TRANSVERSITY 2017

$5^{\text {th }}$ International Workshop on Transverse Polarization Phenomena in Hard Processes

INFN - Laboratori Nazionali di Frascati, Frascati (Italy) December 11-15, 2017

First extraction of Transversity from a global fit

Marco Radici
 INFN - Pavia

in collaboration with A. Bacchetta (Univ. Pavia)

the first workshop on Transversity: ECT* 2004

excerpt from CERN Courier 44 n. 8 (2004) 51

organizers: - E. De Sanctis

- W.-D. Novak
- M. Radici

- G. van der Steenhoven

the workshop of the famous Trento Conventions

Bacchetta et al., P.R. D70 (04) 117504

The Transversity Council of Trento at the ECT* (2004)

During workshops experts get together to present the outcome of recent work, confront and discuss (new) ideas, get inspiration for further work, and incidentally start new collaborations. However, sometimes the conditions are so favorable that all workshop activities seem to be cooperating to accomplish a well defined goal.
The latter feeling occurred during the International Workshop on Transversity: New Developments in Nucleon Spin Structure in June 2004 that brought together some 40 leading experimental and theoretical physicists in the field of nucleon spin structure at the European Center for Theoretical Physics (ECT*). The ECT* is located in the beautiful recently renovated Villa Tambosi in Villazzano, which is a nice sub
At the workshop many very interesting talks were presented by renown interesting talk them M. Anselmino, J. Collins, M. Diehl, N.C.R. Makins, C.A. Miller, P.J.G. Mulders), supplemented by shorter -but not less inspiring- talks of PhD students and postdocs. The talks illustrated and substantiated the rapid developments in the new field of transverse spin physics. In fact, the results presented were so encouraging
that the spontaneous idea emerged to devote part of the scheduled (and un scheduled) discussion time to the preparation of a document, soon christened The Trento Convention, containing al relevant notations and conventions that are crucial to achieve further progress in this field.

John Collins and Andy Miller discussing
spin physics during the workshop Such a document, which is now well under way, will soon be submitted to the e-print archives. It has been set up by a few representatives (A. Bacchetta and others), but it is virtually coauthored by all the workshop participants. Just like the famous First Vatican Council that took common language for an unambiguous comparison between theory and experiment. It will be an indispensable tool to boost further developments in this area
But why is a seemingly technical subject as transverse
recent cosmological observations (by the WMAP satellite for in matter represents only a small fraction (4\%) of the universe. Of this small percentage only a minute fraction can be attributed to the mass of the quarks, for which -most likely- the Higgs mechanism has to be invoked. In fact, the remaining, i.e. by far largest, part of the mass of the visible universe has a dynamical origin. It is the dynamics of the quarks and gluons in the nucleon, as governed by the theory of strong interactions - Quantum Chromodynamics (QCD),

a phase transition in 3D studies as in PDFs

3D [TMDs]

a phase transition in 3D studies as in PDFs

3D [TMDs)

a phase transition in 3D studies as in PDF

3D (TMDs)

1 D [PDF]

extraction from 2-hadron-inclusive data

correlation \boldsymbol{S}_{T} and $\boldsymbol{R}_{T} \rightarrow$ azimuthal asymmetry

extraction from 2-hadron-inclusive data

correlation \boldsymbol{S}_{T} and $\boldsymbol{R}_{T} \rightarrow$ azimuthal asymmetry

extraction from 2-hadron-inclusive data

correlation \boldsymbol{S}_{T} and $\boldsymbol{R}_{T} \rightarrow$ azimuthal asymmetry
H^{+}

advantage of 2-hadron-inclusive mechanism

factorized formulas

Dihadron fragmentation collinear framework

Collins effect
TMD framework

extraction from 2-hadron-inclusive data

Jaffe, Jin, Tang, P.R.L. 80 (98) 1166
Radici, Jakob, Bianconi, P.R.D65 (02) 074031 Bacchetta \& Radici, P.R. D67 (03) 094002
factorized formulas

DGLAP evolution connects h_{1} \& $H_{1}{ }^{*}$ at different scales

Ceccopieri, Radici, Bacchetta, P.L.B650 (07) 81

extraction from 2-hadron-inclusive data

SIDIS $\ell H^{\uparrow} \rightarrow \ell^{\prime}\left(h_{1} h_{2}\right) X$

Airapetian et al., JHEP 0806 (08) 017

Adolph et al., P.L. B713 (12)
Braun et al., E.P.J. Web Conf. 85 (15) 02018

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\mathrm{h}_{1} h_{2}\right) X$

Vossen et al., P.R.L. 107 (11) 072004
Seidl et al., P.R. D96 (17) 032005

$$
f_{1} \times h_{1} \times H_{1}^{\varangle}
$$

extraction from 2-hadron-inclusive data

SIDIS $\ell H^{\uparrow} \rightarrow \ell^{\prime}\left(h_{1} h_{2}\right) X$

Airapetian et al., JHEP 0806 (08) 017

Adolph et al., P.L. B713 (12)
Braun et al., E.P.J. Web Conf. 85 (15) 02018

$$
e+e-\rightarrow\left(h_{1} h_{2}\right) X
$$

electron

Vossen et al., P.R.L. 107 (11) 072004 Seidl et al., P.R. D96 (17) 032005
$\mathrm{D}_{1} 9$ from Montecarlo

take-away message

SIDIS $\ell H^{\uparrow} \rightarrow \ell^{\prime}\left(h_{1} h_{2}\right) X$

$$
\mathrm{e}+\mathrm{e}-\rightarrow\left(h_{1} h_{2}\right) X
$$

first extraction of transversity from a global fit of these data

the kinematics

Braun et al., E.P.J. Web Conf. 85 (15) 02018

the kinematics

Braun et al., E.P.J. Web Conf. 85 (15) 02018

choice of functional form

$$
\begin{array}{r}
h_{1}^{q_{v}}\left(x ; Q_{0}^{2}\right)=F(x) \\
{\left[\mathrm{SB}^{q}(x)+\overline{\mathrm{SB}}^{\bar{q}}(x)\right]} \\
\downarrow \text { Soffer Bound }
\end{array}
$$

$$
\begin{aligned}
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)= & \left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \\
& \text { MSTW08 DSSV }
\end{aligned}
$$

choice of functional form

$$
h_{1}^{q_{v}}\left(x ; Q_{0}^{2}\right)=F(x)\left[\mathrm{SB}^{q}(x)+\overline{\mathrm{SB}}^{\bar{q}}(x)\right]
$$

$$
\begin{aligned}
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)= & \left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \\
& \text { MSTW08 DSSV }
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=\frac{N}{\max _{x}[|F(x)|]} x^{A}\left[1+B \operatorname{Ceb}_{1}(x)+C \operatorname{Ceb}_{2}(x)+D \operatorname{Ceb}_{3}(x)\right] \\
& |N| \leq 1 \Rightarrow|F(x)| \leq 1 \\
& \text { Soffer Bound satisfied at any } \mathrm{Q}^{2}
\end{aligned}
$$

choice of functional form

$$
h_{1}^{q_{v}}\left(x ; Q_{0}^{2}\right)=F(x)\left[\mathrm{SB}^{q}(x)+\overline{\mathrm{SB}}^{\bar{q}}(x)\right]
$$

$$
\begin{aligned}
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}^{q}\left(x, Q^{2}\right)= & \left|f_{1}^{q}\left(x, Q^{2}\right)+g_{1}^{q}\left(x, Q^{2}\right)\right| \\
& \text { MSTW08 DSSV }
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=\frac{N}{\max _{x}[|F(x)|]} x^{A}\left[1+B \operatorname{Ceb}_{1}(x)+C \operatorname{Ceb}_{2}(x)+D \operatorname{Ceb}_{3}(x)\right] \\
& |N| \leq 1 \Rightarrow|F(x)| \leq 1 \\
& \text { Soffer Bound satisfied at any } \mathbf{Q}^{2}
\end{aligned} \quad \operatorname{Ceb}_{n}(\mathrm{x}) \text { Cebyshev polynomial } 10 \text { fitting parameters }
$$

if $\lim _{x \rightarrow 0} x \mathrm{SB}(x) \propto x^{\bar{a}}$ then $A+\bar{a}>0.3$ grants $\int_{0}^{1} d x h_{1}^{q}\left(x ; Q^{2}\right) \equiv \delta q\left(Q^{2}\right) \quad$ is finite
this bound drastically constrains the tensor charge
with new functional form, Mellin transform can be computed analytically

choice of functional form

$d \sigma\left(\eta, M_{h}, P_{T}\right)$ typical cross section for $a+b^{\dagger} \rightarrow c^{\dagger}+d$ process

$$
\frac{d \sigma_{U T}}{d \eta} \propto \int d\left|\mathbf{P}_{T}\right| d M_{h} \sum_{a, b, c, d} \int \frac{d x_{a} d x_{b}}{8 \pi^{2} \bar{z}} f_{1}^{a}\left(x_{a}\right) h_{1}^{b}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b \uparrow \rightarrow c c^{\uparrow} d}}{d \hat{t}} H_{1}^{\varangle c}\left(\bar{z}, M_{h}\right)
$$

to be computed thousands times... usual trick: use Mellin anti-transform

$$
h_{1}\left(x, Q^{2}\right)=\int_{\mathcal{C}_{N}} d N x^{-N} h_{1}^{N}\left(Q^{2}\right) \quad N \in \mathbb{C} \quad \begin{aligned}
& \text { Stratmann \& Vogelsang, } \\
& \text { P.R. D64 (01) 114007 }
\end{aligned}
$$

choice of functional form

$d \sigma\left(\eta, M_{h}, P_{T}\right)$ typical cross section for $a+b^{\dagger} \rightarrow c^{\dagger}+d$ process

$$
\frac{d \sigma_{U T}}{d \eta} \propto \int d\left|\mathbf{P}_{T}\right| d M_{h} \sum_{a, b, c, d} \int \frac{d x_{a} d x_{b}}{8 \pi^{2} \bar{z}} f_{1}^{a}\left(x_{a}\right) h_{1}^{b}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b \uparrow \rightarrow c^{\uparrow} d}}{d \hat{t}} H_{1}^{\varangle c}\left(\bar{z}, M_{h}\right)
$$

to be computed thousands times... usual trick: use Mellin anti-transform

$$
h_{1}\left(x, Q^{2}\right)=\int_{\mathcal{C}_{N}} d N x^{-N} h_{1}^{N}\left(Q^{2}\right) \quad N \in \mathbb{C} \quad \begin{aligned}
& \text { Stratmann \& Vogelsang, } \\
& \text { P.R. D64 (01) } 114007
\end{aligned}
$$

$$
\begin{aligned}
&\left.\frac{d \sigma_{U T}}{d \eta} \propto \sum_{b} \int_{\mathcal{C}_{N}} d N\right) \int d \left\lvert\, \mathbf{P}_{T} h_{1 b}^{N}\left(P_{T}^{2}\right) \int d M_{h} \sum_{a, c, d} \int \frac{d x_{a} d x_{b}}{8 \pi^{2} \bar{z}} f_{1}^{a}\left(x_{a}\right) x_{b}^{-N} \frac{d \hat{\sigma}_{a b \uparrow \rightarrow c^{\uparrow} d}}{d \hat{t}} H_{1}^{\varangle c}\left(\bar{z}, M_{h}\right)\right. \\
& F_{b}\left(N, \eta,\left|\mathbf{P}_{T}\right|, M_{h}\right)
\end{aligned}
$$

pre-compute F_{b} only one time on contour C_{N}
this speeds up convergence and facilitates $\int \mathrm{d} N$, provided that $h_{1}{ }^{N}$ is known analytically

theoretical uncertainties

Single-Spin Asymmetry in $p-p^{\dagger}$ collisions

$$
A_{U T}\left(\eta, M_{h}, P_{T}\right)=\underbrace{d \sigma_{U T}}_{\text {section for } \mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d} \text { process }}
$$

$$
d \sigma_{0} \propto \sum_{a, b, c, d} \int \frac{d x_{a} d x_{b}}{8 \pi^{2} \bar{z}} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b \rightarrow c d}}{d \hat{t}} D_{1}^{c}\left(\bar{z}, M_{h}\right)
$$

quark $\mathrm{D}_{1} 9$ is well constrained by $\mathrm{e}^{+} \mathrm{e}^{-}$(Montecarlo) but

theoretical uncertainties

Single-Spin Asymmetry in $p-p^{\dagger}$ collisions

$$
A_{U T}\left(\eta, M_{h}, P_{T}\right)=d \sigma_{U T}
$$

$$
\begin{gathered}
\text { typical cross section for } \mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d} \text { process } \\
d \sigma_{0} \propto \sum_{a, b, c, d} \int \frac{d x_{a} d x_{b}}{8 \pi^{2} \bar{z}} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b \rightarrow c d}}{d \hat{t}} D_{1}^{c}\left(\bar{z}, M_{h}\right)
\end{gathered}
$$

quark $\mathrm{D}_{1} 9$ is well constrained by $\mathrm{e}^{+} \mathrm{e}^{-}$(Montecarlo) but
we don't know anything about the gluon $\mathrm{D}_{1^{\circ}}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right.$doesn't help..)

deteriorates our $\mathrm{e}^{+} \mathrm{e}^{-}$fit as $\mathrm{X}^{2} / \mathrm{dof}= \begin{cases}1.69 & 1.28 \\ 1.81 & 1.37 \\ 2.96 & 2.01\end{cases}$
background ρ channels

statistical uncertainty: the bootstrap method

statistical uncertainty: the bootstrap method

100 replicas

statistical uncertainty: the bootstrap method

200 replicas

statistical uncertainty: the bootstrap method

all 600 replicas

statistical uncertainty: the bootstrap method

90\% replicas

fit STAR asymmetry

X^{2} of the fit

$\mathrm{X}^{2} / \mathrm{dof}=2.08 \pm 0.09$
$x^{2} /$ d.o.f.

$x^{2} /$ d.o.f.

global fit

up

old fit
Radici et al., JHEP 1505 (15) 123
higher precision
global fit
\square insensitive to
uncertainty on gluon DI up
$\mathrm{D}_{1} \mathrm{~g}\left(\mathrm{Q}_{0}\right)=0$

$$
\mathrm{D}_{1} \mathrm{~g}\left(\mathrm{Q}_{0}\right)=\left\{\begin{array}{l}
0 \\
\mathrm{D}_{1} \mathrm{u} / 4 \\
\mathrm{D}_{1} \mathrm{u}
\end{array}\right.
$$

comparison with previous fit

	down
global fit	effect of STAR data : saturation of Soffer bound practically disappeared
old fit	

comparison with previous fit

global fit
old fit
effect of STAR data : saturation of Soffer bound practically disappeared

Radici et al., JHEP 1505 (15) 123

sensitive to uncertainty on gluon DI

$$
\begin{gathered}
D_{1} g\left(Q_{0}\right)=0 \\
D_{1} g\left(Q_{0}\right)=\left\{\begin{array}{l}
0 \\
D_{1} \mathrm{u} / 4 \\
D_{1} \mathrm{u}
\end{array}\right.
\end{gathered}
$$

comparison with previous fit

global fit
old fit
effect of STAR data : saturation of Soffer bound practically disappeared

Radici et al., JHEP 1505 (15) 123
global fit down
sensitive to uncertainty on gluon DI
$\mathrm{D}_{1} \mathrm{~g}\left(\mathrm{Q}_{0}\right)=0$
$D_{1} g\left(Q_{0}\right)=\left\{\begin{array}{l}0 \\ D_{1} u / 4 \\ D_{1} u\end{array}\right.$

$$
x h_{1}^{\alpha-\bar{d}} Q^{2}=2.4 \mathrm{GeV}^{2}
$$

need dihadron multiplicities from RHIC and better deuteron data from COMPASS

tensor charge $\delta \mathrm{q}\left(\mathrm{Q}^{2}\right)=\int \mathrm{dx} \mathrm{h}_{1} \mathrm{q}-\overline{\mathrm{q}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

tensor charge $\delta \mathrm{q}\left(\mathrm{Q}^{2}\right)=\int \mathrm{dx} \mathrm{h}_{1} q-\overline{\mathrm{q}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$

truncated

$$
\delta q^{[0.0065,0.35]} \quad Q^{2}=10
$$

isovector tensor charge $\mathrm{g}_{\mathrm{T}} \mathrm{u-d}=\delta \mathrm{u}-\delta \mathrm{d}$

1) old fit ' 15
2) global fit ${ }^{1} 17$

Kang et al., P.R.D93 (16) 014009
Anselmino et al., P.R. D87 (13) 094019
3) "TMD fit"
4) Torino fit
5) PNDME '15 Bhattacharya et al., P.R.D92 (15)
6) LHPC'12 Green et al., P.R.D86(12)
7) RQCD '14 Bali et al., P.R.D91 (15)
8) RBC-UKQCD Aoki et al., P.R.D82 (10)
9) ETMC'17 Alexandrou et al., P.R.D95 (17) 114514 ;

E P.R.D96(17) 099906
Abdel-Rehim et al., P.R.D92 (15);
E P.R.D93 (16)

isovector tensor charge $g_{\mathrm{T}} \mathrm{u-d}=\delta u-\delta d$

systematical discrepancy?

but Collins seems compatible with lattice

Lin et al., arXiv: 1710.09858

Radici et al., JHEP 1505 (15) 123

1) old fit ' 15
2) global fit ${ }^{1} 17$

Kang et al., P.R. D93 (16) 014009
Anselmino et al., P.R. D87 (13) 094019
3) "TMD fit"
4) Torino fit
5) PNDME '15 Bhattacharya et al., P.R. D92 (15)
6) LHPC'12 Green et al., P.R.D86(12)
7) RQCD '14 Bali et al., P.R.D91 (15)
8) RBC-UKQCD Aoki et al., P.R. D82 (10)
9) ETMC'17 Alexandrou et al.,P.R.D95 (17) 114514;

E P.R.D96 (17) 099906
Abdel-Rehim et al., P.R.D92 (15);
E P.R.D93 (16)

isovector tensor charge $\mathrm{g}_{\mathrm{T}}^{\mathrm{u}-\mathrm{d}}=\delta \mathrm{u}-\delta \mathrm{d}$

precision : potential for BSM searches

$$
\begin{aligned}
P^{[\mu} S^{\nu]} g_{T}^{q}\left(Q^{2}\right) & =P^{[\mu} S^{\nu]} \int_{0}^{1} d x\left[h_{1}^{q}\left(x, Q^{2}\right)-h_{1}^{\bar{q}}\left(x, Q^{2}\right)\right] \\
& =\langle P, S| \bar{q} \sigma^{\mu \nu} q|P, S\rangle
\end{aligned}
$$

tensor operator not directly accessible in tree-level CSM low-energy footprint of new physics (BSM) at higher scales ?
talk by Courtoy

precision : potential for BSM searches

$$
\begin{aligned}
P^{[\mu} S^{\nu]} g_{T}^{q}\left(Q^{2}\right) & =P^{[\mu} S^{\nu]} \int_{0}^{1} d x\left[h_{1}^{q}\left(x, Q^{2}\right)-h_{1}^{\bar{q}}\left(x, Q^{2}\right)\right] \\
& =\langle P, S| \bar{q} \sigma^{\mu \nu} q|P, S\rangle
\end{aligned}
$$

tensor operator not directly accessible in tree-level LSM low-energy footprint of new physics (BSM) at higher scales?
talk by Courtoy

Example: neutron β-decay $\mathrm{n} \rightarrow \mathrm{p} \mathrm{e} \mathrm{e}^{-}$

$\mathcal{L}_{S M}$ universal V-A $\quad \mathcal{L}_{\text {BSM }}$ new couplings: $\varepsilon_{S} 1, \varepsilon_{P S} \gamma_{5}, \varepsilon_{T} \sigma^{\mu \nu}$

$$
\bar{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e} \quad \bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) d
$$

current experimental constraint from

- radiative pion decay

Bychkov et al. (PIBETA), P.R.L. 103 (09) 051802

- neutron β decay

$$
\ldots+\varepsilon_{T} \bar{e} \sigma^{\mu \nu} \nu_{e} \quad \bar{q} \sigma^{\mu \nu} q \ldots
$$

$$
\varepsilon_{\mathrm{T}} g_{\mathrm{T}} \mathrm{u}^{\mathrm{L}} \mathrm{~d} \quad\left(\approx \mathrm{M}_{\mathrm{W}^{2}} / \mathrm{M}_{\mathrm{BSM}^{2}}\right)
$$

$$
\left|\varepsilon_{T} g_{T} u-d\right| \lesssim 5 \times 10-4
$$

Pattie et al., P.R. C88 (13) 048501

To do list

\Rightarrow use also other (multi-dimensional) data from STAR run 2011 ($s=500$) and (later) run 2012 ($\mathrm{s}=200$)
talk by Aschenauer \& Surrow

Adamczyk et al. (STAR), arXiv:1710.10215

Radici et al., P.R. D94 (16) 034012
\Rightarrow need data on $p+p \rightarrow(\pi \pi) X$ constrains gluon $D_{1} g$

To do list

= use also other (multi-dimensional) data from STAR run 2011 ($s=500$) and (later) run 2012 ($\mathrm{s}=200$)
talk by Aschenauer \& Surrow

Adamczyk et al. (STAR), arXiv:1710.10215

Radici et al., P.R. D94 (16) 034012
\Rightarrow need data on $p+p \rightarrow(\pi \pi) X$ constrains gluon $D_{1} g$
\Rightarrow refit di-hadron fragmentation functions using new data: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow(\pi \pi) \mathrm{X}$ constrains $\mathrm{D}_{1} \mathrm{q}$ (currently only by Montecarlo)
\Rightarrow use COMPASS data on πK and $K K$ channels, and from Λ^{\dagger} fragmentation: constrain strange contribution?
= explore other channels, like inclusive DIS via Jet fragm. funct.'s

Conclusions

- first global fit of di-hadron inclusive data leading to extraction of transversity as a PDF in collinear framework
- inclusion of STAR p-p ${ }^{\dagger}$ data increases precision of up channel and eliminates suspicious behavior of down; large uncertainty on down due to unconstrained gluon di-hadron fragmentation function
- tensor charge useful for low-energy explorations of BSM new physics \Rightarrow precision is an issue.
This global fit is an important step forward

Back-up

Transversity poorly known

\mathbf{f}_{1} from fits of thousands data

World data for $\mathrm{g}_{1}{ }^{\mathrm{p}}$

g_{1} from fits of hundreds data

World data for h_{1}

h_{1} from fits of tens data

extraction from 1 -hadron-inclusive data

SIDIS

Collins
N.P. B396 (93) 161

correlation \boldsymbol{S}_{T} and $\boldsymbol{P}_{h T} \rightarrow$ azimuthal asymmetry

Comparison with Collins effect

isovector tensor charge $\mathrm{g}_{\mathrm{T}} \mathrm{u}-\mathrm{d}=\delta \mathrm{u}-\delta \mathrm{d}$

isovector tensor charge $\mathrm{g}_{\mathrm{T}} \mathrm{u-d}=\delta \mathrm{u}-\delta \mathrm{d}$

isovector tensor charge $\mathrm{g}_{\mathrm{T}} \mathrm{u-d}=\delta \mathrm{u}-\delta \mathrm{d}$

