$5^{\text {th }}$ International Workshop on Transverse Polarization
Phenomena in Hard Processes
INFN - FRASCATI NATIONAL LABORATORIES

Matching the TMD and collinear factorization framework

Leonard Gamberg December II, 2017

Overview comments

\downarrow Report implementation for combining TMD factorization and collinear factorization in studying nucleon structure in SIDIS

- Using an enhanced version of the CSS framework, we are able to rederive at leading order the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu-Sterman function
- This relies on a modification of the so called "W+Y" construction of the q_{\top} dependent SIDIS cross section (CSS based)
$\uparrow \quad$ Phys.Rev. D 94 (2016) Collins, Gamberg, Prokudin, Sato, Rogers, Wang
\uparrow Extend treatment transversely polarized case, the Sivers Effect
- Gamberg, Metz, Pitonyak, Prokudin ... 2017

Overview comments

- This analysis comes from the modification of " $W+Y$ " construction of SIDIS cross section used to match the TMD to collinear qt dependent cross section as well as relating the TMD to collinear factorization within CSS
- By addressing the "standard matching prescription" traditionally used in CSS formalism relating low \& high q_{T} behavior cross section @ moderate Q

Start w/ review of CSS $\underline{W}+Y$ definition

- Collins Soper Sterman NPB 1985
- Collins 2011 Cambridge Press

- W describes the small transverse momentum behavior $q_{\tau} \ll Q$ and an additive correction term Y accounts for behavior at $q_{T} \sim Q$
- W is written in terms of TMD pdfs and/or TMD ffs and is constructed to be an accurate description in the limit of $q_{T} / Q \ll 1$. It includes all nonperturbative transverse momentum dependence
- The " Y-term " is described in terms of "collinear approximation" to the cross section: it is the correction term for large $q_{T} \sim Q$

Matching $W+Y$-schematic

+Collins Soper Sterman NPB 1985
-Collins 2011 Cambridge Press

- This was designed with the aim to have a formalism that is valid to leading power in m / Q uniformly in q_{T}, where m is a typical hadronic mass scale
- and where there is a broad intermediate range of transverse momentum characterized by $m \ll q_{T} \ll Q \quad$ Implementations/studies
\star Nadolsky Stump C.P. Yuan PRD 1999 HERA data

From Ted Rogers w + Y

$$
\text { note } P_{h T}=z q_{T}
$$

TMD to collinear

EICWhite Paper

$W\left(x, b_{T}, k_{T}\right)$
Wigner distributions

Ted's Talk

TMD to collinear

nb CSS TMD factorisation carried out in coordinate space: then FT back to momentum space

transverse momentum distributions (TMDs) semi-inclusive processes

$$
f\left(x, b_{T}\right)
$$

impact parameter distributions

Must consider UV and IR
inclusive and semi-inclusive processes
Divergences and TMD evolution
Studied in CSS formalism see Collins 201I Cambridge Press

Parton model Semi-inclusive to Collinear integrate over q_{T}

$$
\begin{aligned}
W_{P M}\left(q_{T}, Q\right) & =H_{L O, j^{\prime}, i^{\prime}}\left(Q_{0}\right) \int d^{2} k_{T} f_{j^{\prime} / A}\left(x, k_{T}\right) d_{B / i^{\prime}}\left(z, q_{T}+k_{T}\right) \\
\int d^{2} q_{T} W_{P M}\left(q_{T}, Q\right) & =H_{L O, j^{\prime}, i^{\prime}}\left(Q_{0}\right) f_{j^{\prime} / A}(x) d_{B / i^{\prime}}(z)
\end{aligned}
$$

Underlies Model building w/ and w/o evolution using TMD and collinear evolution approach Anselmino Boglione D'Alesio Murgia Prokudin ...2005-20I7

* Parton Model (expectation) from TMD W-term

Can such an interpretation be valid in an approximate manner from the QCD Standard CSS W-term ?

Can we preserve generalised parton model as an approximation to TMD evolution?

Analysis Relies heavily on

Reminder

- Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

$$
\Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}\right)=f\left(x, p_{T}\right)-\frac{\epsilon^{i j} k_{T}^{i} S^{j}}{M} f_{1 T}^{\perp}\left(x, k_{T}\right)
$$

\uparrow In CSS TMD Evolution/Factorization carried out in b-space

Reminder

- Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

$$
\Phi^{\left[\gamma^{+}\right]}\left(x, p_{T}\right)=f\left(x, p_{T}\right)-\frac{\epsilon^{i j} k_{T}^{i} S^{j}}{M} f_{1 T}^{\perp}\left(x, k_{T}\right)
$$

$\star \ln$ CSS TMD Evolution/Factorization carried out in b-space
"b-space" correlator
$\tilde{\Phi}^{\left[\gamma^{+}\right]}\left(x, \vec{b}_{T} ; Q^{2}, \mu_{Q}\right)=\tilde{f}_{1}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right)-i M \epsilon^{i j} b_{T}^{i} S_{T}^{j}\left[-\frac{1}{M^{2}} \frac{1}{b_{T}} \frac{\partial}{\partial b_{T}} \tilde{f}_{1 T}^{\perp}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right)\right]$
Boer, Gamberg, Musch, Prokudin (2011) JHEP
Boer, Gamberg, Musch, Prokudin (2011) JHEP
Collins Aybat Rogers Qiu 2011, 2012 PRD

$$
\equiv \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right)
$$

Unpolarized and Sivers evolve in same way
\downarrow Parton Model Correlator Mulders, Kotzinian, Bacchetta et al

Recall the correlator in b-space Bessel Transform

$$
\tilde{\Phi}^{\left[\gamma^{+}\right]}\left(x, \boldsymbol{b}_{T}\right)=\tilde{f}_{1}\left(x, \boldsymbol{b}_{T}^{2}\right)-i \epsilon_{T}^{\rho \sigma} b_{T \rho} S_{T \sigma} M \tilde{f}_{1 T}^{\perp(1)}\left(x, \boldsymbol{b}_{T}^{2}\right)
$$

The correlator Collins Soper Equation, thus unpolarised and Sivers evolve in similar manner

$$
\frac{\partial \tilde{\phi}_{f / P}^{i}\left(x, \mathbf{b}_{\mathrm{T}} ; \mu, \zeta_{F}\right) \epsilon_{i j} S_{T}^{j}}{\partial \ln \sqrt{\zeta_{F}}}=\tilde{K}\left(b_{T} ; \mu\right) \tilde{\phi}_{f / P}^{i}\left(x, \mathbf{b}_{\mathrm{T}} ; \mu, \zeta_{F}\right) \boldsymbol{\epsilon}_{i j} S_{T}^{j}
$$

Evolution follows from their independence of rapidity scale

From operator definition get
Collins-Soper Equation:

$$
\left.\begin{array}{rl}
-\frac{\partial \ln \tilde{F}\left(x, b_{T}, \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{T} ; \mu\right) \\
\uparrow
\end{array}\right\} \quad \begin{array}{r}
\tilde{K}\left(b_{T} ; \mu\right)=\frac{1}{2} \frac{\partial}{\partial y_{n}} \ln \frac{\tilde{S}\left(b_{T} ; y_{n},-\infty\right)}{\tilde{S}\left(b_{T} ;+\infty, y_{n}\right)}
\end{array}
$$

Along with Renormalization group Equations

$$
\left.\begin{array}{l}
\frac{d \tilde{K}}{d \ln \mu}=-\gamma_{K}(g(\mu)) \\
\frac{d \ln \tilde{F}\left(x, b_{T} ; \mu, \zeta\right)}{d \ln \mu}=-\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right)
\end{array}\right\} \quad \begin{aligned}
& \text { RGE: } \\
& \text { get anomalous } \\
& \text { for } F \& K
\end{aligned}
$$

Solve Collins Soper \& RGE eqs. to obtain "evolved TMDs"

TMD Evolution-Solution for unpolarised \& Sivers

$$
\begin{aligned}
\tilde{f}_{1}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right) \sim & \left(\tilde{C}^{f_{1}}\left(x / \hat{x}, b_{*}\left(b_{T}\right) ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) \otimes \boldsymbol{f}_{1}\left(\hat{\boldsymbol{x}} ; \mu_{b_{*}}\right)\right) \\
\text { Collins (2011); ... } & \times \exp \left[-S_{\text {pert }}\left(b_{*}\left(b_{T}\right) ; \mu_{b_{*}}, Q, \mu_{Q}\right)-S_{N P}^{f_{1}}\left(b_{T}, Q\right)\right]
\end{aligned}
$$

Qiu \& Sterman PRL 1991

$$
\begin{aligned}
\tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right) \sim & \left(\tilde{C}^{f_{1 T}^{\perp}}\left(\hat{x}_{1}, \hat{x}_{2}, b_{*}\left(b_{T}\right) ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, \alpha_{s}\left(\mu_{b_{*}}\right)\right) \otimes \boldsymbol{T}_{\boldsymbol{F}}\left(\hat{\boldsymbol{x}}_{1}, \hat{\boldsymbol{x}}_{2} ; \mu_{b_{*}}\right)\right) \\
& \times \exp \left[-S_{p e r t}\left(b_{*}\left(b_{T}\right) ; \mu_{b_{*}}, Q, \mu_{Q}\right)-S_{N P}^{f_{1 T}^{\perp}}\left(b_{T}, Q\right)\right]
\end{aligned}
$$

Aybat, Collins, Qiu, Rogers (2012); Echevarria, Idilbi, Kang, Vitev (2014); ...

For Unpolarized FT-TMD

For Unpolarized FT-TMD

Note: $b_{*}(0)=0$ and $\left(\mu_{b_{*}}\right)_{b_{*} \rightarrow 0}=\infty \longrightarrow$ problematic large logarithms in $S_{\text {pert }}$
(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Consequence

When $b_{\mathrm{T}} \rightarrow 0$, the b_{T}-space integrand goes zero. Thus, the integral over all transverse momentum of corresponding momentum-space contribution $f\left(\mathrm{x}, k_{\mathrm{T}, \mathrm{Q}}\right)$ is zero.

- To understand this lets unpack perturbative part of CSS TMD evolution Kernel

Dependence driven by perturbative part of ev. Kernel

$$
\exp \left[\int_{\mu_{b} *}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \left(\frac{Q}{\mu^{\prime}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right]
$$

$$
\begin{aligned}
\tilde{f}\left(x, b_{T} \rightarrow 0, Q\right) \sim & \exp \left[\frac{C_{F}}{\pi \beta_{0}} \int_{\ln \mu_{b}^{2}}^{\ln \mu_{Q}^{2}} \ln \mu^{\prime 2}\right]=\exp \left[-\frac{C_{F}}{\pi \beta_{0}} \ln \left(\frac{\mu_{b}^{2}}{\mu_{Q}^{2}}\right)\right] \\
& =\exp \left[-\frac{C_{F}}{\pi \beta_{0}} \ln \left(\frac{C_{1}^{2}}{b_{T}^{2} \mu_{Q}^{2}}\right)\right] \\
& =b_{T}^{a} \quad \text { where }, a=2 C_{F} /\left(\pi \beta_{0}\right)>0 \\
& \rightarrow 0
\end{aligned}
$$

A little detail: dependence driven by perturbative part of ev. Kernel

$$
\begin{aligned}
f_{1 C S S}\left(x, k_{T}, Q\right) & =\int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{i k_{T} \cdot b_{T}} \tilde{f}_{1 C S S}\left(x, b_{T}, Q\right) \\
\int d^{2} k_{T} f_{1 C S S}\left(x, k_{T}, Q\right) & =\int d^{2} b_{T} \delta^{2}\left(b_{T}\right) \tilde{f}_{1 C S S}\left(x, b_{T} ; Q\right) \\
\int d^{2} q_{T} f_{1 C S S}\left(x, k_{T}, Q\right) & =0!
\end{aligned}
$$

Phys. Rev. D 94 (2016) for details Collins, Gamberg, Prokudin, Sato, Rogers, Wang
Gamberg, Metz, Pitonyak, Prokudin ... 2017

Collinear limit Original CSS

- Collins, Soper, Sterman NPB 1985

$f\left(x, k_{T}\right)$

transverse momentum distributions (TMDs) semi-inclusive processes

$$
f(x)
$$

Consequence is that physical interpretation of integrated TMDs as collinear pdfs is at odds with parton model intuition in original version of CSS

$$
\int d^{2} k_{T} f_{1}\left(x, k_{T} ; Q^{2}, \mu_{Q}\right)=\tilde{f}_{1}\left(x, b_{T} \rightarrow 0 ; Q^{2}, \mu_{Q}\right)=0!
$$

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))
$\int d^{2} k_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T} ; Q^{2}, \mu_{Q}\right) \equiv f_{1 T}^{\perp(1)}\left(x ; Q^{2}, \mu_{Q}\right)=\tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T} \rightarrow 0 ; Q^{2}, \mu_{Q}\right)=0!$
(Gamberg, Metz, DP, Prokudin, to appear soon)
TMDs lose their physical interpretation in the "Original CSS" formalism!

Collinear limit Original CSS

Consequence is that physical interpretation of integrated TMDs as collinear pdfs is at odds with parton model intuition in original version of CSS

TMDs lose their physical interpretation in the "Original CSS" formalism!

$$
\left\langle k_{T}^{i}(x)\right\rangle_{U T}=\int d^{2} k_{T} k_{T}^{i}\left(-\frac{\vec{k}_{T} \times \vec{S}_{T}}{M} f_{1 T}^{\perp}\left(x, k_{T}\right)\right)
$$

avg. TM of unpolarized quarks in a transversely polarized spin-1/2 target

Boer Mulders Teryaev PRD 1998
Burkhardt 2004,20I3 PRD
Metz et al. 2013 PRD And others ...

Prokudin 2015 EICWhite paper $x f_{1}\left(x, k_{T}, S_{T}\right)$

$b Q \gg 1$ contributions to the W term

- Issue has been addressed " $q_{\text {T }}$ resummation" by Bozzi, Catani, de Florian, Grazzini, (2006) NPB, \& "TMD CSS analysis" Collins, Gamberg, Prokudin, Rogers, Sato, Wang PRD 2016 studying the Fourier transform of the W term in the $W+Y$ matching in $q_{\text {T }}$ of the SIDIS cross section from coordinate b-space to q_{T} momentum space
- In order to regulate the large $\operatorname{logs}\left(\mathrm{Q}^{2} \mathrm{~b}^{2}\right)$ at small b in the FT they Bozzi et al., replace $\operatorname{logs}\left(\mathrm{Q}^{2} \mathrm{~b}^{2}\right)$ with $\operatorname{logs}\left(\mathrm{Q}^{2} \mathrm{~b}^{2}+1\right)$ cutting off the $\mathrm{b} \ll 1 / \mathrm{Q}$ contribution
- Also Kulesza,Sterman,Vogelsang PRD 2002 in threshold resummation studies

We address these large logs by placing another boundary condition on now small $b_{\text {T }}$
"Improved CSS" (Unpolarized) (Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))*
Place a lower cut-off on $b_{T}: b_{T} \rightarrow b_{c}\left(b_{T}\right)$ where $b_{c}\left(b_{T}\right)=\sqrt{b_{T}^{2}+b_{0}^{2} /\left(C_{5} Q\right)^{2}}$
$\longrightarrow \mu_{b_{*}} \rightarrow \bar{\mu} \equiv \frac{C_{1}}{b_{*}\left(b_{c}\left(b_{T}\right)\right)}$ so $\mu_{b_{*}}$ is cut off at $\mu_{c} \approx \frac{C_{1} C_{5} Q}{b_{0}}$

B.C. Introduce small b-cuttoff

$b_{c}\left(b_{T}\right)=\sqrt{b_{T}^{2}+b_{0}^{2} /\left(C_{5} Q\right)} \Longrightarrow b_{c}(0) \sim 1 / Q$

Regulate unphysical divergences from in W term

Similar to Catani et al. NPB 2006,
Bessel Weighting-Boer LG Musch Prokudin JHEP 201I

Generalized B.C. when peforming Fourier transform

$$
b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) \longrightarrow \begin{cases}b_{\min } & b_{\mathrm{T}} \ll b_{\min } \\ b_{\mathrm{T}} & b_{\min } \ll b_{\mathrm{T}} \ll b_{\max } \\ b_{\max } & b_{\mathrm{T}} \gg b_{\max }\end{cases}
$$

$$
\left.\tilde{W}_{N e w}\left(q_{T}, Q ; \eta, C_{5}\right)=\Xi\left(\frac{q_{T}}{Q}, \eta\right) \int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{i q_{T} \cdot b_{T}} \tilde{W}^{O P E}\left(b_{*}\left(b_{c}\left(b_{T}\right)\right), Q\right) \tilde{W}_{N P}\left(b_{c}\left(b_{T}\right)\right), Q ; b_{\max }\right)
$$

Enhanced expression for $\tilde{W}\left(b_{c}, Q\right)$

$$
\begin{aligned}
\tilde{W}\left(b_{c}\left(b_{\mathrm{T}}\right), Q\right)= & H\left(\mu_{Q}, Q\right) \sum_{j^{\prime} i^{\prime}} \int_{x_{A}}^{1} \frac{d \hat{x}}{\hat{x}} \tilde{C}_{j / j^{\prime}}^{\mathrm{pdf}}\left(x_{A} / \hat{x}, b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) ; \bar{\mu}^{2}, \bar{\mu}, \alpha_{s}(\bar{\mu})\right) f_{j^{\prime} / A}(\hat{x} ; \bar{\mu}) \times \\
& \times \int_{z_{B}}^{1} \frac{d \hat{z}}{\hat{z}^{3}} \tilde{C}_{i^{\prime} / j}^{\mathrm{ff}}\left(z_{B} / \hat{z}, b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) ; \bar{\mu}^{2}, \bar{\mu}, \alpha_{s}(\bar{\mu})\right) d_{B / i^{\prime}}(\hat{z} ; \bar{\mu}) \times \\
& \times \exp \left\{\ln \frac{Q^{2}}{\bar{\mu}^{2}} \tilde{K}\left(b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) ; \bar{\mu}\right)+\int_{\bar{\mu}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q^{2}}{\mu^{\prime^{2}}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\} \\
& \times \exp \left\{-g_{A}\left(x_{A}, b_{c}\left(b_{\mathrm{T}}\right) ; b_{\max }\right)-g_{B}\left(z_{B}, b_{c}\left(b_{\mathrm{T}}\right) ; b_{\max }\right)-2 g_{K}\left(b_{c}\left(b_{\mathrm{T}}\right) ; b_{\max }\right) \ln \left(\frac{Q}{Q_{0}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boundary } \\
& \text { conditions }
\end{aligned} \quad b_{\star}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) \rightarrow\left\{\begin{array}{l}
b_{\text {min }} \\
b_{\mathrm{T}} \\
b_{\mathrm{T}}<b_{\text {min }}<b_{\text {min }} \\
b_{\text {max }} \\
b_{\mathrm{T}} \gg b_{\mathrm{T}}<b_{\text {max }}
\end{array}\right.
$$

Impact on TMD definition in CSS

$$
\begin{gathered}
b_{c}\left(b_{T}\right)=\sqrt{b_{T}^{2}+b_{0}^{2} /\left(C_{5} Q\right)} \Longrightarrow b_{c}(0) \sim 1 / Q \\
b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right) \longrightarrow \begin{cases}b_{\min } & b_{\mathrm{T}} \ll b_{\min } \\
b_{\mathrm{T}} & b_{\min } \ll b_{\mathrm{T}} \ll b_{\max } \\
b_{\max } & b_{\mathrm{T}} \gg b_{\max }\end{cases}
\end{gathered}
$$

Modified FT-TMD from enhanced CSS

"Improved CSS" (Unpolarized) (Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))
Place a lower cut-off on $b_{T}: b_{T} \rightarrow b_{c}\left(b_{T}\right)$ where $b_{c}\left(b_{T}\right)=\sqrt{b_{T}^{2}+b_{0}^{2} /\left(C_{5} Q\right)^{2}}$
$\longrightarrow \mu_{b_{*}} \rightarrow \bar{\mu} \equiv \frac{C_{1}}{b_{*}\left(b_{c}\left(b_{T}\right)\right)}$ so $\mu_{b_{*}}$ is cut off at $\mu_{c} \approx \frac{C_{1} C_{5} Q}{b_{0}}$

$$
\begin{aligned}
\tilde{f}_{1}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right) \sim & \left(\tilde{C}^{f_{1}}\left(x / \hat{x}, b_{*}\left(b_{c}\left(b_{T}\right)\right) ; \bar{\mu}^{2}, \bar{\mu}, \alpha_{s}(\bar{\mu})\right) \otimes \boldsymbol{f}_{\mathbf{1}}(\hat{\boldsymbol{x}} ; \overline{\boldsymbol{\mu}})\right) \\
& \times \exp \left[-S_{\text {pert }}\left(b_{*}\left(b_{c}\left(b_{T}\right)\right) ; \bar{\mu}, Q, \mu_{Q}\right)-S_{N P}^{f_{1}}\left(b_{c}\left(b_{T}\right), Q\right)\right]
\end{aligned}
$$

"Improved CSS" (Polarized) (Gamberg, Metz, DP, Prokudin, to appear soon)

$$
\tilde{\Phi}^{\left[\gamma^{+}\right]}\left(x, \vec{b}_{T} ; Q^{2}, \mu_{Q}\right)=\tilde{f}_{1}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right)-i M \epsilon^{i j}\left(b_{T}^{i}\right) S_{T}^{j} \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T} ; Q^{2}, \mu_{Q}\right)
$$

and for Sivers first moment ...

"Improved CSS" (Polarized) (Gamberg, Metz, DP, Prokudin, to appear soon)

$$
\begin{aligned}
& \tilde{\Phi}^{\left[\gamma^{+}\right]}\left(x, \vec{b}_{T}, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right)= \tilde{f}_{1}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right)-i M \epsilon^{i j} b_{T}^{i} S_{T}^{j} \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right) \\
& \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right) \sim\left(\tilde{C}^{f_{1 T}^{\perp}}\left(\hat{x}_{1}, \hat{x}_{2}, b_{*}\left(b_{c}\left(b_{T}\right)\right) ; \bar{\mu}^{2}, \bar{\mu}, \alpha_{s}(\bar{\mu})\right) \otimes T_{F}\left(\hat{x}_{1}, \hat{x}_{2} ; \mu_{b_{*}}\right)\right) \\
& \times \exp \left[-S_{p e r t}\left(b_{*}\left(b_{c}\left(b_{T}\right)\right) ; \bar{\mu}, Q, \mu_{Q}\right)-S_{N P}^{f_{1 T}^{\perp}}\left(b_{c}\left(b_{T}\right), Q\right)\right]
\end{aligned}
$$

Enhanced CSS definitions of TMDs

$$
\begin{aligned}
f_{1}^{j}\left(x, k_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right) & \equiv \int \frac{d b_{T}}{2 \pi} b_{T} J_{0}\left(k_{T} b_{T}\right) \tilde{f}_{1}^{j}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right), \\
D_{1}^{j}\left(z, p_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right) & \equiv \int \frac{d b_{T}}{2 \pi} b_{T} J_{0}\left(p_{T} b_{T}\right) \tilde{D}_{1}^{h / j}\left(z, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right), \\
\frac{k_{T}^{2}}{2 M_{P}^{2}} f_{1 T}^{\perp j}\left(x, k_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right) & \equiv k_{T} \int \frac{d b_{T}}{4 \pi} b_{T}^{2} J_{1}\left(k_{T} b_{T}\right) \tilde{f}_{1 T}^{\perp(1) j}\left(x, b_{c}\left(b_{T}\right) ; Q^{2}, \mu_{Q}\right) .
\end{aligned}
$$

Which leads to

$$
\begin{aligned}
& \int d^{2} \vec{k}_{T} f_{1}\left(x, k_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right)=\tilde{f}_{1}\left(x, b_{c}(0) ; Q^{2}, \mu_{Q}\right)=f_{1}\left(x ; \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p}\right) \\
& \int d^{2} \vec{p}_{T} D_{1}\left(z, p_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right)=\tilde{D}_{1}\left(z, b_{c}(0) ; Q^{2}, \mu_{Q}\right)=D_{1}\left(z ; \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int d^{2} \vec{k}_{T} \frac{\vec{k}_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right)=\tilde{f}_{1 T}^{\perp(1)}\left(x, b_{c}(0) ; Q^{2}, \mu_{Q}\right)=-\frac{T_{F}\left(\hat{x}_{1}, \hat{x}_{2} ; \mu_{b_{*}}\right)}{2 M_{P}}+O\left(\alpha_{s}(Q)\right)+O((m / Q) \\
& \int d^{2} \vec{p}_{T} \frac{\vec{p}_{T}^{2}}{2 z^{2} M_{h}^{2}} \boldsymbol{H}_{1}^{\perp}\left(z, p_{T} ; Q^{2}, \mu_{Q} ; C_{5}\right)=\tilde{\boldsymbol{H}}_{1}^{\perp(1)}\left(z, b_{c}(0) ; Q^{2}, \mu_{Q}\right)=H_{1}^{\perp(1)}\left(z ; \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p^{\prime \prime}} ;\right.
\end{aligned}
$$

At LO in the "Improved CSS" formalism we recover the relations one expects from the "naïve" operator definitions of the functions

The "Improved CSS" formalism (approximately) restores the physical interpretation of TMDs!

Agreement between TMD and Collinear results

- Relies on further modifications of $\mathbf{W}+\mathbf{Y}$ construction see
- Collins, Gamberg, Prokudin, Sato, Rogers, Wang PRD 2016

$$
\begin{aligned}
\frac{d \sigma}{d x d y d \phi_{S} d z} \equiv & 2 z^{2} \int d^{2} \boldsymbol{q}_{\mathrm{T}} \Gamma\left(\boldsymbol{q}_{\mathrm{T}}, Q, S\right)=2 z^{2} \tilde{W}_{\mathrm{UU}}^{\mathrm{OPE}}\left(b_{m i n}^{\prime}, Q\right)_{\mathrm{LO}}+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p}\right) \\
= & \frac{2 \alpha_{e m}^{2}}{y Q^{2}}\left(1-y+y^{2} / 2\right) \sum_{j} e_{j}^{2} f_{1}^{j}\left(x ; \mu_{c}\right) D_{1}^{h / j}\left(z ; \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p}\right) \\
& \quad \text { Gamberg, Metz, Pitonyak, Prokudin ... } 2017
\end{aligned}
$$

$$
\begin{aligned}
\frac{d\left\langle P_{h \perp} \Delta \sigma\left(S_{T}\right)\right\rangle}{d x d y d z} & =-4 \pi z^{3} M_{P} \tilde{W}_{\mathrm{UT}}^{\mathrm{siv}, \mathrm{OPE}}\left(b_{m i n}^{\prime}, Q\right)_{\mathrm{LO}}+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p^{\prime}}\right) \\
& =\frac{2 \pi z \alpha_{e m}^{2}}{y Q^{2}}\left(1-y+y^{2} / 2\right) \sum_{j} e_{j}^{2} T_{F}^{j}\left(x, x ; \mu_{c}\right) D_{1}^{h / j}\left(z ; \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)+O\left((m / Q)^{p^{\prime}}\right)
\end{aligned}
$$

Agrees with collinear twist-3 result at leading ord

Comments

\downarrow With our method, the redefined W term allowed us to construct a relationship between integrated-TMD-factorization formulas and standard collinear factorization formulas, with errors relating the two being suppressed by powers of 1/Q
\downarrow Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the usual ones of factorization derivations. We preserve transverse-coordinate space version of the W term, but only modify the way in which it is used

- We have a new now applied to transverse polarized phenomena
- We are able to recover the well-known relations between TMD and collinear quantities one expects from the leading order parton model picture operator definition
- We recover the LO collinear twist 3 result from a weighted q_{T} integral of the differential cross section and derive the well known relation between the TMD Sivers function and the collinear twist 3 Qiu Sterman function from iCSS approach

Extras

- Now we can extend the power suppression error estimate down to $q_{T}=0$ to get

Phys. Rev. D 94 (2016) for details
Collins, Gamberg, Prokudin, Sato, Rogers, Wang
B.C. Introduce small b-cuttoff

$$
b_{c}\left(b_{T}\right)=\sqrt{b_{T}^{2}+b_{0}^{2} /\left(C_{5} Q\right)} \Longrightarrow b_{c}(0) \sim 1 / Q
$$

$$
W_{N e w}\left(q_{T}, Q\right)=\int \frac{d^{2} b_{T}}{(2 \pi)^{2}}{ }^{i q_{T} \cdot b_{T}} \tilde{W}_{N e w}\left(b_{T}, Q\right), \quad b_{\min }=b_{0} /\left(C_{5} Q\right)
$$

$$
\int d^{2} q_{T} W_{\text {New }}\left(q_{T}, Q\right)=\tilde{W}\left(b_{m i n}, Q\right) \neq 0
$$

$$
\int d^{2} q_{T} W_{N e w}\left(q_{T}, Q\right)=H_{L O, j^{\prime}, i^{\prime}} f_{j^{\prime} / A}\left(x, \mu_{c}\right) d_{B / i^{\prime}}\left(z, \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)
$$

Has a normal collinear factorization in

$$
\mu_{c} \approx C_{1} C_{5} Q / b_{0}
$$ terms of collinear pdfs w/ hard scale

$$
\int d^{2} q_{T} W_{\text {New }}\left(q_{T}, Q\right)+Y\left(q_{T}, Q\right)=H_{L O, j^{\prime}, i^{\prime}} f_{j^{\prime} / A}\left(x, \mu_{c}\right) d_{B / i^{\prime}}\left(z, \mu_{c}\right)+O\left(\alpha_{s}(Q)\right)
$$

+ terms dominated by large q_{T} contribution to Y term
With modified $\mathrm{W}+\mathrm{Y}$ we can match to the collinear formalism Has implications for modelling TMD and fitting

Review of Resummation

The " $W+Y$ " prescription to describing the q_{T} dependent cross section now being intensely studied using the language of TMD factorization to SIDIS has its origin in the study of generic high mass systems (vector bosons, Higgs particles, ...) produced in Drell Yan collisions (e.g. at the Tevatron and now at the LHC)

- Collins, Soper, Sterman NPB 1985,
- Altarelli et al, NPB 1984
- Davies Webber, Stirling, NPB 1985,
- Arnold and Kauffman NPB 1991
- Nadolsky, Stump, Yuan zPRD 2000
† J.-W. Qiu, Zhang, PRL 2001,
+ Berger, J.-W. Qiu, PRD 2003
\downarrow A. Bacchetta, D. Boer, M. Diehl, and P. J. Mulders, JHEP (2008)
↔ Sun, Isaacson, C.-P. Yuan, F. Yuan, arXiv:1406.3073
- Boglione, Gonzales, Melis, Prokudin JHEP 2014
† Bozzi, Catani et al. NPB 2006, JHEP 2015, ...
- Collins, Gamberg, Prokudin, Sato, Rogers, Wang, PRD (2016)

Review of Resummation

In the large $-q_{T}$ region $\left(q_{T} \sim m_{V}\right)$, where the transverse momentum is of the order of the vector boson mass m_{V}, one applies conventional perturbation theory to get at the q_{T} dependent cross section QCD corrections are known up to $O\left(\alpha_{s}{ }^{2}\right)$ and in some case beyond...

However, the bulk of the vector boson cross section is produced in small- q_{T} region ($q_{T} \ll m_{V}$), where convergence of the fixed-order expansion is spoiled by the presence of large logarithmic corrections, $\alpha_{S} n \ln ^{m}\left(m^{2} / q_{T}{ }^{2}\right)$ of soft \& collinear origin

Review of Resummation

To obtain reliable predictions, these logarithmically-enhanced terms have to be evaluated and systematically "resummed" to all orders in perturbation theory

For large energy and Q^{2} the "resummed" and fixed-order calculations, valid at small and large q_{T}, respectively, can be consistently matched at intermediate values of q_{T} to achieve a uniform theoretical accuracy for the entire range of transverse momenta

However at lower phenomenologically interesting values of Q , neither of the ratios q_{T} / Q or m / q_{T} are necessarily very small and matching can be problematic

It is this matching that I will focus on in the context ofTMD factorization physics and its connection to collinear limit.

In recent years, the treatment ("resummation") of small- q_{T} logarithms has been reformulated by using SCET \& and TMD factorization

Review of Resummation

At large transverse momentum q_{T} one calculates the cross section for W \& Z production by factorized conventional pert. theory

$$
\begin{aligned}
& \frac{d \sigma_{F}}{d q_{T}^{2}}\left(q_{T}, M, s\right)=\sum_{a, b} \int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{a / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \frac{d \hat{\sigma}_{F a b}}{d q_{T}^{2}}\left(q_{T}, M, \hat{s} ; \alpha_{S}\left(\mu_{R}^{2}\right), \mu_{R}^{2}, \mu_{F}^{2}\right) \\
& \frac{d \hat{\sigma}}{d q_{T}^{2}}=\alpha_{W} \alpha_{s}\left(u_{1}+\alpha_{s} u_{2}+\alpha_{s}^{2} u_{3}+\ldots\right)
\end{aligned}
$$

Review of Resummation

At low q_{T}, however, the convergence of the perturbation series deteriorates as dominant contributions have the form $\alpha_{s} \ln ^{2}\left(\frac{Q^{2}}{q_{T}^{2}}\right)$

The convergence of the series is governed by $\alpha_{s} \ln ^{2}\left(\frac{Q^{2}}{q_{T}^{2}}\right)$ rather than simply α_{s}

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{\mathrm{T}}^{2}} \sim \frac{\alpha_{\mathrm{w}} \alpha_{\mathrm{s}}}{q_{\mathrm{T}}^{2}} \ln \left(\frac{Q^{2}}{q_{\mathrm{T}}^{2}}\right)\left[v_{1}+v_{2} \alpha_{\mathrm{s}} \ln ^{2}\left(\frac{Q^{2}}{q_{\mathrm{T}}^{2}}\right)+v_{3} \alpha_{\mathrm{s}}^{2} \ln ^{4}\left(\frac{Q^{2}}{q_{\mathrm{T}}^{2}}\right)+\ldots\right]
$$

The coefficients v_{i} of the "leading-logarithm" approximation are not independent and it is possible to sum the series exactly so that it may be applied even when $\alpha_{s} \ln ^{2}\left(\frac{Q^{2}}{q_{T}^{2}}\right)$ is large

Fixed order theory calculation "asymptotically" diverges at low q_{T} cannot by itself describe data

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d q_{T}^{2}} \rightarrow \frac{\alpha_{s}}{q_{T}^{2}} \ln \left(\frac{M^{2}}{q_{T}^{2}}-\frac{3}{2}\right)
$$

Figure 5.8 The distribution in transverne momentum, p_{T}, of muon pairs, $\mu^{+} \mu^{-}$ produced in $p p$ collisions at $W=\sqrt{8}=27.4 \mathrm{GeV}$ compared with the leading order perturbative QCD result. The "Compton" and "annihilation" contributions are given by the dashed and dotted curves, respectively (taken from Ref. 9).

From Resummation to CSS

This reorganization and "resummation" was carried out by Collins and Soper in b space; the result is

+ Collins Soper, NPB 1982
- Collins Soper Sterman NPB 1985

$$
\frac{d \sigma}{d q_{T}^{2} d Q^{2}}(\text { resum }) \approx \frac{4 \pi^{3} \alpha_{w}}{3 s} e^{2} \int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{i q_{T} \cdot b_{T}} \sum_{i} \tilde{W}_{i}\left(b_{T}, Q\right)
$$

$\tilde{W}_{i}\left(b_{T}, Q\right)=H_{i}(Q)\left(\tilde{C}_{i}^{p d f}\left(x_{A} / \hat{x}, b_{T}\right) \otimes \tilde{f}_{i / A}\left(\hat{x}, \mu_{b}\right)\right)\left(\tilde{C}_{j}^{p d f}\left(x_{B} / \hat{z}, b_{T}\right) \otimes \tilde{f}_{j / B}\left(\hat{x}, \mu_{b}\right)\right) e^{-S\left(b_{T}, Q\right)}$
... TMD factorization
This expression contains the OPE of the Fourier transforms of the TMDs with soft gluon resummation in exponent. See Ted's talk ...

II. GUIDING PRINCIPLES to enhanced CSS factorisation

The standard $\mathrm{W}+\mathrm{Y}$ construction relies on the fact that, at very large Q , there is a broad range where m / qT and qT / Q are both good small expansion parameters. We suggest the following principles to guide the choice of an improved formalism:

1. When the W term is integrated over all qT , it should obey an ordinary collinear factorization property. This implies that when the scales in the pdfs and ffs are set to $\mu=\mathrm{Q}$, the result should agree with the ordinary factorization calculation for the integrated cross section to zeroth order in $\alpha_{s}(\mathrm{Q})$, thereby matching the parton-model result appropriately.
2. For $\mathrm{q}_{\mathrm{T}} \sim \mathrm{O}(\mathrm{Q})$, the cross section given by $\mathrm{W}+\mathrm{Y}$ should appropriately match fixed order collinear perturbation theory calculations for large trans- verse momentum.
3. For very large Q , the normal $\mathrm{W}+\mathrm{Y}$ construction should automatically be recovered for the m $\ll q_{T} \ll Q$ region, to leading power in Q.
4. The modified W term should be expressed in terms of the same coordinate space quantity $\mathrm{W}(\mathrm{b})$ as before, in order that operator definitions of the pdfs and ffs can be used, together with their evolution equations.
5. $\mathrm{W}+\mathrm{Y}$ should give a leading power approximation to the cross section over the whole range of q_{T}. Fixed order expansions of Y in collinear perturbation theory are suitable for calculating Y , while the usual solution of evolution equations is used for W .

Start w/ review of CSS $W+Y$ definitions

- Collins Soper Sterman NPB 1985
- Collins 2011 Cambridge Press

$$
d \sigma\left(m \lesssim q_{T} \lesssim Q, Q\right)=W\left(q_{T}, Q\right)+Y\left(q_{T}, Q\right)+O\left(\frac{m}{Q}\right)^{c} d \sigma\left(q_{T}, Q\right)
$$

- The CSS construction of $W+Y$ and the specific approximations are applied thru the operation-approximators $T_{\text {TMD }}$ and $T_{\text {coll }}$ that apply in their "design" regions $m \sim q_{\top}<Q$ and $m \ll q_{\top} \sim Q$ respectively which we emphasize by the range of the argument above

$$
m \lesssim q_{T} \lesssim Q
$$

