
Matching the TMD and collinear factorization framework

Leonard Gamberg
December 11, 2017

Proposal for a Topical Collaboration in Nuclear Theory for the Coordinated
Theoretical Approach to Transverse Momentum Dependent Hadron Structure in

QCD

January 1, 2016 - December 31, 2020

The TMD Collaboration
Spokespersons: William Detmold (MIT) and Jianwei Qiu (BNL)

Co-Investigators - (in alphabetical order of institutions):
Jianwei Qiu and Raju Venugopalan (Brookhaven National Laboratory)

Thomas Mehen (Duke University)
Ted Rogers (Je↵erson Laboratory and Old Dominion University)

Alexei Prokudin (Je↵erson Laboratory and Penn State University at Berks)
Feng Yuan (Lawrence Berkeley National Laboratory)

Christopher Lee and Ivan Vitev (Los Alamos National Laboratory)
William Detmold, John Negele and Iain Stewart (MIT)

Matthias Burkardt and Michael Engelhardt (New Mexico State University)
Leonard Gamberg (Penn State University at Berks)

Andreas Metz (Temple University)
Sean Fleming (University of Arizona)
Keh-Fei Liu (University of Kentucky)
Xiangdong Ji (University of Maryland)
Simonetta Liuti (University of Virginia)

The project title: Coordinated Theoretical Approach to Transverse Momentum Dependent
Hadron Structure in QCD

Applicant/Institution: Brookhaven National Laboratory - Physics Department
P. O. Box 5000, Upton, NY 11973, USA

Administrative Point of Contact: James L. Desmond, (631)-344-4837, desmond@bnl.gov

Lead Principal Investigator: Jianwei Qiu, (631)344-2172, jqiu@bnl.gov

DOE National Laboratory Announcement Number: LAB 15-1269

DOE/O�ce of Science Program O�ce: O�ce of Nuclear Physics

DOE/O�ce of Science Program O�ce Technical Contact: Dr. George Fai

PAMS Letter of Intent Tracking Number: LOI-0000011286

Research area (site) identified in Section I of this Announcement:
c. Radiative corrections for semi-inclusive/exclusive electron scattering
d. Transverse structure of hadrons in exclusive/semi-inclusive scattering
e. Spin structure of the nucleon
k. Applications of e↵ective field theory
t. Computationally enabled nuclear theory

Submitted electronically through the DOE O�ce of Science PAMS on April 30, 2015 via the website: https://pamspublic.science.energy.gov/



Overview comments

✦ Report implementation for combining TMD factorization and collinear 
factorization in studying nucleon structure in SIDIS 

✦ Using an enhanced version of the CSS framework, we are able to re-
derive at leading order the well-known relation between the (TMD) 
Sivers function and the (collinear twist-3) Qiu-Sterman function 

✦ This relies on a modification of the so called “W+Y” construction of the   
qT   dependent SIDIS cross section  (CSS based) 

✦ Phys.Rev. D 94 (2016)  Collins, Gamberg,  Prokudin, Sato, Rogers, Wang

✦ Extend treatment transversely polarized case, the Sivers Effect 

✦  Gamberg , Metz, Pitonyak,  Prokudin  … 2017  



Overview comments

✦ This analysis comes from the modification of “W+Y ” construction of SIDIS 
cross section used to match the TMD to collinear qT dependent cross 
section as well as relating the TMD to collinear factorization within CSS 

✦ By addressing the  “standard matching prescription” traditionally used in  
CSS formalism relating low & high qT behavior cross section @ moderate Q

Q� QT � �QCD

Q,QT � �QCD

Mar 29, 2011 Zhongbo Kang, RBRC/BNL

A unified picture for Drell-Yan (leading QT/Q)
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QT
QT QΛQCD <<<<

TMD Collinear/twist-3
Q� QT � �QCD

Intermediate QT



• W describes the small transverse momentum behavior qT ≪ Q and an 
additive correction term Y  accounts for behavior at qT ∼ Q 

• W is written in terms of TMD pdfs and/or TMD ffs and is constructed to 
be an accurate description in the limit of qT /Q ≪ 1.  It includes all non-
perturbative transverse momentum dependence 

• The “ Y -term “ is described in terms of “collinear approximation” to the 
cross section: it is the correction term for large qT ~ Q

d�(m . qT . Q,Q) = W (qT , Q) + Y (qT , Q) +O

✓
m

Q

◆c

d�(qT , Q)

✦ Collins Soper Sterman NPB 1985 

✦ Collins 2011 Cambridge Press 

Start w/ review of CSS W + Y definition     Birds eye view



Matching  W + Y-schematic   

O(m) ⌧ qT ⌧ O(Q)

qT . O(m) qT & O(Q) (393)

Y+term(
Cross(sec&on(doesn’t((
factorize(into(TMD(
func&ons(

10"

W+term(

d
�

d
Q

2
d
x
d
z
d
2
P

h
T

PhT

W + Y 

d�

dQ2 dx dz d2P hT
= W + Y + O

✓
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Fun(stuff(

note PhT  =  zqT

• This was designed with the aim to have a formalism that is valid to leading 
power in m/Q uniformly in qT, where m is a typical hadronic mass scale 

• and where there is a broad intermediate range of transverse momentum 
characterized by    

From Ted Rogers

  Implementations/studies 

✦ Nadolsky Stump C.P. Yuan PRD 1999 HERA data 

✦ Y. Koike, J. Nagashima, W. Vogelsang NPB (2006) eRHIC 

✦ Sun, Isaacson, C. -P. Yuan , F Yuan  arXiv 2014 

✦ Boglione Gonzalez Melis Prokudin JHEP 2015 ….

m ⌧ qT ⌧ Q

✦Collins Soper Sterman NPB 1985

✦Collins 2011 Cambridge Press 



Must consider UV and IR
Divergences and TMD evolution
Studied in CSS formalism see Collins 2011 Cambridge Press

EIC White Paper 

 nb CSS TMD factorisation carried 
out in  coordinate  space: then FT back
to momentum space

TMD to collinear

Ted’s Talk

TMD to collinear



Parton model Semi-inclusive to Collinear integrate over qT

WPM (qT , Q) = HLO,j0,i0(Q0)

Z
d2kT fj0/A(x, kT )dB/i0(z, qT + kT )

Z
d2qT WPM (qT , Q) = HLO,j0,i0(Q0)fj0/A(x)dB/i0(z)

Phys.Rev. D 94 (2016) Collins,Gamberg,Prokudin, Sato, Rogers, Wang

Underlies Model building w/ and w/o evolution using TMD  and collinear 
evolution approach   
Anselmino Boglione D’Alesio Murgia Prokudin …2005-2017

Can such an interpretation be valid in an approximate manner from the QCD                        
Standard CSS W-term ?  

Can we preserve generalised parton model as an approximation to TMD evolution?

Analysis Relies heavily on 

Parton Model (expectation) from TMD W-term



Reminder

✦ In CSS TMD Evolution/Factorization carried out in b-space

✦ Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

Sivers 1989 PRD



✦ In CSS TMD Evolution/Factorization carried out in b-space

!
! D. Pitonyak 
!
! D. Pitonyak 

“Original'CSS”' (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

“bBspace”!correlator!
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Boer, Gamberg, Musch, Prokudin (2011) 

✦ Parton Model Correlator Boer Mulders 1998 PRD, Bacchetta et al 2007 JHEP

Collins Aybat Rogers Qiu 2011, 2012 PRD

JHEP

Sivers 1989 PRD

Reminder 
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along with the following definitions,
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to re-write the leading term in the hadronic tensor, Eq. (6), in Fourier space

2MW̃µ⌫ =
X

a

e2
a

Tr
⇣

�̃(x, zb
T

)�µ�̃(z, b
T

)�⌫
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. (13)

The advantage of the b
T

space representation is clear: the hadronic tensor is no longer a convolution of p
T

and K
T

dependent functions but a simple product of b
T

-dependent functions. This motivates us to re-write the entire cross
section in terms of the Fourier transform
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Next, we decompose the correlators �̃ and �̃ into TMD PDFs and FFs in Fourier space. Using the trace notation
(see also Eqs. (A8) and (A9) in the appendix)

�̃[�] ⌘ 1

2
Tr(�̃�) , (15)

and restricting ourselves to leading twist projections, we obtain the following structures for �̃
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where ↵ = 1, 2 and ⇢ = 1, 2. Similarly, we obtain the following structures for �̃
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For future applications, we have written down the latter decomposition for the more general case of a spin- 1
2

hadron;
the expression for a spinless hadron is obtained by setting S

h

= 0. The above decompositions can be deduced
from the existing expressions for � and � in momentum space [5, 29], or starting from the symmetry properties of
the correlators �̃ and �̃ and a parameterization in terms of Lorentz-invariant amplitudes, see also Section IV and
Appendix C. The functions f̃

1
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Recall the correlator in b-space Bessel Transform

 Unpolarized and Sivers evolve in same way

!i
f=Pðx;kT;"; #FÞ ¼

1

ð2$Þ2
Z

d2bTe
ikT$bT ~!i
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ikT$bT
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~F0?f
1T ðx; bT ;"; #FÞ: (20)

To further simplify this expression, and without loss of generality, we use a frame where kT is in the x direction so that
kiT
kT
¼ ð1; 0Þ and biT

bT
¼ ðcos%; sin%Þ. Then,
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@
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2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT;"; #FÞ: (21)

Then the complete Sivers term in Eq. (13) is

!i
f=Pðx;kT;"; #FÞ&ijSjT

¼ %kiT&ijS
j
T

2$MpkT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ: (22)

So, from Eq. (15) we express the momentum-space Sivers
function in terms of ~F0:

F?f
1T ðx; kT ;"; #FÞ

¼ %1

2$kT

Z 1

0
dbTbTJ1ðkTbTÞ ~F0?f

1T ðx; bT ;"; #FÞ; (23)

whose inverse transform is

~F0?f
1T ðx; bT ;"; #FÞ

¼ %2$
Z 1

0
dkTk

2
TJ1ðkTbTÞF?f

1T ðx; kT ;"; #FÞ: (24)

Notice that the originally defined ~F?f
1T from Eq. (16) no

longer appears. The bT-dependent function ~F0?f
1T ðx; bT ;";

#FÞ is closely analogous to the quantity ~f?ð1Þ
1T that appears

in Eqs. (16) and (20) of Ref. [27], and to @ibqT in Eq. (40) of
Ref. [20], though the basic definition for the bT-space
TMD PDF in Eq. (11) is significantly different.

B. The evolution equations

The set of evolution equations comprises the Collins-
Soper (CS) equation which gives evolution with respect to
#F, and the renormalization-group (RG) equations which
give evolution with respect to ". The CS equation for the
TMD function defined in Eq. (11) is [21]

@ ~Ff=P"ðx;bT; S;"; #FÞ
@ ln

ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~Ff=P"ðx;bT; S;"; #FÞ;

(25)

where

~KðbT;"Þ ¼ 1

2

@

@ys
ln
"~SðbT ; ys;%1Þ
~SðbT ;þ1; ysÞ

#
: (26)

The RG equations are

d ~KðbT ;"Þ
d ln"

¼ %'Kðgð"ÞÞ (27)

and

d ~Ff=P"ðx;bT; S;"; #FÞ
d ln"

¼ 'Fðgð"Þ; #F="2Þ ~Ff=P"ðx;bT; S;"; #FÞ: (28)

Similar equations apply to the fragmentation function.
It follows that the #F dependence of 'F is determined:

@'Fðgð"Þ; #F="2Þ
@ ln

ffiffiffiffiffiffi
#F

p ¼ %'Kðgð"ÞÞ; (29)

so that

'Fðgð"Þ; #F="2Þ ¼ 'Fðgð"Þ; 1Þ % 1

2
'Kðgð"ÞÞ ln#F

"2 :

(30)

These equations were used in Ref. [22] to calculate the
evolution of the unpolarized TMDs. For the spin-
dependent case, the Fourier transform of the second term
in Eq. (13) obeys the same evolution equations, i.e., the
equations apply to

Z
d2kTe

%ikT$bTF?f
1T ðx; kT ;"; #FÞ

&ijk
i
TS

j
T

Mp

¼ ~!i
f=Pðx;bT;"; #FÞ&ijSjT: (31)

The CS equation for the spin-dependent part is therefore

@ ~!i
f=Pðx;bT;";#FÞ&ijSjT

@ln
ffiffiffiffiffiffi
#F

p ¼ ~KðbT ;"Þ ~!i
f=Pðx;bT;";#FÞ&ijSjT:

(32)

QCD EVOLUTION OF THE SIVERS FUNCTION PHYSICAL REVIEW D 85, 034043 (2012)

034043-5

The correlator Collins Soper Equation, thus unpolarised and 
Sivers evolve in similar manner

✦ Parton Model Correlator Mulders, Kotzinian, Bacchetta et al
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$

35 

Defini<ons:#

36

• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

From operator definition get

F̃

sub
H (x, bT ;µ, yn) = lim

yA!1
yB!�1

F̃

unsub
H (x, bT ;µ, yP � yB)

s
S̃(bT ; yA, yn)

S̃(bT ; yA, yB)S̃(bT ; yn, yB)

Evolution follows from their independence of rapidity scale 

38 

46

TMD PDF, Complete Definition:
Ff/P (x, b;µ; ζF ) =

+∞

−∞

−∞

+∞

ys

ys

−∞

“Unsubtracted”

Implements Subtractions/Cancellations

ζF = 2M
2
px

2e2(yP−ys)

From Foundations of Perturbative QCD, J.C. Collins,
(See also, Collins, TMD 2010 Trento Workshop)

Defini;ons:$
(Dictated"by"factoriza,on"requirements)"

(Collins"(2011),"chapt."13)"
Generalized"Renormaliza,on"Factor"

Collins Cambridge press 2011,  Aybat & Rogers 2011 PRD



Solve Collins Soper & RGE eqs. to obtain “evolved TMDs” 

RGE:
get anomalous 
for F & K 
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

Along with ....  Renormalization group Equations
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! D. Pitonyak 
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! D. Pitonyak 
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“Original'CSS”' (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

“bBspace”!correlator!
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Boer, Gamberg, Musch, Prokudin (2011) 
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1T (x, bT ; Q2

, µQ) ⇠
⇣

˜

C

f?1T
(x̂1, x̂2, b⇤(bT );µ

2
b⇤ , µb⇤ , ↵s(µb⇤))⌦ FF T (x̂1, x̂2; µb⇤)

⌘

⇥ exp
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�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

f?1T
NP (bT , Q)

i

Aybat, Collins, Qiu, Rogers (2012); Echevarria, Idilbi, Kang, Vitev (2014); ...  

Collins (2011); ...  

⌘ f̃

?(1)
1T (x, bT ; Q2

, µQ)

TMD Evolution-Solution for unpolarised & Sivers

Qiu & Sterman PRL 1991



For Unpolarized FT-TMD

Note:! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!problema<c!large!logarithms!in!Spert#!!

!
! D. Pitonyak 
!
! D. Pitonyak 

perturba<ve!Sudakov!factor!!

different!for!!!
each!TMD!

universal!

nonBperturba<ve!Sudakov!factor!

same!for!unpol.!and!pol.!

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f̃1(x, bT ; Q2
, µQ) ⇠

⇣
˜

C

f1
(x/x̂, b⇤(bT );µ

2
b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x̂; µb⇤)

⌘

⇥ exp

h
�Spert(b⇤(bT ); µb⇤ , Q, µQ)� S

f1
NP (bT , Q)

i

“Original'CSS”'

� ln(Q/µb⇤)K̃(b⇤, µb⇤)�
Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

b⇤(bT ) ⌘

s
b2

T

1 + b2

T /b2

max

µb⇤ = C
1

/b⇤(bT )

b⇤(0) = 0 and (µb⇤)b⇤!0 = 1
(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 



For Unpolarized FT-TMD

Note:! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!problema<c!large!logarithms!in!Spert#!!

!
! D. Pitonyak 
!
! D. Pitonyak 

perturba<ve!Sudakov!factor!!

different!for!!!
each!TMD!

universal!

nonBperturba<ve!Sudakov!factor!

same!for!unpol.!and!pol.!

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f̃1(x, bT ; Q2
, µQ) ⇠

⇣
˜

C

f1
(x/x̂, b⇤(bT );µ

2
b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x̂; µb⇤)

⌘

⇥ exp

h
�Spert(b⇤(bT ); µb⇤ , Q, µQ)� S

f1
NP (bT , Q)

i

“Original'CSS”'

� ln(Q/µb⇤)K̃(b⇤, µb⇤)�
Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

b⇤(bT ) ⌘

s
b2

T

1 + b2

T /b2

max

µb⇤ = C
1

/b⇤(bT )

b⇤(0) = 0 and (µb⇤)b⇤!0 = 1
(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 



When bT → 0, the bT-space integrand goes zero.  Thus, the 
integral over all transverse momentum of corresponding 
momentum-space contribution f (x,kT,Q) is zero.

Consequence



• To understand this lets unpack perturbative part of 
CSS TMD evolution Kernel



Dependence driven by perturbative part of ev. Kernel



Phys. Rev. D 94 (2016) for details Collins,Gamberg, Prokudin, Sato, Rogers,Wang 

Gamberg , Metz, Pitonyak, Prokudin  … 2017 

A little detail:  dependence driven by  
perturbative part of ev. Kernel



Collinear limit  Original CSS ✦ Collins, Soper, Sterman NPB 1985

✦ Ji Ma Yuan, PRD 2005

✦ Collins 2011

Consequence is that physical interpretation of integrated TMDs as collinear pdfs 
is at odds with parton model intuition in original version of CSS

!
! D. Pitonyak 
!
! D. Pitonyak 

“Original'CSS”' (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

Z
d

2
kT f1(x, kT ;Q2

, µQ) = f̃1(x, bT ! 0; Q2
, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 

(Gamberg, Metz, DP, Prokudin, to appear soon) 

Z
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2
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2
T

2M

2
f

?
1T (x, kT ;Q2

, µQ) ⌘ f

?(1)
1T (x;Q2

, µQ) = f̃

?(1)
1T (x, bT ! 0; Q2

, µQ) = 0 !

TMDs'lose'their'physical'interpretaTon'in'the'“Original'CSS”'formalism!'
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Consequence is that physical interpretation of integrated TMDs as collinear pdfs 
is at odds with parton model intuition in original version of CSS
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“Original'CSS”' (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...) 

Z
d

2
kT f1(x, kT ;Q2

, µQ) = f̃1(x, bT ! 0; Q2
, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016)) 

(Gamberg, Metz, DP, Prokudin, to appear soon) 

Z
d

2
kT

k

2
T

2M

2
f

?
1T (x, kT ;Q2

, µQ) ⌘ f

?(1)
1T (x;Q2

, µQ) = f̃

?(1)
1T (x, bT ! 0; Q2

, µQ) = 0 !

TMDs'lose'their'physical'interpretaTon'in'the'“Original'CSS”'formalism!'

hki
T (x)iUT =

Z
d

2
kT k

i
T

 
�

~

kT ⇥ ~

ST

M

f

?
1T (x, kT )

!

avg.!TM!of!unpolarized!
quarks!in!a!transversely!
polarized!spinB1/2!target!

Boer Mulders Teryaev PRD 1998
Burkhardt 2004,2013 PRD
Metz et al.  2013 PRD
And others … 

respond to the collinear PDFs: the longitudi-
nal polarized structure function discussed in
the previous section and the quark transver-
sity distribution. The latter is related to the
tensor charge of the nucleon. These three
distributions can be regarded as a simple
transverse momentum extension of the asso-
ciated integrated quark distributions. More
importantly, the power and rich possibilities
of the TMD approach arise from the sim-
ple fact that kT is a vector, which allows
for various correlations with the other vec-
tors involved: the nucleon momentum P , the
nucleon spin S, and the parton spin (say a
quark, sq). Accordingly, there are eight inde-
pendent TMD quark distributions as shown
in Fig. 2.12. Apart from the straightfor-
ward extension of the normal PDFs to the
TMDs, there are five TMD quark distribu-
tions, which are sensitive to the direction of
kT , and will vanish with a simple kT integral.

Because of the correlations between the
quark transverse momentum and the nucleon
spin, the TMDs naturally provide impor-
tant information on the dynamics of par-
tons in the transverse plane in momentum
space, as compared to the GPDs which de-
scribe the dynamics of partons in the trans-
verse plane in position space. Measurements
of the TMD quark distributions provide in-
formation about the correlation between the
quark orbital angular momentum and the nu-
cleon/quark spin because they require wave
function components with nonzero orbital
angular momentum. Combining the wealth
of information from all of these functions
could thus be invaluable for disentangling
spin-orbit correlations in the nucleon wave
function, and providing important informa-
tion about the quark orbital angular momen-
tum.
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Figure 2.13: The density in the transverse-momentum plane for unpolarized quarks with x = 0.1
in a nucleon polarized along the ŷ direction. The anisotropy due to the proton polarization is
described by the Sivers function, for which the model of [69] is used. The deep red (blue)
indicates large negative (positive) values for the Sivers function.

One particular example is the quark
Sivers function f⊥q1T which describes the
transverse momentum distribution corre-
lated with the transverse polarization vector
of the nucleon. As a result, the quark distri-

bution will be azimuthally asymmetric in the
transverse momentum space in a transversely
polarized nucleon. Figure 2.13 demonstrates
the deformations of the up and down quark
distributions. There is strong evidence of the

35

Prokudin 2015 EIC White paper



Issue has been addressed “qT resummation”  by Bozzi, Catani, de Florian, Grazzini, 
(2006) NPB, & “TMD CSS analysis” Collins, Gamberg, Prokudin, Rogers, Sato, Wang 
PRD 2016 studying the Fourier transform of the W term in the W+Y matching in qT of the 
SIDIS cross section from coordinate b-space to qT momentum space  

In order to regulate the large logs(Q2b2) at small b in the FT they Bozzi et al. , replace  
logs(Q2b2)  with logs(Q2b2+1) cutting off the b<<1/Q contribution 

Also  Kulesza,Sterman,Vogelsang PRD 2002 in threshold resummation studies

!
! D. Pitonyak 
!
! D. Pitonyak 

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))* 

Place!a!lower!cutBoff!on!bT#:#!

µb⇤ ! µ̄ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡
C1C5Q

b0

*Other modifications are discussed in this reference that attempt to improve the agreement of the CSS 
W+Y formulation with the differential cross section over all transverse momentum regions. 

bT ! bc(bT ) where bc(bT ) =
q

b2
T + b2

0/(C5Q)2

“Improved'CSS”'(Unpolarized)'

We address these large logs by placing another boundary condition on now small  bT

bQ >>1 contributions to the W term



W̃New(qT , Q; ⌘, C5) = ⌅

✓
qT
Q

, ⌘

◆Z
d2bT
(2⇡)2

eiqT ·bT W̃OPE (b⇤(bc(bT )), Q) W̃NP (bc(bT )), Q; bmax)

bc(bT ) =
q

b2T + b20/ (C5Q) =) bc(0) ⇠ 1/Q

B.C. Introduce small b-cuttoff

10

lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

⌅

✓
qT
Q

, ⌘

◆
= exp


�
✓
q
T

⌘Q

◆
a

⌅

�
, (39)

with a⌅ > 2.
The only di↵erences between the old and new W -term

are: i) the use of b
c

(bT) rather than bT in W̃ , and ii) the
multiplication by ⌅(qT/Q, ⌘). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There ⌅
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and ⌘ approach infinity.

Finally, we will present a fully optimized formula for
WNew(qT, Q; ⌘, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).

But first it will be convenient to construct some auxil-
iary results.

Naturally, b
⇤

is to be replaced by

b
⇤

(b
c

(bT)) =

s
b2T + b20/(C

2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ⌘ b
⇤

(b
c

(0)) =
b0

C5Q

s
1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ⇡ b0
C5Q

. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b
⇤

(b
c

(bT)) �!

8
><

>:

bmin bT ⌧ bmin

bT bmin ⌧ bT ⌧ bmax

bmax bT � bmax .

(43)

For bT ⌧ 1/Q, b
⇤

(b
c

(bT)) ⇡ b
⇤

(bT). Instead of µ
b⇤ , we

will ultimately use the scale

µ̄ ⌘ C1

b
⇤

(b
c

(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
o↵ on the renormalization scale equal to

µ
c

⌘ lim
b

T

!0
µ̄ =

C1C5Q

b0

s

1 +
b20

C2
5b

2
maxQ

2
⇡ C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc

= C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; ⌘, C5) are as follows. Equation (32) becomes

WNew(qT, Q; ⌘, C5) = ⌅

✓
qT
Q

, ⌘

◆Z
d2bT
(2⇡)2

eiqT

·b
TW̃NP(bc(bT), Q)W̃ (b

⇤

(b
c

(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT ! b
c

(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (b
c

(bT), Q) = H(µ
Q

, Q)
X

j

0
i

0

Z 1

xA

dx̂

x̂
C̃pdf

j/j

0(x
A

/x̂, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))f
j

0
/A

(x̂; µ̄)⇥

⇥
Z 1

zB

dẑ

ẑ3
C̃↵

i

0
/j

(z
B

/ẑ, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))d
B/i

0(ẑ; µ̄)⇥

⇥ exp

⇢
ln

Q2

µ̄2
K̃(b

⇤

(b
c

(bT)); µ̄) +

Z
µQ

µ̄

dµ0

µ0


2�(↵

s

(µ0); 1)� ln
Q2

µ0

2 �K(↵
s

(µ0))

��

⇥ exp

⇢
�g

A

(x
A

, b
c

(bT); bmax)� g
B

(z
B

, b
c

(bT); bmax)� 2g
K

(b
c

(bT); bmax) ln

✓
Q

Q0

◆�
. (48)

This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
c

(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
g
K

(b
c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.

Generalized B.C. when peforming
Fourier transform

Similar to Catani  et al. NPB 2006,
Bessel Weighting-Boer LG Musch Prokudin JHEP 2011

BT

d¾

¤TMD

“TMD region”, QT ¿ Q “Y region”, QT » Q

|Ph?|res

»1/¤TMD

“good” BT -range

Fourier  transfo rm

d¾

|Ph?|

»1/|Ph?|res

Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |b
T

|�1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in ↵
s

in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P
h?|max

is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |b
T

|�3/2. Let [F sin/cos(N�h+...)

XY,Z

]
TMD

denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P
h?| region can be bounded using that the TMD expression (times

|P
h?|1/2) is a monotonically decreasing function of |P

h?|. Thus, applying Eq. (G.10),

Z 1

|P h?|
max

d|P
h?| |P h?| 2⇡JN (|b

T

||P
h?|) [F sin/cos(N�h+...)

XY,Z

]
TMD

(Q2,P 2

h?)

. 4

s

2⇡|P
h?|max

|b
T

|3
�

�

�

[F sin/cos(N�h+...)

XY,Z

]
TMD

(Q2, |P
h?|2

max

)
�

�

�

, (G.13)

where the upper bound applies as long as |b
T

| � |P
h?|�1

max

. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P
h?|.
Finally, let us consider what error would be introduced if all |P

h?| integrations of the
experimental data were to be cut o↵ at ⇤

TMD

. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P
h?|�1

max

would need to be replaced by ⇤
TMD

.

Again the error estimate would be valid provided |b
T

| � ⇤�1

TMD

and provided the structure

function times |P
h?|1/2 is monotonically falling, i.e., in its tail region, beyond ⇤

TMD

. This

– 30 –

Regulate unphysical divergences from in W term 
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lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

⌅

✓
qT
Q

, ⌘

◆
= exp


�
✓
q
T

⌘Q

◆
a

⌅

�
, (39)

with a⌅ > 2.
The only di↵erences between the old and new W -term

are: i) the use of b
c

(bT) rather than bT in W̃ , and ii) the
multiplication by ⌅(qT/Q, ⌘). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There ⌅
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and ⌘ approach infinity.

Finally, we will present a fully optimized formula for
WNew(qT, Q; ⌘, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).

But first it will be convenient to construct some auxil-
iary results.

Naturally, b
⇤

is to be replaced by

b
⇤

(b
c

(bT)) =

s
b2T + b20/(C

2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ⌘ b
⇤

(b
c

(0)) =
b0

C5Q

s
1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ⇡ b0
C5Q

. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b
⇤

(b
c

(bT)) �!

8
><

>:

bmin bT ⌧ bmin

bT bmin ⌧ bT ⌧ bmax

bmax bT � bmax .

(43)

For bT ⌧ 1/Q, b
⇤

(b
c

(bT)) ⇡ b
⇤

(bT). Instead of µ
b⇤ , we

will ultimately use the scale

µ̄ ⌘ C1

b
⇤

(b
c

(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
o↵ on the renormalization scale equal to

µ
c

⌘ lim
b

T

!0
µ̄ =

C1C5Q

b0

s

1 +
b20

C2
5b
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2
⇡ C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc

= C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; ⌘, C5) are as follows. Equation (32) becomes

WNew(qT, Q; ⌘, C5) = ⌅
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This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
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(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
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c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.
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with a⌅ > 2.
The only di↵erences between the old and new W -term
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multiplication by ⌅(qT/Q, ⌘). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There ⌅
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and ⌘ approach infinity.
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Then, for large enough Q and bmax

bmin ⇡ b0
C5Q

. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b
⇤

(b
c

(bT)) �!

8
><

>:

bmin bT ⌧ bmin

bT bmin ⌧ bT ⌧ bmax

bmax bT � bmax .

(43)

For bT ⌧ 1/Q, b
⇤

(b
c

(bT)) ⇡ b
⇤

(bT). Instead of µ
b⇤ , we

will ultimately use the scale

µ̄ ⌘ C1

b
⇤

(b
c

(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
o↵ on the renormalization scale equal to

µ
c

⌘ lim
b

T

!0
µ̄ =

C1C5Q

b0

s

1 +
b20

C2
5b

2
maxQ

2
⇡ C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc

= C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; ⌘, C5) are as follows. Equation (32) becomes

WNew(qT, Q; ⌘, C5) = ⌅

✓
qT
Q

, ⌘

◆Z
d2bT
(2⇡)2

eiqT

·b
TW̃NP(bc(bT), Q)W̃ (b

⇤

(b
c

(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT ! b
c

(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (b
c

(bT), Q) = H(µ
Q

, Q)
X

j

0
i

0

Z 1

xA

dx̂

x̂
C̃pdf

j/j

0(x
A

/x̂, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))f
j

0
/A

(x̂; µ̄)⇥

⇥
Z 1

zB

dẑ

ẑ3
C̃↵

i

0
/j

(z
B

/ẑ, b
⇤

(b
c

(bT)); µ̄
2, µ̄,↵

s

(µ̄))d
B/i

0(ẑ; µ̄)⇥

⇥ exp

⇢
ln

Q2

µ̄2
K̃(b

⇤

(b
c

(bT)); µ̄) +

Z
µQ

µ̄

dµ0

µ0


2�(↵

s

(µ0); 1)� ln
Q2

µ0

2 �K(↵
s

(µ0))

��

⇥ exp

⇢
�g

A

(x
A

, b
c

(bT); bmax)� g
B

(z
B

, b
c

(bT); bmax)� 2g
K

(b
c

(bT); bmax) ln

✓
Q

Q0

◆�
. (48)

This is the same as Eq. (35) except that b
⇤

(b
c

(bT)) and µ̄ = C1/b⇤(bc(bT)) are used instead of b
⇤

(bT) and
µ
b⇤ = C1/b⇤(bT). Note that g

K

(b
c

(bT); bmax) depends on Q through b
c

, albeit only for bT . 1/Q. For bT � 1/Q,
g
K

(b
c

(bT); bmax) ! g
K

(bT; bmax). Also, g
K

(b
c

(bT); bmax) does not vanish exactly as bT ! 0 but instead approaches a
power of 1/Q.

Up to this point, we have introduced two new parameters, ⌘ and C5, in the treatment of the W -term.

Enhanced expression for 

Boundary
conditions

See Phys. Rev. D 94 (2016) for details J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang
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⌅

�
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with a⌅ > 2.
The only di↵erences between the old and new W -term
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Figure 2. Schematic illustration of important scales for Bessel-weighted asymmetries before and
after the Fourier-transform.

Eq. (G.12) shows that the theoretical error from neglecting the Y term is (at least) sup-

pressed as |b
T

|�1/2. An explicit treatment of the Y -term in Eq. (3.1) could eliminate this

theoretical error to a given order in ↵
s

in the Fourier transformed TMD PDFs and TMD

FFs extracted using Bessel weighting. We will not do this here.

The second error coming from extending the TMD expression beyond |P
h?|max

is more

suppressed and therefore less of a concern. Following a similar procedure as before we can

estimate it to be suppressed as |b
T

|�3/2. Let [F sin/cos(N�h+...)

XY,Z

]
TMD

denote the structure

functions as determined purely within the TMD framework, i.e., from convolutions of TMD

PDFs, TMD FFs and a potential soft factor. The contribution to its Fourier transform

coming from the large |P
h?| region can be bounded using that the TMD expression (times

|P
h?|1/2) is a monotonically decreasing function of |P

h?|. Thus, applying Eq. (G.10),

Z 1

|P h?|
max

d|P
h?| |P h?| 2⇡JN (|b

T

||P
h?|) [F sin/cos(N�h+...)

XY,Z

]
TMD

(Q2,P 2

h?)

. 4

s

2⇡|P
h?|max

|b
T

|3
�

�

�

[F sin/cos(N�h+...)

XY,Z

]
TMD

(Q2, |P
h?|2

max

)
�

�

�

, (G.13)

where the upper bound applies as long as |b
T

| � |P
h?|�1

max

. This second error is therefore

far less important than neglecting the Y term. The reason this same behavior could not

be obtained for the Y term is that it is not expected to be a monotonically falling function

of |P
h?|.
Finally, let us consider what error would be introduced if all |P

h?| integrations of the
experimental data were to be cut o↵ at ⇤

TMD

. In this case, we would be able to use Eq.

(G.13) as an error estimate, except that |P
h?|�1

max

would need to be replaced by ⇤
TMD

.

Again the error estimate would be valid provided |b
T

| � ⇤�1

TMD

and provided the structure

function times |P
h?|1/2 is monotonically falling, i.e., in its tail region, beyond ⇤

TMD

. This
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where

b⇤(bc(bT )) =

s
b2

T + b02min

1 + b2
T /b2

max + b02min/b2
max
, µ̄ ⌘ C1

b⇤(bc(bT ))
, (35)

with b0min defined after (28).

(II) Define a new W-term,

W(qT,Q, S ; C5) ⌘ ⌅(qT /Q)
Z

d2bT

(2⇡)2 eiqT·bT W̃(bT, bc(bT ),Q, S )

= ⌅(qT /Q)
h
WUU(qT ,Q; C5) + |ST| sin(�h � �S ) Wsiv

UT(qT ,Q; C5) + . . .
i
, (36)

where

WUU(qT ,Q; C5) ⌘
Z

d2bT

(2⇡)2 eiqT·bT W̃UU(bc(bT ),Q) =
Z

dbT

2⇡
J0(qT bT )W̃UU(bc(bT ),Q) , (37)

Wsiv
UT(qT ,Q; C5) ⌘ iMP

qT

Z
d2bT

(2⇡)2 eiqT·bT (qT · bT) W̃siv
UT(bc(bT ),Q) = �Mp

Z
dbT

2⇡
b2

T J1(qT bT )W̃siv
UT(bc(bT ),Q) ,

(38)

with C5 again a constant chosen to optimize the control of large logarithms that arise as bT ! 0. The quantity
⌅(qT /Q) in (36) is a smooth function chosen so that it is unity at qT = 0 and approaches zero for large qT &
Q [1, 8]. This factor ensures that W(qT,Q, S ; C5) is su�ciently suppressed for qT & Q, where its accuracy has
significantly degraded. The momentum-space functions are likewise defined as

f j
1 (x, kT ; Q2, µQ; C5) ⌘

Z
dbT

2⇡
bT J0(kT bT ) f̃ j

1 (x, bc(bT ); Q2, µQ) , (39)

Dj
1(z, pT ; Q2, µQ; C5) ⌘

Z
dbT

2⇡
bT J0(pT bT ) D̃h/ j

1 (z, bc(bT ); Q2, µQ) , (40)

k2
T

2M2
P

f? j
1T (x, kT ; Q2, µQ; C5) ⌘ kT

Z
dbT

4⇡
b2

T J1(kT bT ) f̃?(1) j
1T (x, bc(bT ); Q2, µQ) . (41)

(III) Define a new Y-term,

Y(qT,Q, S ; C5) ⌘ X(qT /m)
�
FO(qT,Q, S ) � AY(qT,Q, S ; C5)

 
, (42)

where X(qT /m) is a smooth function that approaches zero for qT . m and unity for qT & m [1, 4]. The function
X(qT /m) ensures that Y(qT,Q, S ; C5) is su�ciently suppressed for qT . m, where its accuracy has significantly
degraded. The quantity AY(qT,Q, S ; C5), being the asymptotic expansion of W(qT,Q, S ; C5) at large qT , in-
cludes the modifications (I), (II). The change (II) to AY(qT,Q, S ) has the additional benefit that the integral of
the asymptotic term over all qT is now finite, whereas in the original CSS formalism it diverges.

(IV) With these modifications, the qT -di↵erential cross section (1) now reads

�(qT,Q, S ) = W(qT,Q, S ; C5) + Y(qT,Q, S ; C5) + O((m/Q)c) . (43)
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3.2. Agreement between TMD and collinear results
We start with the cross section in Eq. (43), which can be written as

�(qT,Q, S ) = ⌅(qT /Q)
h
WUU(qT ,Q; C5) + |ST| sin(�h � �S ) Wsiv

UT(qT ,Q; C5) + . . .
i
+ Y(qT,Q, S ; C5) (44a)

=
h
WUU(qT ,Q; C5) + |ST| sin(�h � �S ) Wsiv

UT(qT ,Q; C5) + . . .
i

� (1 � ⌅(qT /Q))
h
WUU(qT ,Q; C5) + |ST| sin(�h � �S ) Wsiv

UT(qT ,Q; C5) + . . .
i

+ Y(qT,Q, S ; C5) . (44b)

Note that at small qT ⌧ Q, the second and third lines of (44b) are suppressed by qT /Q compared to the first line.
Since they only become sizable for larger qT , the second and third lines contribute at O(↵s(Q)). Therefore, the LO
part of any (possibly weighted) qT -integration of �(qT,Q, S ) will be from the first line of (44b).

We now show that the improvements of Sec. 3.1 resolve the problems in the original CSS formalism (see Sec. 2.2)
with integrating �(qT,Q, S ), as well as the TMD functions, over transverse momentum. While ⌅(qT /Q) and X(qT /m)
in (II), (III) are needed to help accurately describe the intermediate qT region, as we will see below, it is the bT !
bc(bT ) modification of (I) that is crucial to recover the expected relations between TMD and collinear quantities. For
the unpolarized case we find [1]

d�
dxdyd�S dz

⌘ 2z2
Z

d2qT �(qT,Q, S ) = 2z2 W̃OPE
UU (b0min,Q)LO + O(↵s(Q)) + O((m/Q)p)

=
2↵2

em

yQ2 (1 � y + y2/2)
X

j

e2
j f j

1 (x; µc) Dh/ j
1 (z; µc) + O(↵s(Q)) + O((m/Q)p) , (45)

where µc ⌘ limbT!0 µ̄ with µ̄ given in (35). This agrees with the result in [26]. Note that “O(↵s(Q))” includes the
next-to-leading order (NLO) corrections to the coe�cients C̃ and hard factors H along with the terms in the second
and third lines of Eq. (44b) (since both are unsuppressed only at large qT ), and the O((m/Q)p) correction is from
replacing W̃UU(b0min,Q) with W̃OPE

UU (b0min,Q) [1]. This result was first derived for the iCSS formalism in Ref. [1].
We now extend this to the Sivers case and obtain

dhPh? ��(S T )i
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⌘ 2
Z
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Z
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where again we confirm the previous LO calculations in the literature [54]. Note as before that “O(↵s(Q))” includes the
NLO corrections to the coe�cients C̃ and hard factors H along with the terms in the second and third lines of Eq. (44b),
and the O((m/Q)p0 ) correction is from replacing W̃siv

UT(b0min,Q) with W̃siv,OPE
UT (b0min,Q). In going from the second to

the third line we exploited a well-known relation used in Bessel weighting [28],
R 1

0 dqT qT Jn(qT b0T ) Jm(qT bT ) =
�nm �(bT � b0T )/bT .

We emphasize that it was crucial in (38) that the bT in (qT · bT) not get replaced by bc(bT ) in order to achieve the
result (46). This manifests itself in the second line of (46), where the factor (qT bT ) appears instead of (qT bc(bT )). If,
on the other hand, the bT ! bc(bT ) replacement was made in (qT · bT), the third line in (46) would give a divergent
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3.2. Agreement between TMD and collinear results
We start with the cross section in Eq. (43), which can be written as
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Note that at small qT ⌧ Q, the second and third lines of (44b) are suppressed by qT /Q compared to the first line.
Since they only become sizable for larger qT , the second and third lines contribute at O(↵s(Q)). Therefore, the LO
part of any (possibly weighted) qT -integration of �(qT,Q, S ) will be from the first line of (44b).

We now show that the improvements of Sec. 3.1 resolve the problems in the original CSS formalism (see Sec. 2.2)
with integrating �(qT,Q, S ), as well as the TMD functions, over transverse momentum. While ⌅(qT /Q) and X(qT /m)
in (II), (III) are needed to help accurately describe the intermediate qT region, as we will see below, it is the bT !
bc(bT ) modification of (I) that is crucial to recover the expected relations between TMD and collinear quantities. For
the unpolarized case we find [1]
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NLO corrections to the coe�cients C̃ and hard factors H along with the terms in the second and third lines of Eq. (44b),
and the O((m/Q)p0 ) correction is from replacing W̃siv

UT(b0min,Q) with W̃siv,OPE
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We emphasize that it was crucial in (38) that the bT in (qT · bT) not get replaced by bc(bT ) in order to achieve the
result (46). This manifests itself in the second line of (46), where the factor (qT bT ) appears instead of (qT bc(bT )). If,
on the other hand, the bT ! bc(bT ) replacement was made in (qT · bT), the third line in (46) would give a divergent
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NLO corrections to the coe�cients C̃ and hard factors H along with the terms in the second and third lines of Eq. (44b),
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We emphasize that it was crucial in (38) that the bT in (qT · bT) not get replaced by bc(bT ) in order to achieve the
result (46). This manifests itself in the second line of (46), where the factor (qT bT ) appears instead of (qT bc(bT )). If,
on the other hand, the bT ! bc(bT ) replacement was made in (qT · bT), the third line in (46) would give a divergent
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Agrees with collinear twist-3 result at leading order

Z.-B.Kang,Vitev, Xing,PRD(2013)

✦ Collins, Gamberg,  Prokudin, Sato, Rogers, Wang PRD 2016

✦  Gamberg , Metz, Pitonyak,  Prokudin  … 2017 

Agreement between TMD and Collinear results

✦ Relies on further modifications of  W+Y construction see 



Comments

✦ With our method, the redefined W term allowed us  to construct a relationship 
between integrated-TMD-factorization formulas and standard collinear factorization 
formulas, with errors relating the two being suppressed by powers of 1/Q 

✦ Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the 
usual ones of factorization derivations. We preserve transverse-coordinate space 
version of the W term, but only modify the way in which it is used 

✦ We have a new  now applied to transverse  polarized phenomena 

✦ We are able to recover the well-known relations between TMD and collinear 
quantities one expects from the leading order parton model picture operator 
definition 

✦ We recover the LO collinear twist 3 result from a weighted qT integral of the 
differential cross section and derive the well known relation between the TMD 
Sivers function and the collinear twist 3 Qiu Sterman function from iCSS approach
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• Now we can extend the power suppression error estimate down to qT = 0 to get

d�(qT . Q,Q) = W (qT , Q) + Y (qT , Q) +O

✓
m

Q

◆c

d�(qT , Q)

Use analytic expressions for the 
collinear correlation functions,
from GRV ZPC 1992  for up-quark 
pdf and from KKP NPB 2001 for the 
up-quark-to-pion ffs.

Implementation of  Collins, Gamberg,  Prokudin, Sato, Rogers, Wang



Has a normal collinear factorization in 
terms of collinear pdfs w/ hard scale

Has implications for modelling TMD and fitting
With modified W+Y we can match to the collinear formalism

Phys. Rev. D 94 (2016) for details
Collins, Gamberg, Prokudin, Sato, Rogers, Wang

bc(bT ) =
q

b2T + b20/ (C5Q) =) bc(0) ⇠ 1/Q

 B.C. Introduce small b-cuttoff



The  “W +Y” prescription to describing the qT dependent cross section now being 
intensely studied using the language of TMD factorization to SIDIS has its origin in 
the study of generic high mass systems (vector bosons, Higgs particles, . . . ) 
produced in Drell Yan collisions (e.g. at the Tevatron and now at the LHC)

✦ Collins, Soper, Sterman NPB 1985, 

✦ Altarelli et al, NPB 1984 
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Review of Resummation



In the large-qT region (qT ∼ mV ), where the transverse momentum is of the order of 
the vector boson mass mV, one applies conventional perturbation theory to get at 
the qT  dependent cross section QCD corrections are known up to O(αS

2 ) and in 
some case beyond…

Review of Resummation

However, the bulk of the vector boson cross section is produced in small-qT region     
(qT ≪ mV ), where convergence of the fixed-order expansion is spoiled by the presence 

of large logarithmic corrections,  αS
n lnm(m2

V /qT
2 ) of soft & collinear origin



To obtain reliable predictions, these logarithmically-enhanced terms have to be 
evaluated and systematically “resummed" to all orders in perturbation theory

For large energy and Q2  the “resummed” and fixed-order calculations, valid at small and 
large  qT , respectively, can be consistently matched at intermediate values of qT  to 
achieve a uniform theoretical accuracy for the entire range of transverse momenta 

 

However at  lower phenomenologically interesting values of Q, neither of                         
the ratios             or               are necessarily very small and matching can be 
problematic

It is this matching that I will focus on in the context of TMD factorization physics and its 
connection to collinear limit.

In recent years, the treatment (“resummation”) of small-qT logarithms has been 
reformulated by using SCET & and TMD factorization

qT /Q m/qT

Review of Resummation



Review of Resummation

At large transverse momentum qT  one calculates the cross section 
for W & Z production  by factorized conventional pert. theory

du

dqT

P. B. Ar nol d, R. P. Kauf f man / WandZpr oduct i on 383

Fi g. 1 . Some exampl es of Feynman di agr ams cont r i but i ng t o Wor Zpr oduct i on at non- zer o qT: ( a, d)
, qq - wg, ( b) qg - Wq, ( c) qq- Wgg.

At l ow qT, however , t he conver gence of t he per t ur bat i on ser i es det er i or at es.
The domi nant cont r i but i ons t o eq. ( 1. 1) have t he f or m

awas
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( 1 . 2)
qT

 

~ qT

 

YT

 

~
qT

wher e Q2 i s t he squar ed W- or Z- mass. Thi s i s known as t he l eadi ng- l ogar i t hm
appr oxi mat i on t o da/ dqT. The conver gence of t he ser i es i s gover ned by
as l n2( Q2/ q-2T) r at her t han si mpl y as . At suf f i ci ent l y l ow qT, as l n2( Q2/ q-2T) wi l l be
l ar ge even when as i s smal l . The l ogar i t hms ar i se because ever y f act or of as
cor r esponds t o t he addi t i on of ei t her a r eal or vi r t ual gl uon i n di agr ams, and each
gl aon pot ent i al l y has bot h mass and col l i near i nf r ar ed si ngul ar i t i es . Bot h si ngul ar i -
t i es ar e l ogar i t hmi c and, f or t he i ncl usi ve di st r i but i on, ar e ef f ect i vel y cut cuf f by t he
t ot al t r ansver se moment umqT.

That t he convent i onal per t ur bat i ve expr essi on f or du/ dqT must go awr y at ver;
smal l qT may al so be not ed f r omt he over al l f act or of 11q.2T i n ( 1 . 2) . The i nt egr al
over qT i s t her ef or e i nf i ni t e. For mal l y, t he di ver gence i s cancel l ed by a negat i ve
del t a f unct i on si ngul ar i t y at t he of i gi n. By pl aci ng an ar bi t r ar i l y smal l cut on qT,
however , one can st i l l f or mal l y obt ai n an ar bi t r ar i l y l ar ge cr oss sect i on . Thi s
unphysi cal r esul t ar i ses i n any f i ni t e or der of convent i onal per t ur bat i on t heor y.

For t unat el y, t he coef f i ci ent s v i of t he l eadi ng- l ogar i t hmappr oxi mat i on ( 1 . 2) ar e
not i ndependent and i t i s possi bl e t o sumt he ser i es exact l y so t hat i t may be
appl i ed even when as l n2( Q2/ q2T) i s l ar ge. I n par t i cul ar , al l t he Vi may be
expr essed i n t er ms of t , , . The r esul t of summi ng t he ser i es cur es t he di ver gence as
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is given in Section 2.3. Section 2.4 is devoted to the finite component of the cross section. In
Section 3 we apply the resummation formalism to the production of the SM Higgs boson at the
LHC. In Section 4 we draw our conclusions. In Appendix A we discuss the details of the ex-
ponentiation in the general multiflavour case. In Appendix B we illustrate the calculation of the
Bessel integrals required in the computation of the perturbative expansion of the resummed cross
section.

2. Transverse-momentum resummation

The formalism [1,33] that we use to compute the qT distribution of the Higgs boson applies
to more general hard-scattering processes. Therefore, we describe it in general terms.

2.1. The resummation formalism: from small to large values of qT

We consider the inclusive hard-scattering process

(1)h1(p1) + h2(p2) → F(M,qT ) + X,

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the trig-
gered final-state system F , accompanied by an arbitrary and undetected final state X. We denote
by

√
s the centre-of-mass energy of the colliding hadrons (s = (p1 + p2)

2 ≃ 2p1p2). The ob-
served final state F is a generic system of non-QCD partons such as one or more vector bosons
(γ ∗,W,Z, . . .), Higgs particles, Drell–Yan (DY) lepton pairs and so forth. We do not consider
the production of strongly interacting particles (hadrons, jets, heavy quarks, . . . ), since in this
case the resummation formalism of small-qT logarithms has not yet been fully developed.
Throughout the paper we limit ourselves to considering the case in which only the total in-

variant mass M and transverse momentum qT of the system F are measured. According to the
QCD factorization theorem (see Ref. [53] and references therein), the corresponding transverse-
momentum differential cross section1 dσ̂F /dq2T can be written as
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,

where fa/h(x,µ2F ) (a = qf , q̄f , g) are the parton densities of the colliding hadrons at the
factorization scale µF , dσ̂Fab/dq2T are the partonic cross sections, ŝ = x1x2s is the partonic
centre-of-mass energy, and µR is the renormalization scale. Throughout the paper we use parton
densities as defined in the MS factorization scheme, and αS(q

2) is the QCD running coupling in
the MS renormalization scheme.
The partonic cross section is computable in QCD perturbation theory as a power series ex-

pansion in αS. We assume that at the parton level the system F is produced with vanishing qT

(i.e., with no accompanying final-state radiation) in the lowest-order approximation, so that the

1 To be precise, when the system F is not a single on-shell particle of massM , what we denote by dσ̂F /dq2T is actually
the differential cross section M2 dσ̂F /dM2 dq2T .
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At low qT , however, the convergence of the perturbation series 
deteriorates as dominant contributions have the form 

The convergence of the series is governed by                rather 
than simply 

du

dqT

P. B. Ar nol d, R. P. Kauf f man / WandZpr oduct i on 383

Fi g. 1 . Some exampl es of Feynman di agr ams cont r i but i ng t o Wor Zpr oduct i on at non- zer o qT: ( a, d)
, qq - wg, ( b) qg - Wq, ( c) qq- Wgg.

At l ow qT, however , t he conver gence of t he per t ur bat i on ser i es det er i or at es.
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wher e Q2 i s t he squar ed W- or Z- mass. Thi s i s known as t he l eadi ng- l ogar i t hm
appr oxi mat i on t o da/ dqT. The conver gence of t he ser i es i s gover ned by
as l n2( Q2/ q-2T) r at her t han si mpl y as . At suf f i ci ent l y l ow qT, as l n2( Q2/ q-2T) wi l l be
l ar ge even when as i s smal l . The l ogar i t hms ar i se because ever y f act or of as
cor r esponds t o t he addi t i on of ei t her a r eal or vi r t ual gl uon i n di agr ams, and each
gl aon pot ent i al l y has bot h mass and col l i near i nf r ar ed si ngul ar i t i es . Bot h si ngul ar i -
t i es ar e l ogar i t hmi c and, f or t he i ncl usi ve di st r i but i on, ar e ef f ect i vel y cut cuf f by t he
t ot al t r ansver se moment umqT.

That t he convent i onal per t ur bat i ve expr essi on f or du/ dqT must go awr y at ver;
smal l qT may al so be not ed f r omt he over al l f act or of 11q.2T i n ( 1 . 2) . The i nt egr al
over qT i s t her ef or e i nf i ni t e. For mal l y, t he di ver gence i s cancel l ed by a negat i ve
del t a f unct i on si ngul ar i t y at t he of i gi n. By pl aci ng an ar bi t r ar i l y smal l cut on qT,
however , one can st i l l f or mal l y obt ai n an ar bi t r ar i l y l ar ge cr oss sect i on . Thi s
unphysi cal r esul t ar i ses i n any f i ni t e or der of convent i onal per t ur bat i on t heor y.

For t unat el y, t he coef f i ci ent s v i of t he l eadi ng- l ogar i t hmappr oxi mat i on ( 1 . 2) ar e
not i ndependent and i t i s possi bl e t o sumt he ser i es exact l y so t hat i t may be
appl i ed even when as l n2( Q2/ q2T) i s l ar ge. I n par t i cul ar , al l t he Vi may be
expr essed i n t er ms of t , , . The r esul t of summi ng t he ser i es cur es t he di ver gence as

The coefficients vi of the “leading-logarithm” approximation are not 
independent and it is possible to sum the series exactly so that it 
may be applied even when                is large
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Fixed order theory calculation “asymptotically” 
diverges at low qT cannot by itself describe data
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This reorganization and “resummation” was carried out by 
Collins and Soper in b space;  the result is

 … TMD factorization
This expression contains the OPE of the Fourier 
transforms of the TMDs with soft gluon resummation in 
exponent.  See Ted’s talk …

From Resummation to CSS

✦ Collins Soper Sterman NPB 1985

✦ Collins Soper, NPB 1982



II. GUIDING PRINCIPLES to enhanced CSS factorisation

The standard W + Y construction relies on the fact that, at very large Q, there is a broad range 
where m/qT and qT/Q are both good small expansion parameters. We suggest the following 
principles to guide the choice of an improved formalism: 

1. When the W term is integrated over all qT, it should obey an ordinary collinear factorization 
property. This implies that when the scales in the pdfs and ffs are set to μ = Q, the result should 
agree with the ordinary factorization calculation for the integrated cross section to zeroth order in 
αs(Q), thereby matching the parton-model result appropriately. 

2. For qT ~ O(Q), the cross section given by W + Y should appropriately match fixed order 
collinear perturbation theory calculations for large trans- verse momentum. 

3. For very large Q, the normal W + Y construction should automatically be recovered for the m 
≪ qT ≪ Q region, to leading power in Q. 

4. The modified W term should be expressed in terms of the same coordinate space quantity W(b)  
as before, in order that operator definitions of the pdfs and ffs can be used, together with their 
evolution equations. 

5. W + Y should give a leading power approximation to the cross section over the whole range of 
qT. Fixed order expansions of Y in collinear perturbation theory are suitable for calculating Y , 
while the usual solution of evolution equations is used for W . 



• The CSS construction of W +Y  and the specific approximations are applied thru 
the operation-approximators  TTMD  and Tcoll   that apply in their “design” 
regions m~qT ≪ Q and  m ≪ qT ~ Q respectively which we emphasize by the                            
range of the argument  above

d�(m . qT . Q,Q) = W (qT , Q) + Y (qT , Q) +O
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Start w/ review of CSS W + Y definitions
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✦ Collins 2011 Cambridge Press 
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