Ma, Yuan (2005) 

Collins (2011)

TMD factorization
e+e–

SIDIS

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

TMD evolution equations

Qiu, Sterman (1990)

Only one scale is 
measured in PP 

TMD factorization is 
not applicable?

TMD factorization
e+e–

SIDIS

PP

?

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)

Collins, Soper (1983) 
Collins, Soper, Sterman (1985) 

Collins (2011) 

Collins, Soper (1983) 
Collins (2011)

Meng, Olness, Soper (1992) 
Ji, Ma, Yuan (2005) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

TMD evolution equations

Qiu, Sterman (1990)

e+e–

SIDIS

PP

!

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)

Twist-3 factorization
DGLAP equations

Global fit is needed.
Work in progress

• Twist-3 functions are related to TMD via OPE 
•  TMD and twist-3 factorizations are related in high QT region 
• Global analysis of TMDs and twist-3 is possible: 
All four processes can be used. 
• Data are from HERMES, COMPASS, JLab, 
BaBar, Belle, RHIC, LHC, Fermilab

TMD factorization
Collins, Soper (1983) 

Collins, Soper, Sterman (1985) 
Collins (2011) 

Collins, Soper (1983) 
Collins (2011)

Meng, Olness, Soper (1992) 
Ji, Ma, Yuan (2005) 

Collins (2011)
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Collinear PDFs

✓ DGLAP evolution

✓ Resum

✓ Kernel: purely perturbative

TMDs

✓ Collins-Soper/rapidity evolution 
equation

✓ Resum

✓ Kernel: can be non-perturbative 
when 

● Just like collinear PDFs, TMDs also depend on the scale of the probe 
= evolution

TMDs evolve
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Collins, Soper, Sterman 85, ResBos, Qiu, Zhang 99, Echevarria, Idilbi, Kang, Vitev, 14, 
Aidala, Field, Gamberg, Rogers, 14, Sun, Yuan 14, D’Alesio, Echevarria, Melis, Scimemi, 14, Rogers, Collins, 15, 
Vladimirov,  Scimemi 17…

longitudinal/collinear part transverse part ✓ Non-perturbative: fitted from data
✓ The key ingredient – ln(Q) piece is 

spin-independentSince the polarized scattering data is still limited 
kinematics, we can use unpolarized data to constrain/
extract key ingredients for the non-perturbative part

▪ Fourier transform back to the momentum space, one needs the whole 
b region (large b): need some non-perturbative extrapolation
▪ Many different methods/proposals to model this non-perturbative   

part

▪ Eventually evolved TMDs in b-space

TMD evolution and non-perturbative component
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 TMD distributions 

8 functions in total (at leading 
twist)

Each represents dif ferent 
aspects of partonic structure

Each depends on Bjorken-x, 
transverse momentum, the 
scale 

Each function is to be studied

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

Quark TMDs



10

Sivers function

Non universal

Collins function

Universal
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 TMD distributions  TMD distributions 
 Definitions

Sivers function: unpolarized quark distribution inside a transversely
polarized nucleon

Collins function: unpolarized hadron from a transversely polarized quark

Sivers 1989

Collins 1992

Spin independent Spin dependent
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 TMD distributions  TMD distributions 
 Definitions

Sivers function:                describes strength of correlation 

Collins function:                  describes strength of correlation 

Sivers 1989

Collins 1992

Sivers function and Collins function can give rise 
to Single Spin Asymmetries in scattering 
processes. For instance in Semi Inclusive Deep 
Inelastic process 

Both functions extensively studied experimentally, phenomenologically,
theoretically

Kotzinian (1995), 
Mulders, 
Tangerman (1995), 
Boer, Mulders (1998)
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Sivers function                                                 
 

Large – Nc result

➔ Confirmed by phenomenological extractions 

➔ Confirmed by experimental measurements  

Pobylitsa 2003

Relation to GPDs (E) and anomalous magnetic moment

➔ Predicted correct sign of Sivers asymmetry in SIDIS
➔ Shown to be model-dependent
➔ Used in phenomenological extractions 

Burkardt 2002

Meissner, Metz, Goeke 2007

Bacchetta, Radici 2011
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Sivers function                                                 
 

Sum rule
➔ Conservation of transverse momentum
➔ Average transverse momentum shift of a quark inside a transversely 
polarized nucleon

➔  Sum rule

Burkardt 2004

X

a=q,g

Z 1

0
dxhki,aT i = 0

X

a=q,g

Z 1

0
dxf

?(1)a
1T (x) = 0
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Sivers function                                                 
 

Extractions
➔ Many extractions without taking into account TMD evolution

➔ Extractions with TMD evolution

➔ Relation to the tomography of the nucleon 

➔ Agreement with the sum rule and large Nc prediction

Efremov et al 2005, Vogelsang, Yuan 2005, Anselmino et al 2005,
Collins et al 2006, Anselmino et al 2009, 2011, 2016, Bacchetta Radici 2011 

Echevarria et al  2014, Sun Yuan 2013

Anselmino et al  2011
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 Sign change of Sivers function 

Colored objects are surrounded by gluons, profound consequence of gauge invariance:  
Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before 
quark annihilates (Drell-Yan)

Crucial test of TMD factorization and collinear twist-3 factorization
Several labs worldwide aim at measurement of Sivers effect in Drell-Yan
BNL, CERN, GSI, IHEP, JINR, FERMILAB etc 
Barone et al., Anselmino et al., Yuan,Vogelsang, Schlegel et al., Kang,Qiu, Metz,Zhou etc
The verification of the sign change is an NSAC (DOE and NSF) milestone

Brodsky,Hwang,Schmidt;
Belitsky,Ji,Yuan;
Collins;
Boer,Mulders,Pijlman;
Kang, Qiu;
Kovchegov, Sievert;
etc
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Process dependence of Sivers function                                      
 

 
➔ Indication on process dependence of Sivers functions from analysis
of AN in 

➔ Indication on process dependence from AnDY data on AN in 

Metz et al  2012

Gamberg, Kang, AP  2013
D’Alesio et al 2013

Sign change
No sign change
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

➔ Sign change 
➔ No sign change 

STAR Collab. Phys. Rev. Lett. 116, 132301 (2016)

KQ → Kang, Qiu 2009

➔ Large uncertainties of predictions
➔ No antiquark Sivers functions

STAR  2016



19

Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change: AN in W and Z production

Anselmino et al  2016

➔ Results with sign change
➔ No TMD evolution
➔ Antiquark Sivers functions included

➔ STAR results hint on sign change

See talk by M. Boglione
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Process dependence of Sivers function                                      
 

 
➔ First experimental hint on the sign change in Drell-Yan

➔ Sign change 
➔ No sign change 

COMPASS  2017

➔ COMPASS results hint on sign change

First measurement of transverse-spin-dependent azimuthal asymmetries . . . 5
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Fig. 5: Extracted Drell-Yan TSAs related to Sivers, transversity and pretzelosity TMD PDFs (top to
bottom). Error bars represent statistical uncertainties. Systematic uncertainties (not shown) are 0.7 times
the statistical ones.
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Fig. 6: The measured mean Sivers asymmetry and the theoretical predictions for different Q

2 evolution
schemes from Refs. [19] (DGLAP), [20] (TMD1) and [21] (TMD2). The dark-shaded (light-shaded)
predictions are evaluated with (without) the sign-change hypothesis. The error bar represents the total
experimental uncertainty.

values from this measurement is available on HepData [37]. The last column in Fig. 5 shows the results
for the three extracted TSAs integrated over the entire kinematic range. The average Sivers asymmetry
A

sinj
S

T

is found to be above zero at about one standard deviation of the total uncertainty. In Fig. 6, it
is compared with recent theoretical predictions from Refs. [19, 20, 21] that are based on different Q

2-
evolution approaches. The positive sign of these theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers TMD PDFs, and the numerical values are
based on a fit of SIDIS data for the Sivers TSA [9, 11, 12]. The figure shows that this first measurement
of the DY Sivers asymmetry is consistent with the predicted change of sign for the Sivers function.

The average value for the TSA A

sin(2j
CS

�j
S

)
T

is measured to be below zero with a significance of about
two standard deviations. The obtained magnitude of the asymmetry is in agreement with the model
calculations of Ref. [38] and can be used to study the universality of the nucleon transversity function.
The TSA A

sin(2j
CS

+j
S

)
T

, which is related to the nucleon pretzelosity TMD PDFs, is measured to be above
zero with a significance of about one standard deviation. Since both A

sin(2j
CS

�j
S

)
T

and A

sin(2j
CS

+j
S

)
T

are
related to the pion Boer-Mulders PDFs, the obtained results may be used to study this function further and
to possibly determine its sign. They may also be used to test the sign change of the nucleon Boer-Mulders
TMD PDFs between SIDIS and DY as predicted by QCD [6, 7, 8], when combined with other past and
future SIDIS and DY data related to target-spin-independent Boer-Mulders asymmetries [39, 40, 41].
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Sivers function                                                 
 

Expectation of JLab 12 Sato et al 2018

Current knowledge

Improvement from SoLID
at JLab 12
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Sivers function                                                 
 

Expectation of EIC AP 2010

Page 24 of 100 Eur. Phys. J. A (2016) 52: 268
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sea (right) ū quarks from currently available data [79] (grey band) and from pseudo-data generated for the EIC with energy
setting of

√
s = 45 GeV and an integrated luminosity of 10 fb−1 (purple band with a red contour). The uncertainty estimates

are for the specifically chosen underlying functional form.
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Fig. 21. The transverse-momentum profile of the up quark
Sivers function at five x values accessible to the EIC, and cor-
responding statistical uncertainties.

Figure 21 showed the kinematic reach of the EIC which
would enable a measurement of the transverse-momentum
profile of the quark Sivers function over a wide range in
x, e.g. from the valence to the sea quark region. Note that
fig. 21 showed the total up quark Sivers function, while
fig. 20 shows the valence and the sea quarks separately.

Here, we emphasize the importance of the high Q2

reach of the EIC for SIDIS measurements. Most of the
existing experiments focus on the Q2 range of a few GeV2.
The EIC will, for the first time, reach Q2 values up to
hundreds and more GeV2. This will provide an unique op-
portunity to investigate the scale evolution of the Sivers
asymmetries, which has attracted strong theoretical in-
terests in the last few years [87–92]. As a leading power
contribution in the spin asymmetries, the associated en-
ergy evolution unveils the underlying strong interaction
dynamics in the hard scattering processes. The embedded
universality and factorization property of the TMDs can
only be fully investigated at the EIC with the planned
kinematic coverage in Q2. In particular, the theory cal-
culations including evolution effects agree with the cur-

rent constraints on the quark Sivers function presented in
fig. 21, while they do differ at higher values of Q2 [87–92].
Moreover, a recent study has shown that at the kinemat-
ics of HERMES and COMPASS, the leading-order SIDIS
suffers significant power corrections, which however will
diminish at higher Q2 [92]. This makes the EIC the only
machine to be able to establish the leading partonic pic-
ture of the TMDs in SIDIS.

The kinematic reach of the EIC also allows the mea-
surement of physical observables over a wide transverse-
momentum range. This is particularly important to un-
derstand the underlying mechanism that results in single-
spin asymmetries. Recent theoretical developments have
revealed that both the transverse-momentum–dependent
Sivers mechanism and the quark-gluon-quark correlation
collinear mechanism describe the same physics in the kine-
matic regions where both approaches apply [93, 94]. The
only way to distinguish between the two and understand
the underlying physics is to measure them over wide pT

ranges. The high luminosities at the EIC machine could
provide a golden opportunity to explore and understand
the mechanism of the transverse-spin asymmetries. In ad-
dition, with precision data in a large range of transverse
momentum, we shall be able to study the strong inter-
action dynamics in the description of large-transverse-
momentum observables and investigate the transition be-
tween the non-perturbative low-transverse-momentum re-
gion and the perturbative high-transverse-momentum re-
gion.

Access to the gluon TMDs

Beyond the gluon helicity measurements described in
sect. 2.2, the gluonic orbital angular momentum contribu-
tion would be studied in hard exclusive meson produc-
tion processes at the EIC. The transverse-momentum–
dependent gluon distribution can provide complementary
information on the spin-orbital correlation for the glu-
ons in the nucleon. Just as there are eight TMDs for
quarks, there exist eight TMDs for gluons [95]. Exper-
imentally, the gluon TMDs —in particular, the gluon

Update of this estimate is needed and work is in progress
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Collins function                                                 
 

Schafer-Teryaev sum rule
➔ Conservation of transverse momentum

➔  Sum rule

➔ If only pions are considered

Schafer Teryaev 1999
Meissner, Metz, Pitonyak 2010

Universality of TMD fragmentation functions

➔  Very non trivial results
➔ Agrees with phenomenology, allows global fits

Metz 2002, Metz, Collins 2004, Yuan 2008
Gamberg, Mukherjee, Mulders 2011
Boer, Kang, Vogelsang, Yuan 2010
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▪ SIDIS and e+e-: combined global analysis

transversity Collins 
function

Collins 
function

Transversity and Collins FF

Collins 
function
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▪ Fitted quark transversity and Collins function: x (z) -dependence

▪ Collins function: pt-dependence

Transversity and Collins FF Kang-Prokudin-Sun-Yuan 2015
Anselmino et al 2015

Compatible with LO extraction 
Anselmino et al 2009, 2013, 2015
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Precision matters

Precision of extraction depends on precision of calculations

                            Leading Log  (LL):
             Next-to Leading Log  (NLL):
Next-to-Next-to Leading Log  (NNLL):

Precision is important!

means that one should use NLO collinear distributions

Kang, AP, Sun, Yuan 2015
Echevarria, Scimemi, Vladimirov 2016
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What do we expect from JLab 12?

Ye et al Phys.Lett. B767 (2017) 91-98

Current knowledge Knowledge after SoLID

Bayesian statistics is used to estimate the improvement from new data 
Current knowledge corresponds to a fit with TMD evolution Kang et al., P.R. D93 (16) 014009
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What do we expect from JLab 12?

Kinematical coverage of  SoLID
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What do we expect from JLab 12?

Only combination of  proton and neutron target measurements  
will ensure similar improvement for both u and d quark transversity
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TMDs and lattice

See talk by Jake Ethier

First combined new methodology fir of  SIDIS data using lattice constraints: 
Lattice and SIDIS data are compatible and including lattice data improves extraction of  gT 

gT = �u� �d isovector tensor charge
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RHIC: the  process  p + p↑ → π + X  

Twist-3 factorization, fragmentation contributions

Integration over x for transversity, conservation of  momenta  
in ab→cd:

Kanazawa, Koike, Metz, Pitonyak 
(2014)

2. The Qiu-Sterman and fragmentation contributions to p" p! ⇡ X

We consider TSSAs in the single-inclusive production of pions from proton-proton collision,

p(P, SP) + p(P0)! ⇡(Ph) + X , (3)

where we have indicated the momenta and polarizations of the particles. We also define the Mandelstam variables
S ,T,U as

S = (P + P0)2 , T = (P � Ph)2 , U = (P0 � Ph)2 . (4)

All three terms in Eq. (1) enter into the analysis. However, as stated in the Introduction, we will focus on the qgq SGP
(QS) piece of the first term and the third (fragmentation) term. The definitions of the relevant functions can be found
in Refs. [1, 25]. First, we give the expression for the QS term, which reads [6, 8]

Ehd�QS(S P)
d3~Ph

= �4↵2
S M
S
✏P
0PPhS P

X

i

X

a,b,c

Z 1

0

dz
z3

Z 1

0
dx0
Z 1

0
dx �(ŝ + t̂ + û)

⇥ ⇡
ŝû

f b
1 (x0) D⇡/c1 (z)

"
Fa

FT (x, x) � x
dFa

FT (x, x)
dx

#
S i

FFT
, (5)

where
P

i is a sum over all partonic interaction channels, M is the proton mass, ↵s = g2/4⇡ with g the strong coupling,
f1 (D1) is the standard twist-2 unpolarized PDF (FF), and the Levi-Civita tensor is defined with ✏0123 = +1. We have
also made explicit that parton c fragments into a pion. The hard factors are denoted by S i

FFT
and can be found in

Appendix A of Ref. [8]. They are functions of the partonic Mandelstam variables ŝ = xx0S , t̂ = xT/z, and û = x0U/z.
One also has an identity that relates the QS function to the first kT -moment of the Sivers function [44],

⇡Fq
FT (x, x) = f?(1),q

1T (x)
���
S IDIS = � f?(1),q

1T (x)
���
DY . (6)

where

f?(1),q
1T (x) ⌘

Z
d2~kT

~k2
T

2M2 f?1T (x,~k2
T ) . (7)

In Eq. (6) we have indicated that the Sivers function is either the one extracted from semi-inclusive deep-inelastic
scattering (SIDIS) or Drell-Yan (DY).

Next, we look at the fragmentation term, which was first fully calculated in Ref. [21] and reads

Ehd�Frag(S P)
d3~Ph

= �4↵2
s Mh

S
✏P
0PPhS P

X

i

X

a,b,c

Z 1

0

dz
z3

Z 1

0
dx0
Z 1

0
dx �(ŝ + t̂ + û)

⇥ 1
ŝ (�x0 t̂ � xû)
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>>:
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666664H
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1 (z) � z

dH?(1),⇡/c
1 (z)

dz
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777775 S

i
H?1
+

1
z

H⇡/c(z) S i
H

+
2
z

Z 1

z

dz1

z2
1

1
⇣

1
z � 1

z1

⌘2 Ĥ⇡/c,=FU (z, z1) S i
ĤFU

)
, (8)

where Mh is the pion mass, and h1 is the standard twist-2 transversity PDF. The hard factors for each term are
represented by S i and can be found in Appendix A of Ref. [21].5

The functions H?(1)
1 (z), H(z), and Ĥ=FU(z, z1) are the kinematical, intrinsic, and dynamical, respectively, unpolar-

ized twist-3 FFs discussed in the Introduction. In particular, H?(1)
1 (z) is the first p?-moment of the Collins function,

defined as

H?(1),q
1 (z) ⌘ z2

Z
d2~p?

~p 2?
2M2

h

H?,q1 (z, z2~p 2
?) . (9)

5Note that in Ref. [21], Ĥ(z) ⌘ H?(1)
1 (z).

3

function, respectively, that have been extracted from TMD processes [54, 55, 65–71]. That is, we will not consider the
piece in (15) involving the dynamical function Ĥ=FU(z, z1) (via H̃(z)). We emphasize that Ĥ=FU(z, z1) must be nonzero
because the authors of Ref. [25] showed that Ĥ=FU(z, z1) = 0 implies H?(1)

1 (z) = 0, and, consequently, Eq. (15) would
vanish identically. Moreover, we know from current extractions of the Collins function that H?(1)

1 (z) , 0. Therefore,
the purpose of this computation is not to o↵er a complete analysis of AN but to use recent, TMD evolved extractions
of known (kinematical) inputs to the observable, along with a new constraint from the LIR (14), to assess how well we
are currently able to describe the data and ascertain what contribution remains from the dynamical functions. This will
help guide a future fit of these correlators, in particular Ĥ=FU(z, z1) (or H̃(z)). This function was originally extracted in
Ref. [53] before the LIR (14) was derived, and, therefore, that work must be updated to include this constraint.

From Eq. (2), we are able to calculate AN as
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, (28)

where the numerator d�Nun and denominator d�Den are given, respectively, by
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where zmin = �(T + U)/S , xmin = �(U/z)/(T/z + S ), x0 = �(xT/z)/(xS + U/z), and S i
U are the hard factors for

the unpolarized cross section, which can be found in, e.g., in Appendix A of Ref. [8]. In Eq. (29), the quantities
H⇡/c,i(x, x0, z) and F a,i(x, x0, z) are given by
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As mentioned above, we will ignore H̃(z) and compute the terms in Eqs. (31), (32) that involve f?(1)
1T (x) and

H?(1)
1 (z), using the latest fits of those functions that incorporate TMD evolution. In particular, we employ the Sivers

function obtained in Ref. [69] and the Collins function (and transversity TMD) extracted in Ref. [71] along with the
formulae in Eqs. (7), (9). [Insert a statement here on what is done with the evolution]. We also generate an error
band for AN based on the uncertainty in these TMD functions, which especially is relevant in the large-xF region
where these functions are not well-constrained. In Fig. [FIG], we give the result of our calculation compared with
the BRAHMS charged pion and STAR neutral pion data for AN vs. xF [32, 34, 35, 38]). Notice that the Sivers-type
QS contribution is basically negligible, and the entire asymmetry is due to the fragmentation piece. This confirms
the original findings in Ref. [53]. Note also from Fig. [FIG] that using TMD evolved functions does not cause the
asymmetry to di↵er significantly from the result where the functions only undergo a DGLAP-type evolution (i.e., only
the collinear unpolarized PDF in the parameterization evolves). We also give our result for AN vs. PhT in Fig. [FIG]
compared with the STAR data from Ref. [72].

We see that, although they undershoot or overshoot AN in some places, the theoretical curves do a reasonable job
at describing the data. We are especially encouraged by these plots given that the contribution from H̃(z) still needs
to be included, which, moreover, clearly demonstrates that this function must be nonzero. Through this computation,
we now have a constraint on H̃(z) and leave a fit of this function to AN data for future work. We emphasize again that
this correlator also enters the Asin �S

UT asymmetry in SIDIS and e+e� ! ha hb X.
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U are the hard factors for

the unpolarized cross section, which can be found in, e.g., in Appendix A of Ref. [8]. In Eq. (29), the quantities
H⇡/c,i(x, x0, z) and F a,i(x, x0, z) are given by
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As mentioned above, we will ignore H̃(z) and compute the terms in Eqs. (31), (32) that involve f?(1)
1T (x) and

H?(1)
1 (z), using the latest fits of those functions that incorporate TMD evolution. In particular, we employ the Sivers

function obtained in Ref. [69] and the Collins function (and transversity TMD) extracted in Ref. [71] along with the
formulae in Eqs. (7), (9). [Insert a statement here on what is done with the evolution]. We also generate an error
band for AN based on the uncertainty in these TMD functions, which especially is relevant in the large-xF region
where these functions are not well-constrained. In Fig. [FIG], we give the result of our calculation compared with
the BRAHMS charged pion and STAR neutral pion data for AN vs. xF [32, 34, 35, 38]). Notice that the Sivers-type
QS contribution is basically negligible, and the entire asymmetry is due to the fragmentation piece. This confirms
the original findings in Ref. [53]. Note also from Fig. [FIG] that using TMD evolved functions does not cause the
asymmetry to di↵er significantly from the result where the functions only undergo a DGLAP-type evolution (i.e., only
the collinear unpolarized PDF in the parameterization evolves). We also give our result for AN vs. PhT in Fig. [FIG]
compared with the STAR data from Ref. [72].

We see that, although they undershoot or overshoot AN in some places, the theoretical curves do a reasonable job
at describing the data. We are especially encouraged by these plots given that the contribution from H̃(z) still needs
to be included, which, moreover, clearly demonstrates that this function must be nonzero. Through this computation,
we now have a constraint on H̃(z) and leave a fit of this function to AN data for future work. We emphasize again that
this correlator also enters the Asin �S
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RHIC data is sensitive to high-x behavior of  transversity 
quark-gluon channel is dominant contribution for large xF 

More complicated structure of  cross-section, additional functions 
to study

for f⊥1T are mainly distinct by their quite different large-x
behavior. To compute the contribution in (3), we take h1
and H⊥

1 [which fixes Ĥ through (4)] from [33]. For favored
fragmentation into πþ, we make for Ĥℑ

FU the ansatz

Ĥπþ=ðu;d̄Þ;ℑ
FU ðz; z1Þ

Dπþ=ðu;d̄ÞðzÞDπþ=ðu;d̄Þðz=z1Þ

¼ Nfav

2IfavJfav
zαfavðz=z1Þα

0
favð1 − zÞβfavð1 − z=z1Þβ

0
fav ; ð6Þ

with the parameters Nfav, αfav, α0fav, βfav, β0fav, and the
unpolarized FF D. Note that the allowed range for z and
z=z1 is [0, 1] [45] and that our ansatz satisfies the constraint
ĤFUðz; zÞ ¼ 0 [45,46]. With the use of DSS FFs [42], the
factor Ifav reads Ifav ≡ Iuþū − Iū where Ii (i ¼ uþ ū, ū) is
defined as

Ii ¼
NiðK1;fav þ γiK2;favÞ

B½2þ αi; βi þ 1& þ γiB½2þ αi; βi þ δi þ 1&
;

with K1;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi&;
K2;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi þ δi&; ð7Þ

and B½a; b& the Euler β function. The parameters Ni, αi, βi,
γi, and δi come fromD FFs at the initial scale and are given
in Table III of [42]. Note thatDπþ=u in Ref. [42] differs from
Dπþ=d̄. Jfav in (6) is similarly defined as Jfav ≡ Juþū − Jū,
where Ji (i ¼ uþ ū, ū) follows from Ii through
α0fav→ðαfavþ4Þ, β0fav→ðβfavþ1Þ. The factor 1=ð2IfavJfavÞ
in (6) is convenient and implies

R
1
0 dzzHπþ=u

ð3Þ ðzÞ ¼ Nfav at
the initial scale, where Hð3Þ represents the entire second
term on the right-hand side of (5). For the disfavored FFs
Ĥπþ=ðd;ūÞ;ℑ

FU we make an ansatz in full analogy to (6),
introducing the additional parameters Ndis, αdis, α0dis, βdis,
β0dis. (Idis and Jdis are calculated using Dπþ=d ¼ Dπþ=ū from
[42].) The π− FFs are then fixed through charge conjuga-
tion, and the π0 FFs are given by the average of the FFs for
πþ and π−. The FFs Hπ=q are computed by means of (5).
All parton correlation functions are evaluated at the scale
Ph⊥ with leading-order evolution of the collinear functions.
Using the MINUIT package, we fit the fragmentation

contribution to data for Aπ0
N [35–37] and Aπ'

N [38]. To
facilitate the fit, we only keep seven parameters in Ĥπþ=q;ℑ

FU
free. We also allow the β-parameters βTu ¼ βTd of the
transversity to vary within the error range given in [33].
All integrations are done using the Gauss-Legendre method
with 250 steps.
For the SV1 input, the result of our eight-parameter fit is

shown in Table I. Note that the values for β0fav ¼ β0dis and
βfav are at their lower limits, which we introduce to
guarantee a finite integration upon z1 in (3) and a proper
behavior of AN at large xF, respectively. For the SV2 input,

the values of the fit parameters are similar, with an equally
successful fit (χ2=d:o:f: ¼ 1.10).
The very good description of AN is also reflected by

Fig. 1. We emphasize that such a positive outcome is
nontrivial if one keeps in mind the constraint in (5) and the
need to simultaneously fit data for Aπ0

N and Aπ'
N . Results for

the FFs Hπþ=q and ~Hπþ=q
FU ≡ R∞

z
dz1
z21

1
1
z−

1
z1

1
ξ Ĥ

πþ=q;ℑ
FU ðz; z1Þ are

displayed in Fig. 2. In either case, the favored and
disfavored FFs have opposite signs. This is like for
H⊥

1 where such reversed signs are actually “preferred”
by the Schäfer-Teryaev (ST) sum rule

P
h
P

Sh ×R
1
0 dzzMhĤh=qðzÞ ¼ 0 [47]. Note that the ST sum rule,
in combination with (5), implies a constraint on a certain
linear combination of Hh=q and (an integral of) Ĥh=q;ℑ

FU . In
view of that, reversed signs between favored and disfavored
FFs like in Fig. 2 are actually beneficial. Also depicted in

TABLE I. Fit parameters for SV1 input.

χ2=d:o:f: ¼ 1.03

Nfav ¼ −0.0338 Ndis ¼ 0.216
αfav ¼ α0fav ¼ −0.198 βfav ¼ 0.0
β0fav ¼ β0dis ¼ −0.180 αdis ¼ α0dis ¼ 3.99
βdis ¼ 3.34 βTu ¼ βTd ¼ 1.10
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FIG. 1 (color online). Fit results for Aπ0
N (data from [35–37]) and

Aπ'
N (data from [38]) for the SV1 input. The dashed line (dotted

line in the case of π−) means Ĥℑ
FU switched off.
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Figure 2: (a) STAR Collaboration data on AN for ⇡0 as function of xF at hyi = 3.7 for positive xF . The two error bands correspond to the theoretical
uncertainty from H?(1)

1 (z) (the narrow band) and h1(x) (the wide band). (b) Predictions for AN in ⇡± production as function of xF at hyi = 3.7
for positive xF using Eq. (16) (along with the approximation (28)). The error bands correspond to the theoretical uncertainty from both h1(x) and
H?(1)

1 (z).

in h1(x) and H?(1)
1 (z) from the fit in Ref. [82]. In the large-xF (i.e., large-x and large-z) region these functions are not

well-constrained, and consequently, one obtains large errors due to these inputs. We see that, although the theoretical
calculations undershoot or overshoot AN in some places, the central curves do a reasonable job in describing the data.
We are especially encouraged by these plots given that the contribution from H̃(z) still needs to be included. This
clearly demonstrates that this function must be nonzero. Through this computation, we now have a constraint on H̃(z)
and leave a fit of this function to AN data for future work. We emphasize again that the unintegrated version of this
correlator also enters multiple asymmetries in SIDIS and e+e� ! ha hb X, while H̃(z) itself can be directly measured
in Asin �S

UT in SIDIS integrated over PhT .
Moreover, since FFT (x, x) and H?(1)

1 (z), h1(x) enter the TMD evolution equations for the Sivers and Collins asym-
metries, respectively, in SIDIS and e+e� ! ha hb X, one can eventually perform a global analysis that includes all
these observables along with AN in proton-proton and lepton-nucleon collisions (where FFT (x, x), H̃(z), H?(1)

1 (z),
h1(x) all enter). This would better constrain the large-xF behavior of these functions and greatly reduce the error
bands in our plots since we have data from RHIC in this region. We found that the uncertainty in h1(x) in this regime
is what dominates the error over that from H?(1)

1 (z), see Fig. 2(a). It is evident, then, that the AN data would allow us
to drastically improve the extraction of transversity. Also, future measurements at JLab12 can improve the situation in
the large-x region [93]. In order to demonstrate the powerful capability of RHIC future measurements [2], we present
our predictions for AN in ⇡± production at 500 GeV in Fig. 2(b). One can clearly see that large-xF measurements of
AN will reduce the uncertainty of the large-x behavior of transversity and, together with other data sets, allow us to
explore the missing contribution from H̃(z). In addition, we also give our result for AN as a function of PhT in Fig. 3
compared with the STAR data from Ref. [94]. One can see that our calculations exhibit a flat behavior, similar to
that shown in Ref. [59]. The reason is that in the forward region, where t̂ becomes very small, the qg ! qg channel
dominates, and the hard function S qg!qg

H?1
/ 1/t̂3 compensates the twist-3 (PhT )�1 fall o↵ of the asymmetry.

We end this section with a brief comment about the fragmentation contribution to AN in p"A! ⇡0 X. Recently, a
calculation of this term was carried out in Ref. [95] that included gluon saturation e↵ects in the unpolarized nucleus.
The authors found that the first two terms in braces in Eq. (9) are proportional to A�1/3 (see also [96]), while the third
term is proportional to A0. Since in Ref. [59] one finds that this third term is negligible (see Fig. 3 of Ref. [59]), the
authors of Ref. [95] concluded that the fragmentation piece to AN in p"A collisions is proportional to A�1/3, which is
in contradiction to recent STAR measurements [97] that find no suppression with A. However, as we have mentioned,
the fit in Ref. [59] was performed before the LIR (15) was derived. Using both the EOMR (11) and LIR (15) we can
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Hadron�within�a�jet
Consider a process P P scattering where jet is produced and a hadron is 
measured inside the jet 

Asymmetric Azimuthal Distribution of Hadrons inside a Jet from Hadron-Hadron Collisions
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We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-
transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark
transversity distribution. We argue that the Collins function in this process is the same as that in the semi-
inclusive deep inelastic scattering. The experimental study of this process will provide us with important
information on the quark transversity distribution and test the universality of the fragmentation functions.

DOI: 10.1103/PhysRevLett.100.032003 PACS numbers: 12.38.Bx, 12.39.St, 13.87.Fh, 13.88.+e

I. Introduction.—Quark transversity distribution is one
of the most important quark distributions of nucleon that
remains unknown [1–3]. It is a quark distribution when the
nucleon is transversely polarized. Unlike the polarized
quark distribution in a longitudinal polarized nucleon, the
quark transversity is difficult to measure because it is a
chiral-odd distribution [2]. For example, it cannot be
studied in the inclusive deep inelastic scattering (DIS),
which can only probe the chiral-even parton distributions.
The Drell-Yan lepton pair production in pp scattering can
be used to study the quark transversity distributions [1,2],
but these have limited access to them at the collider ex-
periment at RHIC [4].

There have been suggestions to probe the quark trans-
versity from other processes [3]. For example, in Ref. [5], it
was proposed to study the quark transversity distributions
from the semi-inclusive hadron production in the DIS
(SIDIS) process, which can couple with another chiral-
odd fragmentation function, the so-called Collins fragmen-
tation function, to lead to a nonzero azimuthal single spin
asymmetry (SSA). This SSA has been studied by the
HERMES Collaboration at DESY [6], and a very interest-
ing result on the Collins fragmentation function was found
[7]. The Collins effect in the back-to-back two-hadron
production in e!e" annihilation has also been explored
by the BELLE Collaboration [8], and a first attempt to
extract the quark transversity distribution from the com-
bined analysis of these two experiments has been reported
recently [9]. The interference fragmentation function for
two-hadron production has also been suggested to study
quark transversity distribution in DIS and hadronic reac-
tions [10,11].

In this Letter, we investigate the possibility of exploring
the quark transversity distribution in pp collision at RHIC
by studying the azimuthal asymmetric distribution of had-
rons inside a jet [10,12]. We are interested in the hadron
production from the fragmentation of a transversely polar-
ized quark, which inherits transverse spin from the incident
nucleon through transverse-spin transfer in the hard par-
tonic scattering processes [10,13]. As we show in Fig. 1,

we will study the process,

 p#PA; S?$ ! p#PB$! jet#PJ$ ! X ! H#Ph$ ! X; (1)

where a transversely polarized proton with momentum PA
scatters on another proton with momentum PB, and pro-
duces a jet with momentum PJ (transverse momentum P?
and rapidity y1 in the laboratory frame). The three mo-
menta of PA, PB, and PJ form the so-called reaction plane.
Inside the produced jet, the hadrons are distributed around
the jet axis, and we are interested in studying the azimuthal
distribution of a particular hadron H, whose transverse
momentum PhT relative to the jet axis will define an
azimuthal angle with the reaction plane: !h, as shown in
Fig. 1. We also define the azimuthal angle of the transverse
polarization vector of the incident polarized proton: !s.

The leading order contribution to the jet production in
pp collision comes from 2! 2 subprocesses, where two
jets are produced back-to-back in the transverse plane. For
the reaction process of (1), one of the two jets shall frag-
ment into the final observed hadron. In this Letter, we study
the physics in the kinematic region of PhT % P?.
Following [14], we assume a factorization for this process,
where we can separate the jet production from the hadron
fragmentation. From our calculations, we find that there
exists a correlation between the above two azimuthal an-
gles !h and !s, coming from the quark transversity multi-
plied with the Collins fragmentation function. The study of
this azimuthal asymmetry will provide us with important
information on the quark transversity distributions, and
will also provide a crucial test for the universality of the

FIG. 1 (color online). Illustration of the kinematics for the
azimuthal distribution of hadrons inside a jet in pp scattering.
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Feng Yuan (2008), D’Alesio, Murgia, Pisano (2014) 

Azimuthal modulation is related to convolution of Collins FF and 
transversity

Kang, Prokudin, Ringer, Yuan PLB 774 (2017) 

Kang, Prokudin, Sun, Yuan (2015) 

Asymmetry should depend on Q2



Compute the asymmetry without TMD evolution 

Test�of�QCD�evolution
Kang, Prokudin, Ringer, Yuan (2017) 

functions: Anselmino et al (2015) 

• Similar results for 200 GeV and 
500 GeV 

• Results are compatible with data 
within uncertainties
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Compute the asymmetry with  TMD evolution 

Test�of�QCD�evolution
Kang, Prokudin, Ringer, Yuan (2017) 

functions: Kang, Prokudin, Sun, Yuan (2015) 

• Slight reduction for 500 compared 
to 200 GeV due to TMD evolution 

• Results are compatible with data 
within uncertainties
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Complementarity of SIDIS, e+e- and Drell-Yan, and hadron-hadron  
 

Various processes allow study and test of evolution, universality and extractions of distribution and fragmentation 
functions. We need information from all of them   

Semi Inclusive DIS –
convolution of distribution functions and 
fragmentation functions

Drell-Yan – convolution of distribution 
functions

e+ e- annihilation – convolution of 
fragmentation functions

Hadron-hadron – convolutions of PDF and 
fragmentation functions

Combining measurements from all above is important
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▪ TMD related studies have been extremely active in the past few years, lots of progress have 
been made

▪ We look forward to the future experimental results from COMPASS, RHIC, Jefferson Lab, 
LHC, Fermilab, future Electron Ion Collider

▪ Many TMD related groups are created throughout the world:

Italy, Netherlands, Belgium, Germany, Japan, China, Russia, and the USA
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DOE funded Topical Collaboration for theory

5 years of funding of $2,160,000
18 institutions
Theory, phenomenology, lattice QCD
Several postdoc positions.
2 tenure track positions: Temple, NMSU
Support of undergraduates.

◇ 5 years of funding
◇ 18 institutions
◇ Theory, phenomenology, lattice 

QCD
◇ Several postdoc and tenure track 

positions are created
◇ “To address the challenges of 

extracting novel quantitative 
information about the nucleon’s 
internal landscape”

◇ “To provide compelling research, 
training, and career opportunities 
for young nuclear theorists”


