- TRANSVERSITY 2017

5" International Workshop on Transverse Polarization
Phenomena in Hard Processes

INFN - FRASCATI NATIONAL LABORATORIES

Matching the TMD and collinear factorization framework

Leonard Gamberg
December |1, 2017

R U. S. DEPARTMENT OF Office of OTM D @ PennState
ENERGY Science Collaboration Berks




Overview comments

| — —

4+ Report implementation for combining TMD factorization and collinear
factorization in studying nucleon structure in SIDIS

4 Using an enhanced version of the CSS framework, we are able to re-
derive at leading order the well-known relation between the (TMD)
Sivers function and the (collinear twist-3) Qiu-Sterman function

4 This relies on a modification of the so called “W+Y” construction of the
gt dependent SIDIS cross section (CSS based)

4 Phys.Rev.D 94 (2016) Collins, Gamberg, Prokudin, Sato, Rogers, Wang

+ Extend treatment transversely polarized case, the Sivers Effect

4+  Gamberg , Metz, Pitonyak, Prokudin ... 2017




Overview comments

——

+ This analysis comes from the modification of “W+Y ” construction of SIDIS
cross section used to match the TMD to collinear qr dependent cross
section as well as relating the TMD to collinear factorization within CSS

+ By addressing the “standard matching prescription” traditionally used in
CSS formalism relating low & high g; behavior cross section @ moderate Q

Intermediate Q7
Q > Qr > Aqcp

TMD Collinear/twist-3
Q> Qr 2 Aqep e Q. Qr > Aqcep

\

Aacp << Qr << Q

Qr



Start w/ review of CSS W + Y definition  Birds eye view
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+ Collins Soper Sterman NPB 1985
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+ Collins 2011 Cambridge Press

do(m < gr <

Y mY

® |/ describes the small transverse momentum behavior gr « Q and an
additive correction term Y accounts for behavior at g7 ~ Q

e Wis written in terms of TMD pdfs and/or TMD ffs and is constructed to
be an accurate description in the limit of g7 /Q « 1. It includes all non-

perturbative transverse momentum dependence

® The“ Y -term “is described in terms of “collinear approximation” to the
cross section: it is the correction term for large g7~ Q



4+Collins Soper Sterman NPB 1985

Matching W + Y-schematic

+Collins 2011 Cambridge Press

® This was designed with the aim to have a formalism that is valid to leading
power in m/Q uniformly in qr, where m is a typical hadronic mass scale

® and where there is a broad intermediate range of transverse momentum

characterized by m << qT < Q Implementations/studies
4+ Nadolsky Stump C.P. Yuan PRD 1999 HERA data
From Ted Roge s W+Y + Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC
4+ Sun, Isaacson, C. -P. Yuan, F Yuan arXiv 2014
A Fun stuff
- 4+ Boglione Gonzalez Melis Prokudin JHEP 2015 ....
<
E," S >
Fz gr S O(m) gr 2 O0(Q)
S|
5 < — ~—~
o O(m) < gr < O(Q)
=T S
T J
W-term ¥ ., Y-term
~~~~ . Cross section doesn’t
........ factorize into TMD
............. functions
..............;. nOte PhT — ZqT
do m P

dQ? dz dz d2 Pyt



TMD to collinear

EIC White Paper

W(x,b, k) ’
Wigner distTribuTtions Ted S Ta-l k
J d;/ \:’"‘k
S (x,k;) f(x,b;)
TMD to col Iinear transverse momentum impact parameter
distributions (TMDs) distributions

nb CSS TMD factorisation carried sem"'"cms've processes

out in coordinate space:then FT back
to momentum space dzk dzb

f(x)

‘ parton densities
Must consider UV and IR inclusive and semi-inclusive processes

Divergences and TMD evolution
Studied in CSS formalism see Collins 201 | Cambridge Press




Wewm(ar, @) = Hro, .+ (Qo) /deTfj//A(CU, kr)dg i (2,97 + k)

/d2QT Wpm(ar, Q) = Hro j,i(Qo) [ ja(x)dp i (2)

Underlies Model building w/ and w/o evolution using TMD and collinear

evolution approach
Anselmino Boglione D’Alesio Murgia Prokudin ...2005-2017

* Parton Model (expectation) from TMD W-term

Can such an interpretation be valid in an approximate manner from the QCD
Standard CSS W-term !

Can we preserve generalised parton model as an approximation to TMD evolution?

Analysis Relies heavily on Phys.Rev. D 94 (2016) Collins,Gamberg,Prokudin, Sato, Rogers, Wang



Reminder

4 Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

C.. . Sivers 1989 PRD
€ ki S7

Vi flJ_T(makT)

4+ In CSS TMD Evolution/Factorization carried out in b-space
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H

(z,pr) = f(z,pT)




Reminder

4 Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

C.. . Sivers 1989 PRD
€ ki S7

Vi flJ_T(xakT)

4 In CSS TMD Evolution/Factorization carried out in b-space

"]

H

(z,pr) = f(z,pT)

“b-space” correlator

- 5 5 - 5 _ o
o Nz, br; Q% pg) = fi(z, br; Q% ng) — iMeIbi.S5, [—
Boer, Gamberg, Musch, Prokudin (2011) JHEP

. ) ~1 (1
Collins Aybat Rogers Qiu 2011, 2012 PRD — -flT( ) (gc, bT; Q2 , IJ,Q)

"]

11 8 -,
, br; Q7




4 Parton Model Correlator Mulders, Kotzinian, Bacchetta et al

Recall the correlator in b-space Bessel Transform
20 V(. br) = fi(e,b7) —i€f7by, Srp M1y (2, b7)

The correlator Collins Soper Equation, thus unpolarised and
Sivers evolve in similar manner

aq;}/p(x, br:u, ZF)GijSJf

dln/Cr

=K(br; )@ p(x, brs . ()€ ST



Evolution follows from their independence of rapidity scale

— 00

Collins Cambridge press 2011, Aybat & Rogers 2011 PRD

S(br;ya, yn)

Fi® (@, brs i, yn) = lim - FP*(a,brs g yp — S S
H (2, b7 1 Yn) o (@, brs pyp yB)\/S(bT;yA,yB)S(bT;?Jm?JB)

yA—>oo
Yyp—>—0C

From operator definition get

Collins-Soper Equation:

Oln F(x,bp, 1, () -
5,111\/? (TMUJ)




Along with .... Renormalization group Equations

- N
d(ﬁ(u =~k (9(w)) RGE:
N - get anomalous
4! Fglfu’“’ ) — (g ¢ for F & K
-

Solve Collins Soper & RGE egs. to obtain “evolved TMDs”



Fu@,bri Q% pq)  ~  (CH(@/a,bu(br)ipd ., as(e.)) @ F1(5 o)

Collins (2011); ... X exp {—Spert(b*(bT); L, , Q, o) — S]{%p(b:r, Q)}

Qiu & Sterman PRL 1991
1 (1 ~fL ~ -~ -~
fl’_lS )(.’L‘, bT;Q2? “’Q) ~ (C’flT(azl,xg,b*(bT);,ug*,,ub*,ozS(ub*)) & TF(wlamZ;“’b*))

4
T

X exp [_Spert(b* (bT)a b, Qa :UJQ) T S]@P(bTa Q)]

Aybat, Collins, Qiu, Rogers (2012); Echevarria, Idilbi, Kang, Vitev (2014); ...



i@, bri Q% pq)  ~  (CH@/abu(br)i g v, as(in.)) © f1(@5 o))

X exp [_Spert(b* (bT); Hb. Qa :LLQ) — S]J(;P(bTa Q)}

~ /

perturbative Sudakov factor non-perturbative Sudakov factor

~ He dy / / |
—1In(Q/ v, ) K (b, i, ) — h ui Iy (as (); 1) — i (v (1 ) gf, (@, 07) + gk (br) In(Q/Qo)
”m \
same for unpol. and pol. different for
each TMD

universal

b2
b*(bT) — \/1 4 b%j}b?na Hb, = Cl/b*(bT)



i@, brs Q% ng)  ~  (CF(/a,be(br)i i, s o as(i.) ® F1(@5 o))
X €exXp [_Spert(b* (bT); Hb., Qa :LLQ) — S]J(;P(bTa Q)}

~ /

perturbative Sudakov factor non-perturbative Sudakov factor

(@)K (b p,) h B )51 (e (@) gjl(afabT)‘i‘gK\(bT)ln(Q/QO)

same for unpol. and pol. different for universal
each TMD
b, (br) = i C1 /b (br)
«\UT )] = b, — Y1/0x\UT
.

Note: b, (0) = 0 and (us, )b, —0 = oo == problematic large logarithmsin S .
(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))




Consequence

When bt — 0, the br-space integrand goes zero. Thus, the
integral over all transverse momentum of corresponding
momentum-space contribution f'(X,kr,Q) is zero.



® To understand this lets unpack perturbative part of
CSS TMD evolution Kernel




Dependence driven by perturbative part of ev. Kernel

_J Uy *

~

1

f(x,br = 0,Q) ~exp

= exp

_CF

2

2
/ln no
In ,ug

Cr

In
750

eXp /MQ d—/vf/ y(es(p'); 1) = In (S,) i (s (1))

In Iu/Q

— exp

c? '\
brhd )

= b} where, a =2Cr/(m5y) > 0

— 0




A little detail: dependence driven by
perturbative part of ev. Kernel

by
(27)?

etk br f1css(£€, br, Q)

flCSS(xakT7Q) :/
/ko'Tflcss(xykTaQ) :/deT52(bT) f1css($7bT;Q)

/dQQTflcSS(xa kT? Q) =0 |

Phys. Rev. D 94 (2016) for details Collins,Gamberg, Prokudin, Sato, Rogers,Wang

Gamberg , Metz, Pitonyak, Prokudin ... 2017



_ + Collins, Soper, Sterman NPB 1985

+ T
f(x,ky) Ji Ma Yuan, PRD 2005
transverse momentum + Collins 2011
distributions (TMDs)
semi-inclusive processes
[d’k,
f(x)

Consequence is that physical interpretation of integrated TMDs as collinear pdfs
is at odds with parton model intuition in original version of CSS

[ hr ki Q) = fi(w,br — 0:Q%, 1) = 0!

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

k2 .,
/ Pk 205 fir(@ ke Q@ uQ) = fir (@ Q% o) = fir (2, br — 03Q% ug) = 0!

(Gamberg, Metz, DP, Prokudin, to appear soon)

TMDs lose their physical interpretation in the “Original CSS” formalism!



+ Collins, Soper, Sterman NPB 1985
+ Ji Ma Yuan, PRD 2005

4+ Collins 2011

Consequence is that physical interpretation of integrated TMDs as collinear pdfs
is at odds with parton model intuition in original version of CSS

TMDs lose their physical interpretation in the “Original CSS” formalism!

; - ET X §T
Wp(@hor = [ ke (=T f (o k)
avg. TM of unpolarized Boer Mulders Teryaev PRD 1998

quarks in a transversely Burkhardt 2004,2013 PRD
Metz et al. 2013 PRD

polarized spin-1/2 target And others ... Prokudin 2015 EIC White paper
X f1(x, K1, S7)

0.5 0.5

ky(GeV)
o
|
ky(GeV)
o
|

-0.5F -0.5

-Ol.5 CI) 0.I5 -0.5 0 0.5
ky(GeV) ky(GeV)



bQ >>1 contributions to the W term

Issue has been addressed “grresummation” by Bozzi, Catani, de Florian, Grazzini,
(2006) NPB, & “TMD CSS analysis” Collins, Gamberg, Prokudin, Rogers, Sato, Wang

PRD 2016 studying the Fourier transform of the /¥ term in the W+Y matching in gt of the
SIDIS cross section from coordinate b-space to gr momentum space

In order to regulate the large logs(Q2b2) at small b in the FT they Bozzi et al. , replace
logs(Q2b2) with logs(Q?b2+1) cutting off the b<<1/Q contribution
Also Kulesza,Sterman,Vogelsang PRD 2002 1n threshold resummation studies

We address these large logs by placing another boundary condition on now small bt

“Improved CSS” (Unpolarized) (Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))*

Place a lower cut-off on b;: by — b.(br) where b.( \/192 + b2/ (C5Q)?

= 9! : C1C5Q
_— [, — = b (o (b7 ) SO up, 1s cut off at p. ~ b




B.C. Introduce small b-cuttoft

)= 02+ 1R/ (C5Q) =

bc(0) ~1/Q

Regulate unphysical divergences from in W term

Generalized B.C. when peforming
Fourier transform

WNew<QTaQ;777C5) = = (%7

by
(27)?

)/

ULIOJSURI} IOLINO

Similar to Catani et al. NPB 2006,
Bessel Weighting-Boer LG Musch Prokudin JHEP 201 |

do
A ________
( “TMDIreglon Qr< Q )[“Y reglon QTN Q
‘\\ |
\
= |Py |
| Py 1 |res ATMD
do ’ \\V
A l B
R, 7 —— |
' “good” Bp -range
| | /' = Br
~1/ATmD ~1/|Pp | |res
(
bmin bT < bmin
by (be(bT)) — K b bmin < by < biax

e 1T PTWOLE (b, (be(br)), Q) Wi

\bmax bT > bmax .

~

P(bc(bT))7 Q; bmaac)



Enhanced expression for W (b, Q)

2 p / 2

X exp Jln %K(b*(bc(bT)), i) + ) di/ [27(043(//), 1) —In —Q’VK(Oés(N/))]
S n M

X exXp { —gA (an bc(bT)7 bmax) dB (ZBa bc(bT); bmax) QQK(bc(bT)a bmax) In (

B nd r rbmin bT < bmin
oundaary by (be(bT)) — { b1 bmin < b1 < bmax

conditions max b1 > b

See Phys. Rev. D 94 (2016) for details J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



\/62 + 0%/ (C5Q) =

p
bmin

b*(bc(bT)) — < bt

bT < bmin

\ bmaX

be(0) ~1/Q

bmin < bT < bmax
bT > bmax .

@JSH'&IE} I9LINO

do
A ————————
( “TMDlreglon” Qr< Q )'[“Y region”, Qr ~ Q
‘\\ |
S~
= |Pp.|
| Py 1 |res Armp
do g ) \\V
/\r ! l
U /
L/ “good” B -range
1 / = BT

~1/AtvD ~1/|Pp |res



“Improved CSS” (Unpolarized) (Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Place a lower cut-off on by: by — be(br) where be(br) = /b3 + b3/(C5Q)?

= Ci : C1C5Q
_— [, — = b (o (b7 SO Wy, is cut off at p. ~ b

Fi(@,be(br); Q% ng)  ~  (CF(/d,bu(be(br)): % s s (1) © F1(@5 )

X exp [_Spert(b* (bc(bT))7 14, Qa NQ) T SJ{}[P(bCU)T)? Q)]

“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, to appear soon)

O (2, b7; Q2 o) = fi (m Q% nq) — iME ‘9Tf1 (1)(33‘ Q2 1nQ)

v /

b, -> b (b,) NO b;->b_(b;) replacement — b -> b (b;)
kinematic factor NOT associated
with the scale evolution



“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, to appear soon)

O (2, by, bo(br); Q% 1) = fi(x, be(br); Q2, pg) — iMeIby 85 Filtt (z, be(br); Q% 1q)

3 o L o
FiP (2, be(br); Q% ) ~ (Cf”(wl,xz,b*(bc(bT));u2,u,ozs(u))®TF(w1,wz;ub*)

X exp [_Spe’rt(b* (bc(bT))a 14, Qa /LQ) — S]]:;;g(bc(bT)? Q)]



- " db _
fiGeokrs Q% gi Cs) = | 5= brdolkrbr)f (6, be(br); 0% o)

J deT /i . 2
Di(z. pr: @ pg:Cs) = | =~ brdo(prbr) D (2. be(br): Q% o).

.
Iy dbr 1(1)j
J(x, kp 0 pig: Cs) = ka—b Jikrbr) P00, bo(br): 0P pig)

2

2M2



/d2ET f1 (CIZ, kT Q2, HQs Cs) — fl (wa bc(O); Q27 UQ) = f1 (5’35 UC) -+ O(QS(Q)) + O((m/Q)p)

/dQﬁT D1 (z,p7; Q% pQ; Cs) = D1(2,bc(0); Q%, pq) = D1(z; pe) + O(as(Q)) + O((m/Q)P)

L k2 ~ F(Z1,T25 1o
/d%T s Tir (@, krs Q7 pg; Cs) = FED (2, b0(0); @, ) = — = AL Ho-) 1 0(0a(Q)) + O((m/Q)

[P B i (213 Q% s Co) = B (2 e0): @2 i) = 1) (2540)+ 00 Q)+ O/ Q)

At LO in the “Improved CSS” formalism we recover the relations one
expects from the “naive” operator definitions of the functions

The “Improved CSS” formalism (approximately)
restores the physical interpretation of TMDs!



4 Relies on further modifications of W+Y construction see

4+ Collins, Gamberg, Prokudin, Sato, Rogers, Wang PRD 2016

- dj;bs L= f d*qr T(gr, Q.8) = 22 W3IT (B} QLo + O(a(Q)) + O((m/ Q)F)
_ sz (1 -y +y*/2) Z &3 £1(x; p10) DV (25 pe) + O(as(Q)) + O((m] Q)P)
¢ Gamberg , Metz, Pitonyak, Prokudin ... 2017
APp A1) sy, wi o1 E Bl QLo + O(a(Q)) + O((m/ Q)
dxdydz
- 2’;;“6"" (1-y+y /2>Ze Th (e, pe) DY (@ o) + 0(a,(Q)) + O(m/ QYY)

Agrees with collinear twist-3 result at leading orc

Z..-B Kang,Vitev, Xing, PRD(2013)



Comments

T

With our method, the redefined W term allowed us to construct a relationship
between integrated-TMD-factorization formulas and standard collinear factorization
formulas, with errors relating the two being suppressed by powers of 1/Q

Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the
usual ones of factorization derivations. We preserve transverse-coordinate space
version of the W term, but only modify the way in which it is used

+ We have a new now applied to transverse polarized phenomena

We are able to recover the well-known relations between TMD and collinear
quantities one expects from the leading order parton model picture operator
definition

We recover the LO collinear twist 3 result from a weighted gt integral of the
differential cross section and derive the well known relation between the TMD
Sivers function and the collinear twist 3 Qiu Sterman function from iCSS approach



Extras



10000

100

(do/dqt)

0.01

do(gr S Q,Q) =W(qr,Q) +Y(qr,Q) + O

Asymptotic (x=0.1, z=0.5)
Fixed Order (x=0.1, z=0.5)

Term

\%Y
W+Y

Q,=2 GeV, Q=5 GeV

o L

Implementation of Collins, Gamberg, Prokudin, Sato, Rogers,Wang

® Now we can extend the power suppression error estimate down to gr = 0 to get

g do(qr, Q)

Use analytic expressions for the
collinear correlation functions,

from GRV ZPC 1992 for up-quark
pdf and from KKP NPB 2001 for the
up-quark-to-pion ffs.



Phys. Rev. D 94 (2016) for details

Collins, Gamberg, Prokudin, Sato, Rogers, Wang B.C. Introduce small b -cuttoff

)= /02 4+ 83/ (C5Q) = b.(0) ~ 1/Q

Whew(qr, Q) = / é::)T "1 PTI N (br, Q) bimin = bo/(C5Q)

/dQQTWNew(QT7Q) = W (bymin, Q) # 0

/d2qT Wiewlar, Q) = Hro j i [ 7a(x, pe)dp i (2, pe) + O(as(Q))

Has a normal collinear factorization in
pe = C1C5Q/bo  terms of collinear pdfs w/ hard scale

/dqu WNew(qr, Q) + Y (qr,Q) = Hro.j i fir/a(x, pe)dp i (2, ne) + O(as(Q))

+ terms dominated by large g contributiontoY term

With modified W+Y we can match to the collinear formalism
Has implications for modelling TMD and fitting



Review of Resummation

The “W +Y” prescription to describing the gr dependent cross section now being
intensely studied using the language of TMD factorization to SIDIS has its origin in

the study of generic high mass systems (vector bosons, Higgs particles,...)
produced in Drell Yan collisions (e.g. at the Tevatron and now at the LHC)

+ Collins, Soper, Sterman NPB 1985,

+ Altarelli et al, NPB 1984

+ Davies Webber, Stirling, NPB 1985,

+ Arnold and Kauffman NPB 1991

+ Nadolsky, Stump, Yuan zPRD 2000

+ J.-W. Qiu, Zhang, PRL 2001,

+ Berger, J.-W. Qiu, PRD 2003

+ A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)
+ Sun, Isaacson, C.-P. Yuan, F. Yuan, arXiv:1406.3073

+ Boglione, Gonzales, Melis, Prokudin JHEP 2014

+ Bozzi, Catani et al. NPB 2006, JHEP 2015, ...

+ Collins, Gamberg, Prokudin, Sato, Rogers, Wang, PRD (2016)



Review of Resummation

————

In the large-gt region (gr ~ my ), where the transverse momentum is of the order of
the vector boson mass my, one applies conventional perturbation theory to get at

the qr dependent cross section QCD corrections are known up to 0(0(52 ) and in

some case beyond...

However, the bulk of the vector boson cross section is produced in small-gq7 region
(gt < my ), where convergence of the fixed-order expansion is spoiled by the presence

of large logarithmic corrections, &N In™(m2, /q;2 ) of soft & collinear origin



Review of Resummation

To obtain reliable predictions, these logarithmically-enhanced terms have to be
evaluated and systematically “resummed” to all orders in perturbation theory

For large energy and Q2 the “resummed” and fixed-order calculations, valid at small and
large qr , respectively, can be consistently matched at intermediate values of g1 to

achieve a uniform theoretical accuracy for the entire range of transverse momenta

However at lower phenomenologically interesting values of Q, neither of
the ratios ¢r/Q or m/qr are necessarily very small and matching can be
problematic

It is this matching that | will focus on in the context of TMD factorization physics and its
connection to collinear limit.

In recent years, the treatment (“resummation’) of small-q7 logarithms has been
reformulated by using SCET & and TMD factorization



Review of Resummation

At large transverse momentum qr one calculates the cross section
for W & Z production by factorized conventional pert. theory

1 1
dUF dorap
—Z(QT, M, S):Z/dxl/dXZfa/hl(Xl,M%)fb/hz(xz,IL%:) ) (g7, M, §; as(u®), g, 1F)
qu a,b 0 0 dr
—_— MWWV — WA
do 0 “ "
—:ozwozs(ul—l—ozSUQ—l—aug—l—...) St LU LLANRCLLLLLLL )
dq% S (a) (b)

(c) (d)

Some examples of Feynman diagrams contributing to W or Z production at non-zero gq: (a,d)
qq - We, (b) gg > Wq, (c) qq — Wee.



Review of Resummation

At low gt , however, the convergence of the perturbation series

deteriorates as dominant contributions have the form o:ln” (%)
2

The convergence of the series is governed by o, In? (Q_> rather

2
than simply O i

QZ

+v.a2in?| =
3%s qz

T

do  a,a, [0 0’
~ 5 In — 1V +U,a In? —5
T

The coefficients v; of the “leading-logarithm” approximation are not

independent and it is possible to sum the series exactly so that it

may be applied even when o, v’ (Q—22> is large

dr



Fixed order theory calculation “asymptotically”
diverges at low grcannot by itself describe data

1 do

Qg
\

oo dq

2
T

14
5
dr

In

a7

'O*E T T T 2
i PP~ pi L+ X 3
it do /dMdy &, -
% -
_‘ i. y= o _
\3 M=8.4 GeV
10°7 1'+‘f W=27.4 GeV ,
AL (pf Deata” 1.9 GeV =
1078 -
" = .
s [ .
R T -
L
i
10 E
= Y :
- ‘.. —
" "annihilation" %, ]
[ term /
10-10
- "‘Compton”
- term
| \
0" { | ] Y
00 10 20 30 40 50
p, GeV/c

Figure 5.8 The distribution in transverse momentum, pr, of muon pairs, u* s~
produced in pp collisions at W = /s = 27.4GeV compared with the leading or-
der perturbative QCD result. The “Compton® and “annibilation™ contributions are
given by the dashed and dotted curves, respectively (taken from Ref. 9).



From Resummation to CSS

This reorganization and “resummation” was carried out by
Collins and Soper in b space; the result is

+ Collins Soper, NPB 1982
+ Collins Soper Sterman NPB 1985

do 43y, o [ d? bT siar-b
I dCP (resum) = 3, © / T TZW br, Q)

Wilbr, Q) = Hi(Q) (CP¥ (wa/,br) © fiya(@,m)) (CI¥(wp/2,br) ® f/5(#, pmy) ) e 5O:@

. TMD factorization
This expression contains the OPE of the Fourier
transforms of the TMDs with soft gluon resummation in
exponent. See Ted’s talk ...




II. GUIDING PRINCIPLES to enhanced CSS factorisation

The standard W + Y construction relies on the fact that, at very large Q, there is a broad range
where m/qT and qT/Q are both good small expansion parameters. We suggest the following
principles to guide the choice of an improved formalism:

1. When the W term is integrated over all qT, it should obey an ordinary collinear factorization
property. This implies that when the scales in the pdfs and {fs are set to u = Q, the result should
agree with the ordinary factorization calculation for the integrated cross section to zeroth order in
as(Q), thereby matching the parton-model result appropriately.

2. For qr ~ O(Q), the cross section given by W + Y should appropriately match fixed order
collinear perturbation theory calculations for large trans- verse momentum.

3. For very large Q, the normal W + Y construction should automatically be recovered for the m
< gr < Q region, to leading power in Q.

4. The modified W term should be expressed in terms of the same coordinate space quantity W(b)
as before, in order that operator definitions of the pdfs and ffs can be used, together with their
evolution equations.

5. W + Y should give a leading power approximation to the cross section over the whole range of
qr. Fixed order expansions of Y in collinear perturbation theory are suitable for calculating Y ,
while the usual solution of evolution equations is used for W .
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do(m < qr < Q,Q) =Wi(qr,Q) + Y(qr, Q) +

e The CSS construction of W +Y and the specific approximations are applied thru
the operation-approximators Ttmp and Tcon that apply in their “design”
regions m~qr « Q and m « gt ~ Q respectively which we emphasize by the

range of the argument above
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