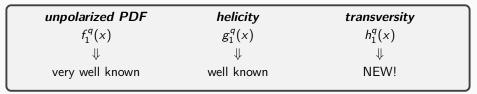


# **Transversity and** Λ **polarization at COMPASS** TRANSVERSITY 2017

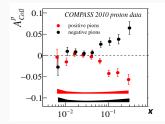
Andrea Moretti on behalf of the COMPASS Collaboration


Department of Physics University of Trieste / INFN

- The physics case
- Data analysis
- Results
- Interpretation
- Summary

### The physics case

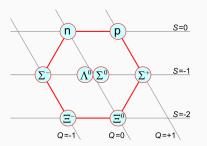
### Introduction


At leading order in collinear QCD, nucleon structure is described by three PDFs:



**Transversity**, rediscovered in early Nineties, accessible in SIDIS looking at:

- Collins and dihadron asymmetry results from HERMES and COMPASS
- Λ polarimetry


so far only preliminary results from COMPASS



[COMPASS coll., Phys.Lett., B744:250, 2015]

[Artru and Mekhfi, 1990] [Jaffe and Ji, 1992] [Baldracchini et al., 1981]

### ∧ self-analyzing decay



As reveal their polarization  $P_{\Lambda}$  through an angular asymmetry in the emission of the decay protons (*self-analyzing decay*):

$$rac{dN}{d\cos heta} \propto 1 + lpha P_{\Lambda}\cos heta$$

 $\alpha = 0.642 \pm 0.013$  weak decay asymmetry parameter;  $\theta$  angle between  $\Lambda$  spin and proton momentum in  $\Lambda$  rest frame.

Andrea Moretti

### Transversity-transmitted transverse polarization

In the **SIDIS** process  $\ell + p^{\uparrow} \rightarrow \ell' + \Lambda + X$ 

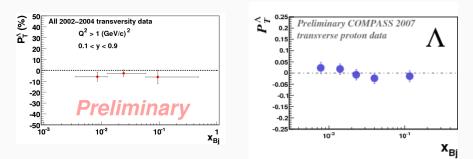
- if the target nucleon is transversely polarized, and
- if transversity is different from zero

the quark polarization can be transmitted to the  $\Lambda$  according to the expression:

$$P_{\Lambda}^{raw}(x,z) = f P_T D_{NN} \frac{\sum_{q(\bar{q})} e_q^2 h_1^{q(\bar{q})}(x) H_1^{\Lambda/q(\bar{q})}(z)}{\sum_{q(\bar{q})} e_q^2 f_1^{q(\bar{q})}(x) D_1^{\Lambda/q(\bar{q})}(z)}$$

(with f dilution factor,  $P_T$  target polarization and  $D_{NN}$  depolarization factor).

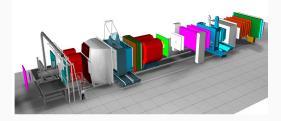
Such  $\Lambda$  transversity-transmitted transverse polarization can be accessed through the angular distribution of the decay proton.


$$P_{\Lambda}^{raw}(x,z) = f P_T D_{NN} \frac{\sum_{q(\bar{q})} e_q^2 h_1^{q(\bar{q})}(x) H_1^{\Lambda/q(\bar{q})}(z)}{\sum_{q(\bar{q})} e_q^2 f_1^{q(\bar{q})}(x) D_1^{\Lambda/q(\bar{q})}(z)}$$

This formula holds true:

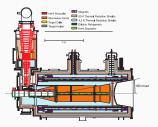
- assuming collinear kinematics ( $\Lambda$  parallel to  $\gamma$ )
- in the current fragmentation region our choice: z > 0.2 and x<sub>F</sub> > 0

It's a statistically limited measurement, but still interesting.


So far, only preliminary results from COMPASS experiment: (on deuteron and on proton target - 2007 only, raw asymmetries)



In this talk: results from the complete COMPASS proton data set.

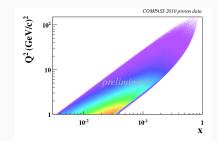

### **COMPASS** experiment @ CERN

COMPASS is a two-stage, fixed target spectrometer located in CERN North Area, at the end of SPS M2 beamline. Designed for hadron spectroscopy and structure, but very versatile and universal.

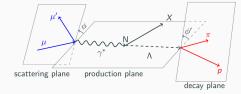


#### Main features:

- 1. muon, electron or hadron beams (20-250 GeV),
- solid state polarized targets as well as liquid hydrogen target,
- 3. advanced tracking and PID.

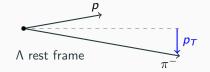



### Data analysis


### $\Lambda$ selection procedure

#### **DIS** events

- $Q^2 > 1 \; ({\rm GeV/c})^2;$
- x > 0.003;
- $W > 5 \text{ GeV}/c^2$ ;
- 0.1 < y < 0.9.

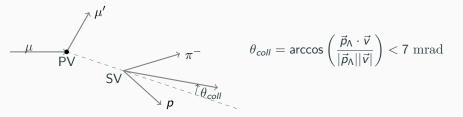



**Final state candidates:** two charged particles from the decay vertex ( $V^0$ s).



To reconstruct the  $V^0$ s, the 2 outgoing particles must have:

- opposite charge;
- $\bullet\,$  momenta larger than 1 GeV/c;
- *p<sub>T</sub>* >23 MeV/c to reject *e<sup>+</sup>e<sup>-</sup>* from *γ* conversion.



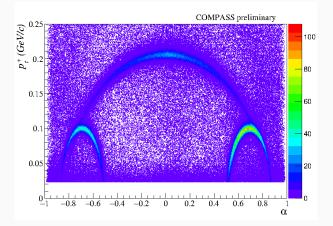

#### FURTHER REQUESTS:

- collinearity angle  $\theta_{coll} < 7 \text{ mrad}$ ;
  - PID with RICH detector.

### $\Lambda$ selection procedure

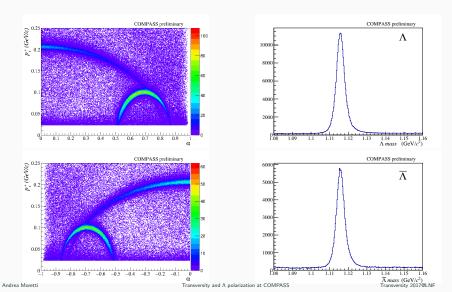
• To better select the  $\Lambda$ s stemming from the interaction vertex: cut on the *collinearity angle*  $\theta_{coll}$  between the reconstructed  $\Lambda$  direction  $\vec{p}_{\Lambda}$  and the vector  $\vec{v}$  linking interaction and decay vertices.




• Particle identification with RICH

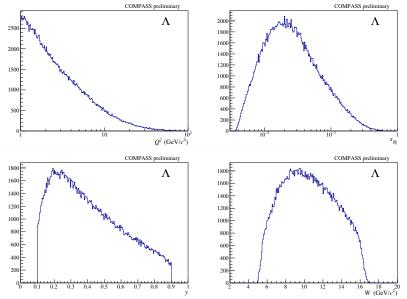
- for As,  $h^+$  must not be an  $e^+$ ,  $\pi^+$ ,  $K^+$
- for  $\bar{\Lambda}$ s,  $h^-$  must not be an  $e^-$ ,  $\pi^-$ ,  $K^-$

### **Armenteros plot**


Scatter-plot between the longitudinal momentum asymmetry  $\alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$  and the transverse momentum  $p_T$  of one of the decay particles, in the  $V^0$  system.

As on the right,  $\overline{\Lambda}$ s on the left and the leftover  $K_s^0$ s on the largest, symmetric arc.

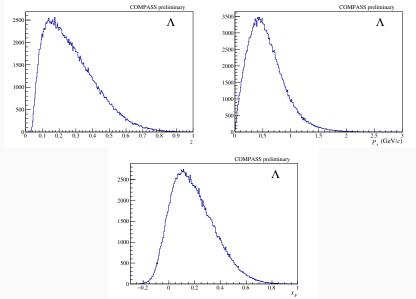



### Final $\Lambda$ - $\overline{\Lambda}$ candidates

In the mass peak:  $\sim$  305  $\cdot 10^3 \Lambda s,$   $\sim$  154  $\cdot 10^3 \bar{\Lambda} s.$  Very clear signal with low background.



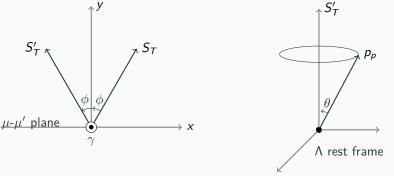
12


### Kinematic distributions: $Q^2$ , x, y and W for $\Lambda$ s



Andrea Moretti

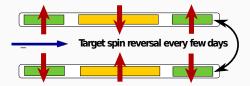
Transversity and A polarization at COMPASS


#### Kinematic distributions: z, $p_t$ and $x_F$ for $\Lambda$ s



### **Extraction of polarization**

 $P_{\Lambda}$  has to be measured in the  $\Lambda$  rest frame as an angular asymmetry in the distribution of the proton wrt the outgoing quark spin direction. [Mulders-Tangerman, 1996]


- Initial quark spin  $S_T$  parallel to the target polarization vector (transverse)
- Final quark spin  $S'_T$ : reflection of  $S_T$  wrt the normal to the scattering plane
- Event-by-event procedure



Polarization extracted using standard COMPASS methods that take advantage of:

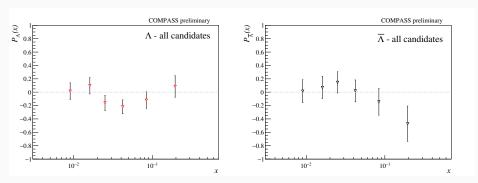
- polarized target geometry and
- polarization reversal during data taking

to get rid of the spectrometer acceptance.



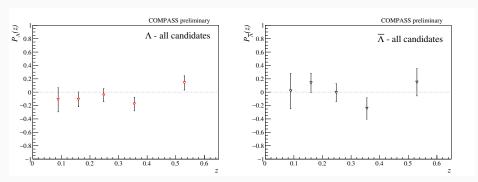
Standard studies on systematic effects give  $\sigma_{syst} < 0.8 \sigma_{stat}$ .

### Results

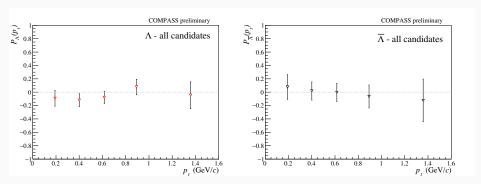

Polarization has been measured as a function of x, z and  $p_t$  for both As and  $\overline{As}$ .

$$P_{\Lambda}^{raw}(x,z) = f P_T D_{NN} \frac{\sum_{q(\bar{q})} e_q^2 h_1^{q(\bar{q})}(x) H_1^{\Lambda/q(\bar{q})}(z)}{\sum_{q(\bar{q})} e_q^2 f_1^{q(\bar{q})}(x) D_1^{\Lambda/q(\bar{q})}(z)}$$

**Note:** Polarization plots are given here divided by f,  $P_T$  and  $D_{NN}$  (spin transfer).


$$P_{\Lambda}(x,z) = \frac{\sum_{q(\bar{q})} e_q^2 h_1^{q(\bar{q})}(x) H_1^{\Lambda/q(\bar{q})}(z)}{\sum_{q(\bar{q})} e_q^2 f_1^{q(\bar{q})}(x) D_1^{\Lambda/q(\bar{q})}(z)}$$

 $P_{\Lambda(\bar{\Lambda})}(x)$ 




Andrea Moretti

 $P_{\Lambda(\bar{\Lambda})}(z)$ 



 $P_{\Lambda(\bar{\Lambda})}(p_t)$ 



Polarization has also been measured in six other kinematic regions:

- high z: z > 0.2 and  $x_F > 0 \leftarrow$  ("current" fragmentation region)
- low z: z < 0.2 or  $x_F < 0 \leftarrow$  ("target" fragmentation region)
- high x:  $x > 0.032 \leftarrow (h_1^u \text{ different from zero})$
- low x: x < 0.032
- high  $p_t$ :  $p_t > 1 \text{ GeV/c}$
- low  $p_t$ :  $p_t < 1 \text{ GeV/c}$

In general, as in the case of all  $\Lambda$  and  $\bar{\Lambda}$  candidates, polarizations are compatible with zero.

### Interpretation

Focus on  $P_{\Lambda}(x)$  for high z (z > 0.2 and  $x_F > 0$ )

$$P_{\Lambda}(x,z) = \frac{\sum_{q(\bar{q})} e_q^2 h_1^{q(\bar{q})}(x) H_1^{\Lambda/q(\bar{q})}(z)}{\sum_{q(\bar{q})} e_q^2 f_1^{q(\bar{q})}(x) D_1^{\Lambda/q(\bar{q})}(z)}$$



Andrea Moretti

Transversity 2017@LNF 22

We KNOW that

- $h_1^u(x)$  and  $h_1^d(x)$  are different from zero at large x,
- $h_1^{\bar{u}}$  and  $h_1^{\bar{d}}$  compatible with zero.

We ASSUME that

- $h_1^{\overline{s}}(x) \approx 0$ ,
- negligible contribution from  $\bar{q}$  in unpolarized fragmentation process,
- isospin symmetry at work:  $D_1^{\Lambda/u} = D_1^{\Lambda/d}$  and  $H_1^{\Lambda/u} = H_1^{\Lambda/d}$ ,
- $D_1^{\Lambda/s} = c_1 \cdot D_1^{\Lambda/u}$ , with constant  $c_1$ . (Analogously, if  $H_1^{\Lambda/u} \neq 0$ ,  $H_1^{\Lambda/s} = c_2 \cdot H_1^{\Lambda/u}$ )

The quantity  $1/c_1$  usually referred to as *strangeness suppression factor*. In [J.-J.Yang,Phys.Rev.,D65,2002], e.g., it is put at 0.44.

### **Three different hypotheses**

With these ingredients we can write a simplified expression for  $P_{\Lambda}$ :

$$P_{\Lambda}(x,z) = \frac{[4h_1^u(x) + h_1^d(x)]H_1^{\Lambda/u}(z) + h_1^s(x)H_1^{\Lambda/s}(z)}{[4f_1^u(x) + f_1^d(x) + c_1 \cdot f_1^s(x)]D_1^{\Lambda/u}(z)}$$

Now, we can interpret the data according to three different hypotheses:

- 1. Transversity is a valence object,
- 2. Polarization is entirely due to the s quark ( $\rightarrow$  SU(6)),
- 3. Quark-diquark model [J.-J. Yang, Nucl.Phys., A699:562-578, 2002]

Note: simplified expression even more interesting on a deuteron target!

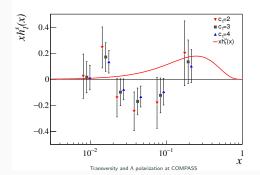
$$\mathcal{P}_{\Lambda}^{deut}(x,z) = \frac{5(h_1^u + h_1^d)H_1^{\Lambda/u} + 2h_1^sH_1^{\Lambda/s}}{5(f_1^u + f_1^d)D_1^{\Lambda/u} + 2f_1^sD_1^{\Lambda/s}} \approx \frac{2h_1^sH_1^{\Lambda/s}}{[5f_1^u + 5f_1^d + 2c_1 \cdot f_1^s]D_1^{\Lambda/u}}.$$

If transversity is a valence object, then 
$$h_1^s \approx 0$$
 and  $P_{\Lambda}(x) = \frac{\left[4h_1^u(x) + h_1^d(x)\right]}{\left[4f_1^u(x) + f_1^d(x) + c_1 \cdot f_1^s(x)\right]} \frac{\int dz H_1^{\Lambda/u}(z)}{\int dz D_1^{\Lambda/u}(z)}$ 

$$\Rightarrow \mathcal{R}(\mathbf{x}) = \frac{\int dz H_1^{\Lambda/u}(z)}{\int dz D_1^{\Lambda/u}(z)} = \frac{\left[4f_1^u(x) + f_1^d(x) + c_1 \cdot f_1^s(x)\right]}{\left[4h_1^u(x) + h_1^d(x)\right]} P_{\Lambda}(\mathbf{x})$$

$$\frac{c_1 < \mathcal{R} >}{2 \quad -0.39 \pm 0.73}$$

$$3 \quad -0.38 \pm 0.75$$


$$4 \quad -0.37 \pm 0.76$$

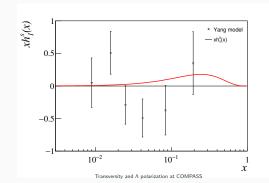
First extraction of  $\mathcal{R}$ , largely compatible with zero, weak dependence on  $c_1$ .

#### Hypothesis #2: polarization due to *s* quark only

If 
$$P_{\Lambda}$$
 is due to *s* quark only,  
then  $H_1^{\Lambda/u}(z) = H_1^{\Lambda/d}(z) = 0$ .  $P_{\Lambda}(x) = \frac{c_1 \cdot h_1^s(x) D_1^{\Lambda/u}(z)}{\left[4f_1^u(x) + f_1^d(x) + c_1 \cdot f_1^s(x)\right] D_1^{\Lambda/u}(z)}$   
Assuming  $H_1^{\Lambda/s}(z) = D_1^{\Lambda/s}(z)$ ,

$$\Rightarrow h_1^s(x) = \left[\frac{4f_1^u(x) + f_1^d(x)}{c_1} + f_1^s(x)\right] P_{\Lambda}(x)$$




Transversity 2017@LNF 26

### Hypothesis #3: Quark-diquark Yang model

 $P_{\Lambda}$  is written here in terms of given flavour (F) and spin structure functions ( $\hat{W}$ ):

$$P_{\Lambda}(x,z) = \frac{\left(4h_{1}^{u}(x)+h_{1}^{d}(x)\right)\cdot\frac{1}{4}\left[\hat{W}_{S}^{(u)}(z)F_{S}(z)-\hat{W}_{V}^{(u)}(z)F_{M}(z)\right]+h_{1}^{s}(x)\hat{W}_{S}^{(s)}(z)}{(4f_{1}^{u}(x)+f_{1}^{d}(x))\cdot\frac{1}{4}[F_{S}(z)+3F_{M}(z)]+f_{1}^{s}(x)}$$

 $\Rightarrow h_1^s(x)$  can be accessed.



Transversity 2017@LNF 27

## Summary

### Summary

- *Transversity-transmitted transverse* polarization of Λ hyperons in SIDIS measured using the whole COMPASS transversely polarized proton data set.
- Λ and Λ polarizations evaluated in their rest frame along the outgoing quark spin; measured in seven kinematic regions, generally compatible with zero,
- Three main hypotheses to interpret  $\Lambda$  polarization results:
  - 1. The first (transversity a valence object) gives the integrated ratio of the fragmentation functions  $H_1^{\Lambda/u}$  and  $D_1^{\Lambda/u}$ , compatible with zero,
  - 2. The second (only *s* quark counts) allows for an extraction of  $xh_1^s(x)$  dependent on the parameter  $c_1 = D_1^{\Lambda/s}/D_1^{\Lambda/u}$ ,
  - The third (quark-diquark model) again gives xh<sub>1</sub><sup>s</sup>(x), without assumptions on the fragmentation functions.
- Even if definite conclusions cannot be drawn, due to the statistical uncertainty, this is a fresh contribution to a longstanding issue,
- Ratios of fragmentation functions are extracted here for the first time,
- Much could be studied with more deuteron data.

# thank you