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Generalized Parton Distributions (GPDs) provide information on ΔL 
to solve the proton puzzle!

Generalized Distribution Amplitudes (GDAs) <−−> s-t crossing of GPDs
           Pion GDAs are investigated in this work.

GDAs carry important physical quantities of hadrons, such as distribution 
amplitudes (DAs) and timelike form factors. �

Structure of hadrons:  3D structure    

		
Δu+ +Δd+ +Δs+ ≈0.3
Δg+ΔL≠0Spin puzzle of proton



GDA is an important quantity of hadron, it is defined as  

M. Diehl, Phys. Rep. 388 (2003), 41.
M. Diehl and P. Kroll, EPJC 73, 2397 (2013).

		

Φq z ,ξ ,W 2( ) = dx −

2π∫ e− izP
+x h(p)h(p, )|q(x − )γ +q(0)|0

z = k
+

P+ , 	ξ =
p+

P+ , 	s=W2 = (p+ p, )2 = P2

In the process !!*→h bar{h}, a hard 
part describing the process !!*→q 
bar{q} with produced collinear quark, 
and a soft part describing the production 
of the hadron h pair from a q 
bar{q}.This soft part is called 
Generalized Distribution Amplitude 
(GDA).  The process !*! �h bar{h} 
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Generalized distribution amplitude for pion 



GDA is closely related to generalized parton distribution (GPD) by the s-t 
crossing, so GDA could provide another way to obtain GPD information. 
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M. Diehl, Phys. Rep. 388 (2003), 41.
H. Kawamura and S. Kumano, PRD 89 (2014), 054007.
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+x ) h(p2)|q(x − )γ +q(0)|h(p1)
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iσ +αΔα

2m u(p1)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P = (p1 + p2)/2,	Δ = p2 − p1 , 	x =
−q1

2

2p1q1
, 	ξ = Δ+

p1
+ + p2

+

GPD can be used to study the proton 
spin puzzle! !*h � ! h




		

dσ = 14
1

4 (q1q2)2 −q12q22
|−iTµνε µ(q1)εν(q2)|

λ1λ2

∑ 2
dΦ2

dσ =
πα 2 1− 4m

2

s
4(Q2 + s) |A++ |2 sinθdθ

 The cross section of process !*! �"0π0

Aλ1λ2 is the helicity amplitude, and there are 3 independent helicity amplitudes, 
A++ ,A0+ and  A+-.  The  leading-twist  amplitude A++  has a close relation to the 
generalized distribution amplitude (GDA) Φq(z, ξ, W2 ). 
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Aλ1λ2
=Tµνε

µ(λ1)εν(λ2)/e2

A++ =
eq
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∑ dz 2z −1

z(1− z)0
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∫ Φq z ,ξ ,W 2( )

M. Diehl, T. Gousset, B. Pire and O. Teryaev, PRL 81 (1998) 1782.
M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301.



Higher-twist contribution A0+ requires a helicity flip along the fermion line, 
and it decreases as 1/Q. Higher-order contribution  A+- contains the gluon 
GDA, since A+- indicates the angular momentum Lz =2. Therefore A+-  is 
suppressed by running coupling constant αs.

γ(q2λ2 )

γ∗(q1λ1) π0(p1)

π0(p2)

. 

M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301.
N. Kivel, L. Mankiewicz and M.V. Polyakov PLB 467 (1999) 263.

Gluon GDA 

Higher twist and higher order contributions 



The GDAs are related to timelike form factors of the energy-momentum tensor.  

dz(2z−1)∫ Φq
+ z ,ξ ,W 2( )= 2

(P+)2
π +(p1)π −(p2)Tq++(0) 0

																																									
The	form	factors	for	the	quark	energy-momentum	tensor	are	defined	as
π 0(p1)π 0(p2)T µν(0) 0 =

1
2 		 sgµν −PµPν( )Θ1 +Δ

µΔνΘ2
⎡
⎣

⎤
⎦		

P = p1 +p2 	,	Δ = p1 −p2

Use this relation we can obtain 		
B12(0)=

5Rπ

9

where Rπ is the momentum fraction carried by quarks in the pion. �
M. V. Polyakov, NPB 555 (1999) 231.
M. V. Polyakov  and C. Weiss PRD 60 (1999) 114017.�

At very high Q2, we have the asymptotic form of the GDA 

GDA expression 

		 

Φq
+

q
∑ z ,ξ ,W 2( ) =18nf z(1− z)(2z −1)[B10(W )+B12(W )P2(2ξ −1)]

																														 =18nf z(1− z)(2z −1)[ !B10(W )+ !B12(W )P2(cosθ )]
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In 2016, the Belle Collaboration released measurements of the differential cross 
section for  !*!→π0π0. The GDAs can be obtained by analyzing the Belle data. 

Differential cross 
section for  !*!�π0π0


In these figures, the resonance f2(1270) is clearly seen around W = 1.25 GeV, 
however, other resonances are not clearly seen due to the large errors. 

M. Masuda et al. [Belle Collaboration], PRD 93 (2016), 032003. 



Scale violation of GDA based on Belle data 

		
		 (Q

2 + s)dσ
βd |cosθ | ∝ Φ

π0π0 (z , 	cosθ , 	W , 	Q)
2

 The scale dependence of the Belle data. We have red color for W  = 
0. 525 GeV, blue color for W  = 0. 975 GeV, and green color for W  
= 1. 55 GeV. 

The scaling violation of the GDAs is not so obvious in the Belle data on account 
of the large errors, so that the Q2-independent GDAs are used in analyzing the 
Belle data. 
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Q2-independent (asymptotic form) GDAs  

		 

Φq
+

q
∑ z ,ξ ,W 2( ) =18nf z(1− z)(2z −1)[B10(W )+B12(W )P2(2ξ −1)]

																														 =18nf z(1− z)(2z −1)[ !B10(W )+ !B12(W )P2(cosθ )]

!B10(W )= B10(W )eiδ0 , !B12(W )= B12(W )eiδ2

In the above equation δ0 and δ2 and are the ππ  elastic scattering phase shifts in 
the isospin=0 channel (see the figure). Above the KK threshold, the additional  
phase is introduced for S-wave 
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The S wave and D-wave ππ  
scattering phase shifts.


M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301. 
P. Bydzovsky, R. Kamiski and V. Nazari, PRD 90 (2014) , 116005; PRD  94 (2016),  116013. 



Resonance effects 
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h ghπ0π0fh

In the process !*!→π0π0, the π0π0 can be produced through intermediate meson 
state h. The q bar{q}→h amplitude should be proportional to the decay constant 
fh or the distribution amplitude (DA), and the h→π0π0 amplitude can be expressed 
by the coupling constant ghππ. These resonance contributions read 

The resonance effects play an important role in the resonance regions.  

B12(W )= β2 10gf2ππ f f2Mf2

3 Γf2

9 2 (Mf2

2 −W 2)2 −Γf2

2 Mf2

2
		

B10(W )=
5gf2ππ f f2Mf2

3 Γf2

3 2 (Mf0

2 −W 2)2 −Γf0

2 Mf0

2
		



We adopt a simple expression of GDA to analyze Belle data. Here, resonance 
effects of f0(500) and  f2(1270) are introduced. 

		 

Φq
+ z ,ξ ,W 2( ) =Nhz

α (1− z)α (2z −1)[ !B10(W )+ !B12(W )P2(cosθ )]

!B10(W )= [−3+β
2

2
5Rπ

9 Fh(W 2)+
5gf0ππ f f0

3 (Mf0

2 −W 2)2 −Γ f0

2 Mf0

2
]eiδ0

!B12(W )= [β 2 5Rπ

9 Fh(W 2)+β 2
10gf2ππ f f2Mf2

2

9 (Mf2

2 −W 2)2 −Γ f2

2 Mf2

2
]eiδ2

Fh(W 2)= 1

1+W
2 −4mπ

2

Λ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n−1

The function Fh(W2) is the form factor of the continuum part, and the 
parameter Λ is the momentum cutoff in the form factor. The parameter n is 
predicted as n = 2 at very high energy, because we have dσ/d|cosθ|/	 1/W6 by 
the counting rule. In the asymptotic limit, # = 1. 



By analyzing the Belle data, the values of parameters are obtained. 

W dependence of  the differential cross section 
(in units of nb) in comparison with Belle data.
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W dependence of  the differential cross section 
(in units of nb) in comparison with Belle data.
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dz(2z −1)∫ Φq
+ z ,ξ ,W 2( ) = 2

(P+ )2 π 0(p1)π 0(p2)Tq++(0) 0

	 π 0(p1)π 0(p2)T µν(0) 0 = 12		 sgµν −PµPν( )Θ1 +Δ
µΔνΘ2

⎡
⎣

⎤
⎦ 		

	Θ1=
3
5(
!B12 −2 !B10),	Θ2=

9
5β 2
!B12 	

Consider the following reltaion, we also obtain the energy-momentum form factors for 
pion.  

Timelike form factors Θ1 and 
Θ2 

M. V. Polyakov, NPB 555 (1999) 231.
M. V. Polyakov  and C. Weiss PRD 60 (1999) 
114017.�
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Timelike form factors à Spacelike form factors (pion radii) : dispersion relation  

		
F(t)= ds

π
Im(F(s))
s −t − iε4m2
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Spacelike form factors Θ1 and Θ2
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< r2 >=6 Im(F(s))
s24m2

∞

∫

r2 = 	0.69	fm	for	Θ2 	Mass	radius

r2 = 	1.45	fm	for	Θ1 	Mechanical		radius	(pressure	and	shear	force)

Radii can be obtained by the following equation

In our analysis, we introduced the additional phase for S-wave above the KK 
threshold. However, the additional phase could be added to D-wave phase 
above the threshold, in this case we have

Mass radius: 0.56-0.69 fm, Mechanical radius: 1.45-1.56 fm

S. Kumano, Qin-Tao Song and O. Teryaev, arXiv:1711.08088.�



Summary 

u  By analyzing the Belle data, the pion GDAs are determined, and the 
obtained GDAs can also give a good description of experimental data.  

 
u  The form factors of the quark energy-momentum tensor are calculated 

from the GDA of pion.  
 
u  This is the first finding on gravitational form factors and  radii of hadrons 

from actual experimental measurements: we obtain the mass  radius 
(0.56-0.69fm) and the mechanical radius (1.45-1.56fm).

 
 

Thank you very much



