

TRANSVERSITY 2017

5th International Workshop on Transverse Polarization Phenomena in Hard Processes

INFN - FRASCATI NATIONAL LABORATORIES

December 11-15, 2017

new results on fragmentation and perspectives

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D_1 fragmentation fctn.
 - $D_{1T^{\perp}}$ spontaneous transv. pol.

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation fctn.
 - D_{1T} spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, e⁺e⁻ → h₁h₂X
 - product of D1 or of Collins FFs
 - flavor, transverse-momentum, and/or polarization tagging

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation fctn.
 - $D_1 T^{\perp}$ spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, e⁺e⁻ → h₁h₂X
 - product of D1 or of Collins FFs
 - flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^+e^- \rightarrow h_1h_2X$
- dihadron fragmentation
 gunar.schnell @ desy.de

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation fctn.
 - D_{1T}^{\pm} spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, e⁺e⁻ → h₁h₂X
 - product of D₁ or of Collins FFs
 - flavor, transverse momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, $e^+e^- \rightarrow h_1h_2X$
- dihadron fragmentation

e^+e^- annihilation at Belle

- large azimuthally symmetric geometric acceptance
- particle ID -> π , K, p results

from hadron yields to cross sections

- hadron yields observed undergo series of corrections
 - smearing unfolding [e.g., measured and true momentum might differ]
 - particle (mis)identification [e.g., not every identified pion was a pion]
 - non-qq processes [e.g., two-photon processes, $\Upsilon \rightarrow BB$, ...]
 - " 4π " correction [selection criteria and limited geometric acceptance]
 - QED radiation [initial-state radiation (ISR)]
 - optional: weak-decay removal (e.g., "prompt fragmentation")

from hadron yields to cross sections

- example: single-hadron cross sections
 - cumulative effect of correction steps

Iargest effect for mesons from acceptance and ISR correction

Iarger PID correction for protons than for mesons

single-hadron production

- before 2013: lack of precision data at (moderately) high z and at low Js
 - limits analysis of evolution and gluon fragmentation
 - limited information in kinematic region often used in semi-inclusive DIS

single-hadron production

- before 2013: lack of precision data at (moderately) high z and at low Js
 - Iimits analysis of evolution and gluon fragmentation
 - Iimited information in kinematic region often used in semi-inclusive DIS

- BaBar Collaboration, Phys. Rev. D88 (2013) 032011: π^{\pm} , K[±], p+p
- Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: π^{\pm} , K[±]
- Belle Collaboration, Phys. Rev. D92 (2015) 092007: π[±], K[±], p+p̄

Х

single-hadron production[®]

- very precise data for charged pions and kaons
- data available up to very large z (z<0.98)
- included in recent DEHSS fits
 [e.g. PRD 91, 014035 (2015)]

single-hadron production[®]

- very precise data for charged pions and kaons
- data available up to very large z (z<0.98)
- included in recent DEHSS fits
 [e.g. PRD 91, 014035 (2015)]
- new: data for protons and antiprotons
 - not (yet) included in DEHSS
 - similar z dependence as pions
 - about ~½ of pion cross sections

single-hadron production - MC comparison

pion and kaon data reasonably well described by Jetset

protons difficult to reproduce, especially at large z: MC overshoots data

- single-hadron production has low discriminating power for parton flavor
- can use 2nd hadron in opposite hemisphere to "tag" flavor
 - mainly sensitive to product of singlehadron FFs
- if hadrons in same hemisphere: dihadron
 fragmentation
 - a la de Florian & Vanni [Phys. Lett. B 578 (2004) 139]
 - a la Collins, Heppelmann & Ladinsky [Nucl. Phys. B 420 (1994) 565];
 Boer, Jacobs & Radici [Phys. Rev. D 67 (2003) 094003]

no hemisphere selection

hadron-pair production

[Phys. Rev. D92 (2015) 092007

no hemisphere selection

no hemisphere selection

no hemisphere selection

hadron-pairs: weak-decay contributions

- not all hadrons originate from uds quarks but, e.g., from D decay
 - here: only z1=z2 diagonal bins

hadron-pairs: topology comparison

- any hemisphere vs. opposite- & same-hemisphere pairs
 - same-hemisphere pairs with kinematic limit at $z_1 = z_2 = 0.5$

hadron-pairs: comparison with PYTHIA

generally good agreement at low z

at large z only present Belle and PYTHIA default tunes satisfactory

• unlike-sign pairs with clear decay and resonance structure: K_s , ρ^0 ...

Iike-sign pairs with much smoother and smaller cross sections

cross sections after (MC-based) removal of weak-decay contributions

decomposition based on PYTHIA simulation

clear differences in invariant-mass dependence between MC and data

• unlike-sign πK pairs with clear K* and increased D-decay contributions

• unlike-sign kaon pairs with (again) a decay structure from ϕ and D

like-sign kaon pairs strongly suppressed at larger z

what to further expect from Belle

- production cross sections of hyperons and charmed baryons (submitted to Phys. Rev. D, arXiv:1706.06791)
- transverse polarization of inclusively produced Λ⁰ hyperons (arXiv:1611.06648)
- π^0 and η Collins asymmetries
- k_T -dependent D_1 FFs
 - hadron-to-thrust
 - nearly back-to-back hadrons
- hadron-pair cross sections revisited: fully differential and/or differential in other variables
- helicity-dependent dihadron fragmentation: $G_{1^{\perp}}$ ("jet handedness")

backup slides

ISR corrections - PRD92 (2015) 092007

- relative fractions of hadrons as a function of z originating from ISR or non-ISR events (= energy loss less than 0.5%)
- large non-ISR fraction at large z, as otherwise not kinematically reachable (remember $z = E_h / 0.5 \sqrt{s_{nominal}}$)

ISR corrections - PRD96 (2017) 032005

non-ISR / ISR fractions based on PYTHIA switch MSTP(11)

several PYTHIA tunes used for estimate of systematic uncertainty

hadron-pair cross sections relative to pi+pi-

any hemisphere

hadron-pair cross sections relative to pi+pi-

same-hemisphere hadron pairs

subprocess contributions

like-sign di-pion cross sections

unlike-sign pi-K cross sections

like-sign pi-K cross sections

Transversity 2017 - Dec 13th, 2017

like-sign di-kaon cross sections

