# Determination of generalized distribution amplitudes from experimental measurements

Qin-Tao Song (Sokendai/KEK)

5th International Workshop on Transverse Polarization Phenomena in Hard Processes (Transversity 2017)

Frascati, Italy, December 12, 2017

S. Kumano, Qin-Tao Song and O. Teryaev, arXiv:1711.08088.

## Outline

Generalized distribution amplitude (GDA) of pion

➤ Motivation

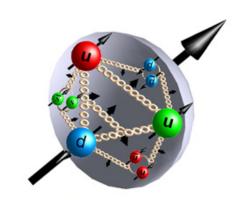
➤ GDA in two-photon process

➤ GDA analysis of Belle data

#### Structure of hadrons: 3D structure

Spin puzzle of proton

$$\Delta u^{+} + \Delta d^{+} + \Delta s^{+} \approx 0.3$$
$$\Delta g + \Delta L \neq 0$$



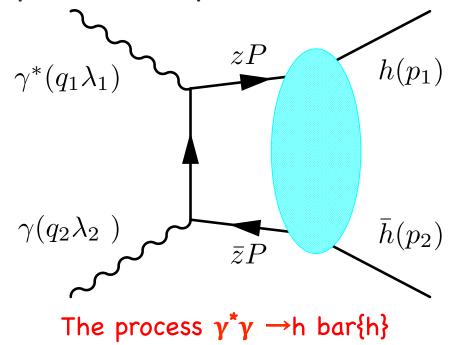
Generalized Parton Distributions (GPDs) provide information on  $\Delta L$  to solve the proton puzzle!

Generalized Distribution Amplitudes (GDAs) <--> s-t crossing of GPDs Pion GDAs are investigated in this work.

GDAs carry important physical quantities of hadrons, such as distribution amplitudes (DAs) and timelike form factors.

# Generalized distribution amplitude for pion

In the process  $\gamma\gamma^*$ —h bar{h}, a hard  $\gamma^*(q_1\lambda_1)$  part describing the process  $\gamma\gamma^*$ —q bar{q} with produced collinear quark, and a soft part describing the production of the hadron h pair from a q bar{q}. This soft part is called Generalized Distribution Amplitude (GDA).



GDA is an important quantity of hadron, it is defined as

$$\Phi^{q}(z,\xi,W^{2}) = \int \frac{dx^{-}}{2\pi} e^{-izP^{+}x} \langle h(p)\overline{h}(p') | \overline{q}(x^{-})\gamma^{+}q(0) | 0 \rangle$$

$$z = \frac{k^{+}}{P^{+}}, \ \xi = \frac{p^{+}}{P^{+}}, \ s = W^{2} = (p+p')^{2} = P^{2}$$

M. Diehl, Phys. Rep. 388 (2003), 41.

M. Diehl and P. Kroll, EPJC 73, 2397 (2013).

GDA is closely related to generalized parton distribution (GPD) by the s-t crossing, so GDA could provide another way to obtain GPD information.

$$\Phi^{q}(z,\xi,W^{2}) \leftrightarrow H^{q}\left(x = \frac{1-2z}{1-2\xi}, \zeta = \frac{1}{1-2\xi}, t = W^{2}\right) \qquad \gamma^{*}(q_{1}\lambda_{1})$$
GDA

GPD

$$(x + \xi)\bar{P}$$

GPD can be used to study the proton
$$h(p_{1})$$
spin puzzle!

$$\begin{split} &\int \frac{dx^{-}}{2\pi} e^{-iz(\overline{p}^{+}x)} \left\langle h(p_{2}) | \overline{q}(x^{-}) \gamma^{+} q(0) | h(p_{1}) \right\rangle \\ &= \frac{1}{2\overline{p}^{+}} \Bigg[ H^{q}(x,\xi,t) \overline{u}(p_{2}) \gamma^{+} u(p_{1}) + E^{q}(x,\xi,t) \overline{u}(p_{2}) \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p_{1}) \Bigg] \\ &\overline{P} = (p_{1} + p_{2}) / 2, \ \Delta = p_{2} - p_{1}, \ x = \frac{-q_{1}^{2}}{2p_{1}q_{2}}, \ \xi = \frac{\Delta^{+}}{p_{1}^{+} + p_{2}^{+}} \end{split}$$

M. Diehl, Phys. Rep. 388 (2003), 41.

H. Kawamura and S. Kumano, PRD 89 (2014), 054007.

# The cross section of process $\gamma^*\gamma \to \pi^0\pi^0$

$$d\sigma = \frac{1}{4} \frac{1}{4\sqrt{(q_1 q_2)^2 - q_1^2 q_2^2}} \sum_{\lambda_1 \lambda_2} |-iT_{\mu\nu} \varepsilon^{\mu}(q_1) \varepsilon^{\nu}(q_2)|^2 d\Phi_2 \quad \gamma^*(q_1 \lambda_1)$$

$$d\sigma = \frac{\pi \alpha^2 \sqrt{1 - \frac{4m^2}{s}}}{4(Q^2 + s)} |A_{++}|^2 \sin\theta d\theta \qquad \gamma(q_2 \lambda_2)$$

$$\pi^0(p_2)$$

 $A_{\lambda 1 \lambda 2}$  is the helicity amplitude, and there are 3 independent helicity amplitudes,  $A_{++}$ ,  $A_{0+}$  and  $A_{+-}$ . The leading-twist amplitude  $A_{++}$  has a close relation to the generalized distribution amplitude (GDA)  $\Phi^q(z, \xi, W^2)$ .

$$A_{\lambda_{1}\lambda_{2}} = T_{\mu\nu} \varepsilon^{\mu} (\lambda_{1}) \varepsilon^{\nu} (\lambda_{2}) / e^{2}$$

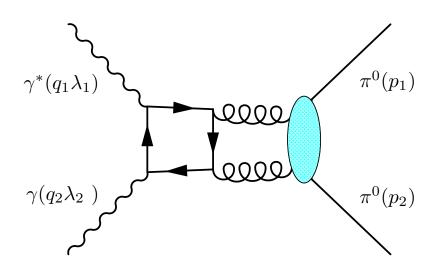
$$A_{++} = \sum_{q} \frac{e_{q}^{2}}{2} \int_{0}^{1} dz \frac{2z - 1}{z(1 - z)} \Phi^{q} (z, \xi, W^{2})$$

M. Diehl, T. Gousset, B. Pire and O. Teryaev, PRL 81 (1998) 1782.

M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301.

## Higher twist and higher order contributions

Higher-twist contribution  $A_{0+}$  requires a helicity flip along the fermion line, and it decreases as 1/Q. Higher-order contribution  $A_{+-}$  contains the gluon GDA, since  $A_{+-}$  indicates the angular momentum  $L_z = 2$ . Therefore  $A_{+-}$  is suppressed by running coupling constant  $\alpha_s$ .



Gluon GDA

M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301.

N. Kivel, L. Mankiewicz and M.V. Polyakov PLB 467 (1999) 263.

## GDA expression

At very high  $Q^2$ , we have the asymptotic form of the GDA

$$\sum_{q} \Phi_{q}^{+}(z,\xi,W^{2}) = 18n_{f}z(1-z)(2z-1)[B_{10}(W) + B_{12}(W)P_{2}(2\xi-1)]$$
$$= 18n_{f}z(1-z)(2z-1)[\tilde{B}_{10}(W) + \tilde{B}_{12}(W)P_{2}(\cos\theta)]$$

The GDAs are related to timelike form factors of the energy-momentum tensor.

$$\int dz (2z-1) \Phi_q^+ \left(z, \xi, W^2\right) = \frac{2}{(P^+)^2} \left\langle \pi^+(p_1) \pi^-(p_2) \middle| T_q^{++}(0) \middle| 0 \right\rangle$$

The form factors for the quark energy-momentum tensor are defined as

$$\left\langle \pi^{0}(p_{1})\pi^{0}(p_{2}) \middle| T^{\mu\nu}(0) \middle| 0 \right\rangle = \frac{1}{2} \left[ \left( sg^{\mu\nu} - P^{\mu}P^{\nu} \right) \Theta_{1} + \Delta^{\mu}\Delta^{\nu}\Theta_{2} \right]$$

$$P = p_{1} + p_{2} , \Delta = p_{1} - p_{2}$$

Use this relation we can obtain

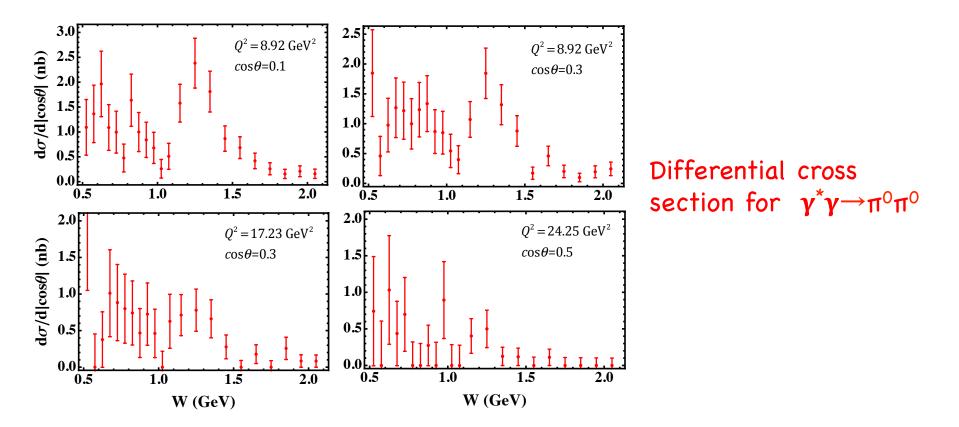
$$B_{12}(0) = \frac{5R_{\pi}}{9}$$

where  $R_{\pi}$  is the momentum fraction carried by quarks in the pion.

M. V. Polyakov, NPB 555 (1999) 231.

M. V. Polyakov and C. Weiss PRD 60 (1999) 114017.

In 2016, the Belle Collaboration released measurements of the differential cross section for  $\gamma^* \gamma \rightarrow \pi^0 \pi^0$ . The GDAs can be obtained by analyzing the Belle data.

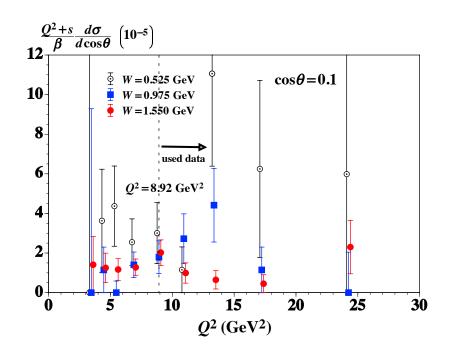


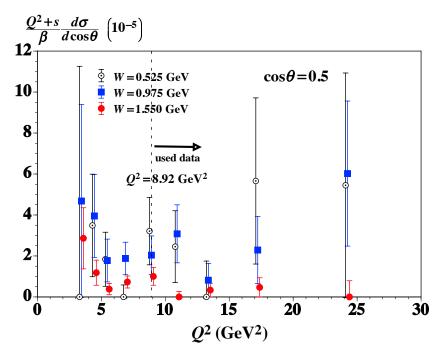
In these figures, the resonance  $f_2(1270)$  is clearly seen around W = 1.25 GeV, however, other resonances are not clearly seen due to the large errors.

M. Masuda et al. [Belle Collaboration], PRD 93 (2016), 032003.

## Scale violation of GDA based on Belle data

$$\frac{(Q^2+s)d\sigma}{\beta d|\cos\theta|} \propto \left|\Phi^{\pi^0\pi^0}(z,\cos\theta,W,Q)\right|^2$$





The scale dependence of the Belle data. We have red color for W = 0.525 GeV, blue color for W = 0.975 GeV, and green color for W = 1.55 GeV.

The scaling violation of the GDAs is not so obvious in the Belle data on account of the large errors, so that the Q<sup>2</sup>-independent GDAs are used in analyzing the Belle data.

# Q²-independent (asymptotic form) GDAs

$$\sum_{q} \Phi_{q}^{+}(z,\xi,W^{2}) = 18n_{f}z(1-z)(2z-1)[B_{10}(W) + B_{12}(W)P_{2}(2\xi-1)]$$

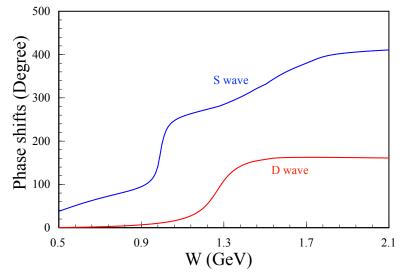
$$= 18n_{f}z(1-z)(2z-1)[\tilde{B}_{10}(W) + \tilde{B}_{12}(W)P_{2}(\cos\theta)]$$

$$\tilde{B}_{10}(W) = \overline{B}_{10}(W)e^{i\delta_0}, \tilde{B}_{12}(W) = \overline{B}_{12}(W)e^{i\delta_2}$$

In the above equation  $\delta_0$  and  $\delta_2$  and are the  $\pi\pi$  elastic scattering phase shifts in the isospin=0 channel (see the figure). Above the KK threshold, the additional

phase is introduced for S-wave

The S wave and D-wave  $\pi\pi$  scattering phase shifts.



M. Diehl, T. Gousset and B. Pire, PRD 62 (2000) 07301. P. Bydzovsky, R. Kamiski and V. Nazari, PRD 90 (2014), 116005; PRD 94 (2016), 116013.

#### Resonance effects

In the process  $\gamma^* \gamma \to \pi^0 \pi^0$ , the  $\pi^0 \pi^0$  can be produced through intermediate meson state h. The q bar $\{q\}\to h$  amplitude should be proportional to the decay constant  $f_h$  or the distribution amplitude (DA), and the  $h\to \pi^0 \pi^0$  amplitude can be expressed by the coupling constant  $g_{h\pi\pi}$ . These resonance contributions read

$$\overline{B}_{12}(W) = \beta^{2} \frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}}{9\sqrt{2}\sqrt{(M_{f_{2}}^{2} - W^{2})^{2} - \Gamma_{f_{2}}^{2}M_{f_{2}}^{2}}} 
\overline{B}_{10}(W) = \frac{5g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{3}\Gamma_{f_{2}}}{3\sqrt{2}\sqrt{(M_{f_{0}}^{2} - W^{2})^{2} - \Gamma_{f_{0}}^{2}M_{f_{0}}^{2}}} 
\gamma^{*}(q_{1}\lambda_{1}) 
\pi^{0}(p_{1}) 
\pi^{0}(p_{2}) 
\pi^{0}(p_{2}) 
\gamma(q_{2}\lambda_{2})$$

The resonance effects play an important role in the resonance regions.

We adopt a simple expression of GDA to analyze Belle data. Here, resonance effects of  $f_0(500)$  and  $f_2(1270)$  are introduced.

$$\Phi_{q}^{+}(z,\xi,W^{2}) = N_{h}z^{\alpha}(1-z)^{\alpha}(2z-1)[\tilde{B}_{10}(W) + \tilde{B}_{12}(W)P_{2}(\cos\theta)]$$

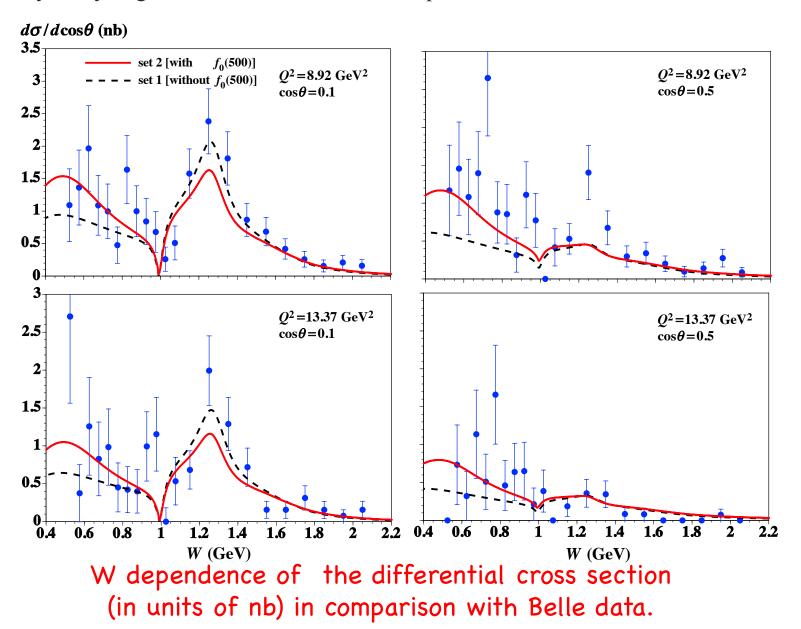
$$\tilde{B}_{10}(W) = \left[\frac{-3+\beta^{2}}{2}\frac{5R_{\pi}}{9}F_{h}(W^{2}) + \frac{5g_{f_{0}\pi\pi}f_{f_{0}}}{3\sqrt{(M_{f_{0}}^{2}-W^{2})^{2}-\Gamma_{f_{0}}^{2}M_{f_{0}}^{2}}}\right]e^{i\delta_{0}}$$

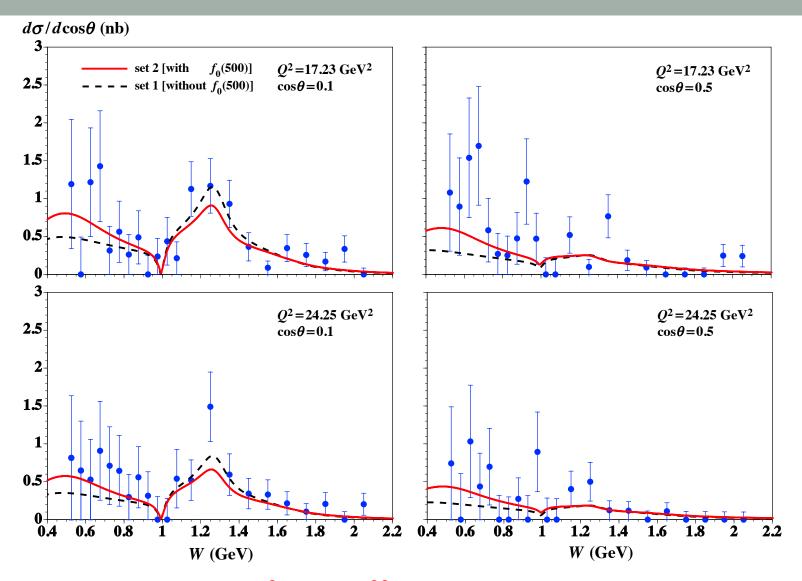
$$\tilde{B}_{12}(W) = \left[\beta^{2}\frac{5R_{\pi}}{9}F_{h}(W^{2}) + \beta^{2}\frac{10g_{f_{2}\pi\pi}f_{f_{2}}M_{f_{2}}^{2}}{9\sqrt{(M_{f_{2}}^{2}-W^{2})^{2}-\Gamma_{f_{2}}^{2}M_{f_{2}}^{2}}}\right]e^{i\delta_{2}}$$

$$F_{h}(W^{2}) = \frac{1}{\left[1 + \frac{W^{2}-4m_{\pi}^{2}}{\Lambda^{2}}\right]^{n-1}}$$

The function  $F_h(W^2)$  is the form factor of the continuum part, and the parameter  $\Lambda$  is the momentum cutoff in the form factor. The parameter n is predicted as n = 2 at very high energy, because we have  $d\sigma/d|\cos\theta|/\sim 1/W^6$  by the counting rule. In the asymptotic limit,  $\alpha = 1$ .

By analyzing the Belle data, the values of parameters are obtained.





W dependence of the differential cross section (in units of nb) in comparison with Belle data.

S. Kumano, Qin-Tao Song and O. Teryaev, arXiv:1711.08088.

Consider the following reltaion, we also obtain the energy-momentum form factors for pion.

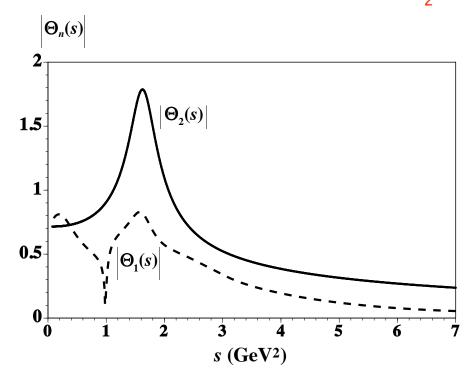
$$\int dz (2z-1) \Phi_{q}^{+}(z,\xi,W^{2}) = \frac{2}{(P^{+})^{2}} \langle \pi^{0}(p_{1})\pi^{0}(p_{2}) | T_{q}^{++}(0) | 0 \rangle$$

$$\langle \pi^{0}(p_{1})\pi^{0}(p_{2}) | T^{\mu\nu}(0) | 0 \rangle = \frac{1}{2} \left[ \left( sg^{\mu\nu} - P^{\mu}P^{\nu} \right) \Theta_{1} + \Delta^{\mu}\Delta^{\nu}\Theta_{2} \right]$$

M. V. Polyakov, NPB **555** (1999) 231. M. V. Polyakov and C. Weiss PRD 60 (1999) 114017.

$$\Theta_1 = \frac{3}{5} (\tilde{B}_{12} - 2\tilde{B}_{10}), \ \Theta_2 = \frac{9}{5\beta^2} \tilde{B}_{12}$$

 $\Theta_1 \rightarrow Mechanical (pressure and shear force)$  $\Theta_2 \rightarrow Mass$ 

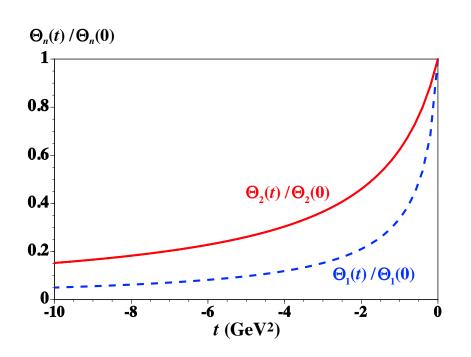


Timelike form factors  $\Theta_1$  and  $\Theta_2$ 

S. Kumano, Qin-Tao Song and O. Teryaev, arXiv:1711.08088.

Timelike form factors → Spacelike form factors (pion radii) : dispersion relation

$$F(t) = \int_{4m^2}^{\infty} \frac{ds}{\pi} \frac{\operatorname{Im}(F(s))}{s - t - i\varepsilon}$$



 $4\pi r^{2}\rho_{n}(r) (1/\text{fm})$  2.5  $4\pi r^{2}\rho_{2}(r)$   $4\pi r^{2}\rho_{1}(r)$  0.5 0.2 0.4 0.6 0.8 1 r (fm)

Spacelike form factors  $\Theta_1$  and  $\Theta_2$ 

Fourier Transform of  $\Theta_1$  and  $\Theta_2$ 

Radii can be obtained by the following equation

$$\langle r^2 \rangle = 6 \int_{4m^2}^{\infty} \frac{\text{Im}(F(s))}{s^2}$$

$$\sqrt{\langle r^2 \rangle} = 0.69 \text{ fm for } \Theta_2 \text{ Mass radius}$$

$$\sqrt{\langle r^2 \rangle} = 1.45 \text{ fm for } \Theta_1 \text{ Mechanical radius (pressure and shear force)}$$

In our analysis, we introduced the additional phase for S-wave above the KK threshold. However, the additional phase could be added to D-wave phase above the threshold, in this case we have

Mass radius: 0.56-0.69 fm, Mechanical radius: 1.45-1.56 fm

#### Summary

- ◆ By analyzing the Belle data, the pion GDAs are determined, and the obtained GDAs can also give a good description of experimental data.
- ◆ The form factors of the quark energy-momentum tensor are calculated from the GDA of pion.
- ◆ This is the first finding on gravitational form factors and radii of hadrons from actual experimental measurements: we obtain the mass radius (0.56-0.69fm) and the mechanical radius (1.45-1.56fm).

#### Thank you very much