JAM extractions of quark helicity and transversity distributions [PRL 119 132001 arXiv:1710.09858]

Jacob Ethier

on behalf of Jefferson Lab Angular Momentum (JAM) collaboration Transversity Workshop December 12th, 2017

• Measured via longitudinal and transverse double spin asymmetries

$$A_{\parallel} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \Uparrow}} = D\left(A_{1} + \eta A_{2}\right) \qquad A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\uparrow \Leftarrow}} = d\left(A_{2} + \zeta A_{1}\right)$$

$$\Rightarrow \text{ Virtual photoproduction asymmetries: } A_{1} = \frac{\left(g_{1} - \gamma^{2}g_{2}\right)}{F_{1}} \quad A_{2} = \gamma \frac{\left(g_{1} + g_{2}\right)}{F_{1}} \quad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$

•

• Measured via longitudinal and transverse double spin asymmetries

$$A_{\parallel} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \Uparrow}} = D\left(A_{1} + \eta A_{2}\right) \qquad A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\uparrow \Leftarrow}} = d\left(A_{2} + \zeta A_{1}\right)$$

$$\Rightarrow \text{ Virtual photoproduction asymmetries: } A_{1} = \frac{\left(g_{1} - \gamma^{2} g_{2}\right)}{F_{1}} \quad A_{2} = \gamma \frac{\left(g_{1} + g_{2}\right)}{F_{1}} \quad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$
First moment of polarized structure function g_{1} :

$$\int_{0}^{1} dx g_{1}^{p}(x, Q^{2}) = \frac{1}{36} \left[8\Delta\Sigma + 3g_{A} + a_{8}\right] \left(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})\right) + \mathcal{O}(\frac{1}{Q^{2}})$$
Quark contribution: $\Delta\Sigma(Q^{2}) = \int_{0}^{1} dx \left(\Delta u^{+}(x, Q^{2}) + \Delta d^{+}(x, Q^{2}) + \Delta s^{+}(x, Q^{2})\right)$

"Plus" helicity distributions: $\Delta q^+ = \Delta q + \Delta \bar{q}$

 \rightarrow DIS requires assumptions about triplet and octet axial charges

• Measured via longitudinal and transverse double spin asymmetries

$$A_{\parallel} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \Uparrow}} = D\left(A_{1} + \eta A_{2}\right) \qquad A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\uparrow \Leftarrow}} = d\left(A_{2} + \zeta A_{1}\right)$$

$$\Rightarrow \text{ Virtual photoproduction asymmetries: } A_{1} = \frac{\left(g_{1} - \gamma^{2} g_{2}\right)}{F_{1}} \quad A_{2} = \gamma \frac{\left(g_{1} + g_{2}\right)}{F_{1}} \quad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$
First moment of polarized structure function g_{1} :

$$\int_{0}^{1} dx g_{1}^{p}(x, Q^{2}) = \frac{1}{36} \left[8\Delta\Sigma + 3g_{A} + a_{8}\right] \left(1 - \frac{\alpha_{s}}{\pi} + \mathcal{O}(\alpha_{s}^{2})\right) + \mathcal{O}(\frac{1}{Q^{2}})$$
Quark contribution: $\Delta\Sigma(Q^{2}) = \int_{0}^{1} dx \left(\Delta u^{+}(x, Q^{2}) + \Delta d^{+}(x, Q^{2}) + \Delta s^{+}(x, Q^{2})\right)$
"Plus" helicity distributions: $\Delta q^{+} = \Delta q + \Delta \bar{q}$

\rightarrow DIS requires assumptions about triplet and octet axial charges

• Assuming exact SU(3)_f values from weak baryon decays $\int dx \left(\Delta u^+ - \Delta d^+\right) = g_A \sim 1.269 \qquad \int dx \left(\Delta u^+ + \Delta d^+ - 2\Delta s^+\right) = a_8 \sim 0.586$ $\Delta \Sigma_{[10^{-3}, 0.8]} \sim 0.3$

• Still much we don't know about collinear helicity distributions!

 \rightarrow Minimal information about sea and glue helicity from DIS

• Still much we don't know about collinear helicity distributions!

 \rightarrow Minimal information about sea and glue helicity from DIS

- Assuming ~20% SU(3)_f symmetry breaking in value of a_8 $\Delta s^+ \sim -0.03 \pm 0.03$ C. Aidala et. al. Rev. Mod. Phys. 85 655 (2013)
- How does semi-inclusive DIS affect the shape of $\Delta s+?$

 \rightarrow More general: what can SIDIS tell us about sea quark contributions?

• Measured via longitudinal double spin asymmetries

$$A_1^h(x, z, Q^2) = \frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)}$$

• Polarized structure function at NLO defined in terms of 2-D convolution

$$g_1^h(x, z, Q^2) = \frac{1}{2} \sum_q e_q^2 \left\{ \Delta q(x, \mu_F) D_q^h(z, \mu_{FF}) + \frac{\alpha_s(\mu_R)}{2\pi} \times \left(\Delta q \otimes \Delta C_{qq} \otimes D_q^h + \Delta q \otimes \Delta C_{gq} \otimes D_g^h + \Delta g \otimes \Delta C_{qg} \otimes D_q^h \right) \right\}$$

• SIDIS allows separation of quark and anti-quark helicity distributions – however, valence is still the dominant contribution in most asymmetries

$$\begin{split} g_{1,p}^{K^{+}} &\sim 4\Delta u D_{u}^{K^{+}} + \Delta \bar{s} D_{\bar{s}}^{K^{+}} \\ g_{1,p}^{K^{-}} &\sim 4\Delta \bar{u} D_{\bar{u}}^{K^{-}} + \Delta s D_{s}^{K^{-}} + 4\Delta u D_{u}^{K^{-}} \\ g_{1,d}^{K^{+}} &\sim 4(\Delta u + \Delta d) D_{u}^{K^{+}} + 2\Delta \bar{s} D_{\bar{s}}^{K^{+}} \\ g_{1,d}^{K^{-}} &\sim 4(\Delta \bar{u} + \Delta \bar{d}) D_{\bar{u}}^{K^{-}} + 2\Delta s D_{s}^{K^{-}} + 4(\Delta u + \Delta d) D_{u}^{K^{-}} \end{split}$$

• Measured via longitudinal double spin asymmetries

$$A_1^h(x, z, Q^2) = \frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)}$$

• Polarized structure function at NLO defined in terms of 2-D convolution

$$g_1^h(x, z, Q^2) = \frac{1}{2} \sum_q e_q^2 \left\{ \Delta q(x, \mu_F) D_q^h(z, \mu_{FF}) + \frac{\alpha_s(\mu_R)}{2\pi} \times \left(\Delta q \otimes \Delta C_{qq} \otimes D_q^h + \Delta q \otimes \Delta C_{gq} \otimes D_g^h + \Delta g \otimes \Delta C_{qg} \otimes D_q^h \right) \right\}$$

• SIDIS allows separation of quark and anti-quark helicity distributions – however, valence is still the dominant contribution in most asymmetries

$$\begin{array}{ll} g_{1,p}^{K^+} \sim 4\Delta u D_u^{K^+} + \Delta \bar{s} D_{\bar{s}}^{K^+} & & \text{Dominate terms in intermediate to} \\ g_{1,p}^{K^-} \sim 4\Delta \bar{u} D_{\bar{u}}^{K^-} + \Delta s D_s^{K^-} + 4\Delta u D_u^{K^-} & & \text{large-}x \text{ region} \\ g_{1,d}^{K^+} \sim 4(\Delta u + \Delta d) D_u^{K^+} + 2\Delta \bar{s} D_{\bar{s}}^{K^+} & & \text{Low-x sensitivity} \\ g_{1,d}^{K^-} \sim 4(\Delta \bar{u} + \Delta \bar{d}) D_{\bar{u}}^{K^-} + 2\Delta s D_s^{K^-} + 4(\Delta u + \Delta d) D_u^{K^-} \end{array}$$

• Measured via longitudinal double spin asymmetries

$$A_1^h(x, z, Q^2) = \frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)}$$

• Polarized structure function at NLO defined in terms of 2-D convolution

$$g_1^h(x, z, Q^2) = \frac{1}{2} \sum_q e_q^2 \left\{ \Delta q(x, \mu_F) D_q^h(z, \mu_{FF}) + \frac{\alpha_s(\mu_R)}{2\pi} \times \left(\Delta q \otimes \Delta C_{qq} \otimes D_q^h + \Delta q \otimes \Delta C_{gq} \otimes D_g^h + \Delta g \otimes \Delta C_{qg} \otimes D_q^h \right) \right\}$$

9

• SIDIS allows separation of quark and anti-quark helicity distributions – however, valence is still the dominant contribution in most asymmetries

Transverse spin structure from SIDIS

• Measured via Collins single spin asymmetries

$$A_{UT}^{\sin(\phi_{\rm h}+\phi_{\rm s})} = \frac{2(1-y)}{1+(1-y)^2} \frac{F_{UT}^{\sin(\phi_{\rm h}+\phi_{\rm s})}}{F_{UU}}$$

• Structure functions defined in terms of TMD convolution operator

$$F_{UU} = \mathcal{C}\left[f_1 \otimes D_1\right]$$
$$F_{UT}^{\sin(\phi_h + \phi_s)} = \mathcal{C}\left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{\perp}}{zm_h} \otimes h_1 \otimes H_1^{\perp}\right]$$

Unpolarized TMD PDFUnpolarized TMD FF $f_1(x, k_{\perp})$ $D_1(z, p_{\perp})$ TMD transversity PDFCollins FF $h_1(x, k_{\perp})$ $H_1^{\perp}(z, p_{\perp})$

Recent JAM Analyses

First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis

J. J. Ethier,^{1,2} Nobuo Sato,³ and W. Melnitchouk²

¹College of William and Mary, Williamsburg, Virginia 23187, USA ²Jefferson Lab, Newport News, Virginia 23606, USA ³University of Connecticut, Storrs, Connecticut 06269, USA

Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: October 4, 2017)

- Emphasis on SIDIS impact to sea quark helicity distributions
- SU(2) and SU(3) constraints used in DIS only analyses are released

$$\int_0^1 dx \left(\Delta u^+ - \Delta d^+\right) \stackrel{?}{=} g_A$$
$$\int_0^1 dx \left(\Delta u^+ + \Delta d^+ - 2\Delta s^+\right) \stackrel{?}{=} a_8$$

 \rightarrow Direct test of QCD

→ Combined DIS+SIDIS can determine values for g_A and a_8

Recent JAM Analyses

First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis

J. J. Ethier,^{1,2} Nobuo Sato,³ and W. Melnitchouk²

¹College of William and Mary, Williamsburg, Virginia 23187, USA ²Jefferson Lab, Newport News, Virginia 23606, USA ³University of Connecticut, Storrs, Connecticut 06269, USA

Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: October 4, 2017)

First Monte Carlo global analysis of nucleon transversity with lattice QCD constraints

H.-W. Lin,¹ W. Melnitchouk,² A. Prokudin,^{2,3} N. Sato,⁴ and H. Shows III⁵

¹Michigan State University, East Lansing, Michigan 48824, USA
 ²Jefferson Lab, Newport News, Virginia 23606, USA
 ³Penn State Berks, Reading, Pennsylvania 19610, USA
 ⁴University of Connecticut, Storrs, Connecticut 06269, USA
 ⁵Louisiana State University, Baton Rouge, Louisiana 70803, USA

Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: November 26, 2017)

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,FFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z}\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,FFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z} \mathcal{L}(data|\vec{a})\pi(\vec{a})$$

$$\uparrow$$
Likelihood function

$$\mathcal{L} = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right) \Rightarrow \text{Gaussian form in data with } \chi^2 = \sum_e^{N_{exp}} \sum_i^{N_{data}} \frac{(D_i^e - T_i)^2}{(\sigma_i^e)^2}$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,FFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z} \mathcal{L}(data|\vec{a})\pi(\vec{a})$$

$$\overset{\text{Priors}}{\uparrow}$$

$$\overset{\text{"Evidence"}}{=} Z = \int d^{n}a\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• Based on Bayesian statistical methods – robust determination of "observables" *O* (PDFs,FFs,etc.) and their uncertainties

$$E\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \mathcal{O}(\vec{a})$$
$$V\left[\mathcal{O}\right] = \int d^{n} a \mathcal{P}(\vec{a}|data) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

• Bayes' theorem defines probability ${\cal P}$ as

$$\mathcal{P}(\vec{a}|data) = \frac{1}{Z}\mathcal{L}(data|\vec{a})\pi(\vec{a})$$

• JAM uses Monte Carlo techniques to evaluate expectation value and variance integrals

 \rightarrow samples parameter space and assigns weights w_k to each parameter a_k such that

$$E[\mathcal{O}(\vec{a})] = \sum_{k} w_k \mathcal{O}(\vec{a}_k) \qquad V[\mathcal{O}(\vec{a})] = \sum_{k} w_k (\mathcal{O}(\vec{a}_k) - E[\mathcal{O}])^2$$

Iterative Monte Carlo (IMC)

(Used in JAM17 combined analysis)

- → Samples wide region of parameter space
- → Data is partitioned for cross-validation - training set is fitted via chi-square minimization
- → Posteriors sent through sampler <u>Kernel density estimation (KDE)</u>: estimates the multi-dimensional probability density function of the parameters
- \rightarrow Procedure iterated until converged

$$E[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} \mathcal{O}(\boldsymbol{a}_{k})$$
$$V[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} (\mathcal{O}(\boldsymbol{a}_{k}) - E[\mathcal{O}])^{2}$$

Nested Sampling

• Statistical mapping of multidimensional integral to 1-D

$$Z = \int d^n a \mathcal{L}(data | \vec{a}) \pi(\vec{a}) = \int_0^1 dX \mathcal{L}(X)$$

where the *prior volume* $dX = \pi(\vec{a})d^n a$

• Algorithm:

→ Initialize $X_0 = 1, L = 0$ and choose N active points $X_1, X_2, ..., X_N$ from prior

→ For each iteration, sample new point and remove lowest L_i , replacing with point such that L is monotonically increasing

 \rightarrow Repeat until entire parameter space has been explored

Polarized PDF Distributions

- Isoscalar sea distribution consistent with zero
- Isovector sea slightly prefers positive shape at low *x*
 - \rightarrow Non-zero asymmetry given by small contributions from SIDIS asymmetries

- Δu+ consistent with previous analysis
- Δd+ slightly larger in magnitude
 - → Anti-correlation with $\Delta s+$, which is less negative than JAM15 at $x \sim 0.2$

Strange polarization

- Δs+ distribution consistent with zero, slightly positive in intermediate *x* range
 - Primarily influenced by HERMES Kdata from deuterium target

Strange polarization

Why does DIS+SU(3) give large negative Δs +?

- Low x DIS deuterium data from • COMPASS prefers small negative Δs^+
- Needs to be more negative in • intermediate region to satisfy SU(3) constraint
- Large-*x* shape parameter for Δs + • typically fixed, producing a peak at x~0.1

- Δs + distribution consistent with zero, slightly positive in intermediate *x* range
- Primarily influenced by HERMES K⁻
 - data from deuterium target

Helicity Analysis - Moments

• Need better determination of Δs^+ moment to reduce a_8 uncertainty!

$$\Delta \mathbf{s}^+ = -0.03 \pm 0.09$$

Transversity Analysis - Tensor charge

H.-W. Lin et al. arXiv:1710.09858

• Significant reduction of peak widths with lattice input $g_T^{\text{latt}} = 1.01(6)$

$$\underbrace{\text{Lin et al analysis:}}_{2 \text{ GeV}^2} \begin{bmatrix} \delta u = 0.3(3) \rightarrow 0.3(2) & \delta u = 0.39(11) \\ \delta d = -0.6(5) \rightarrow -0.7(2) & \delta d = -0.22(14) \\ g_T = 0.9(8) \rightarrow 1.0(1) & g_T = 0.61(25) \end{bmatrix} \text{ 10 GeV}^2$$

Transversity distributions

- Distributions computed at 2 GeV² yellow bands indicate SIDIS only fit, colored are SIDIS + Lattice fit
- Significant reduction of uncertainties with Lattice data
- Larger $|h_1|$ for down flavor w.r.t up comes from larger π^- asymmetry
- Fitted anti-quark distributions consistent with zero

Summary and Outlook

• Monte Carlo statistical methods important for rigorous determination of nonperturbative functions and their uncertainties

 \rightarrow Will be needed in future global analyses that contain large data sets and require many fit parameters (TMDs, GPDs)

• JAM extraction of helicity distributions from DIS+SIDIS resolves strange polarization puzzle

 \rightarrow Large uncertainties on sea distributions – need to include other observables sensitive to sea (W production)

→ Difficult to determine a_8 with DIS+SIDIS, but results confirm SU(2) symmetry to ~2%

• JAM extraction of transversity distributions first to use Monte Carlo fitting methodology – shows compatibility between SIDIS data and lattice results

 \rightarrow Significant reduction of uncertainties with lattice input

Backup Slides

Parameterizations and Chi-square

 $\begin{array}{ll} \underline{\text{Template function:}} & \mathrm{T}(x; \boldsymbol{a}) = \frac{M \, x^{a} (1-x)^{b} (1+c\sqrt{x})}{B(n+a,1+b)+cB(n+\frac{1}{2}+a,1+b)} \\ \bullet & \mathrm{PDFs:} \, \mathrm{n} = 1 \, \Delta q^{+}, \Delta \bar{q}, \Delta g = \mathrm{T}(x; \boldsymbol{a}) \\ \bullet & \mathrm{FFs:} \, \mathrm{n} = 2, \, \mathrm{c} = 0 \quad \mathrm{Favored:} \, D_{q^{+}}^{h} = \mathrm{T}(z; \boldsymbol{a}) + \mathrm{T}(z; \boldsymbol{a}') \\ & \mathrm{Unfavored:} \, D_{q^{+},g}^{h} = \mathrm{T}(z; \boldsymbol{a}) \\ \hline & \frac{\mathrm{Pions:}}{D_{a}^{\pi^{+}} = D_{d}^{\pi^{+}} = \mathrm{T}(z; \boldsymbol{a})} \\ & D_{s}^{\pi^{+}} = D_{\bar{s}}^{\pi^{+}} = \frac{1}{2} D_{s^{+}}^{\pi^{+}} \\ \hline & D_{s}^{K^{+}} = \mathrm{T}(z; \boldsymbol{a}) \end{array} \qquad \begin{array}{l} \underbrace{\mathrm{Kaons:}} \\ D_{\bar{u}}^{K^{+}} = D_{d}^{K^{+}} = \frac{1}{2} D_{d^{+}}^{K^{+}} \\ D_{s}^{K^{+}} = \mathrm{T}(z; \boldsymbol{a}) \\ \end{array} \end{array}$

• Chi-squared definition:

$$\chi^{2}(\boldsymbol{a}) = \sum_{e} \left[\sum_{i} \left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)} - T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}} \right)^{2} + \sum_{k} \left(r_{k}^{(e)} \right)^{2} \right] + \sum_{\ell} \left(\frac{a^{(\ell)} - \mu^{(\ell)}}{\sigma^{(\ell)}} \right)^{2}$$

Parameterizations and Chi-square

 $\begin{array}{ll} \hline \textbf{Template function:} & \mathrm{T}(x; \bm{a}) = \frac{M \, x^a (1-x)^b (1+c\sqrt{x})}{B(n+a,1+b)+cB(n+\frac{1}{2}+a,1+b)} \\ \bullet & \mathrm{PDFs:} \ \mathbf{n} = 1 \ \Delta q^+, \Delta \bar{q}, \Delta g = \mathrm{T}(x; \bm{a}) \\ \bullet & \mathrm{PDFs:} \ \mathbf{n} = 2, \ \mathbf{c} = \mathbf{0} & \mathrm{Favored:} \ D_{q^+}^h = \mathrm{T}(z; \bm{a}) + \mathrm{T}(z; \bm{a}') \\ & \mathrm{Unfavored:} \ D_{q^+,g}^h = \mathrm{T}(z; \bm{a}) \\ \hline & \mathbf{D}_{\bar{u}}^{\pi^+} = D_d^{\pi^+} = \mathrm{T}(z; \bm{a}) \\ \hline & \mathbf{D}_{\bar{u}}^{\pi^+} = D_d^{\pi^+} = \mathrm{T}(z; \bm{a}) \\ \hline & D_{\bar{u}}^{\pi^+} = D_{\bar{s}}^{\pi^+} = \frac{1}{2} D_{s^+}^{\pi^+} \\ \hline & D_s^{K^+} = \mathrm{T}(z; \bm{a}) \end{array}$

• Chi-squared definition:

$$\chi^{2}(\boldsymbol{a}) = \sum_{e} \left[\sum_{i} \left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)} - T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}} \right)^{2} + \sum_{k} \left(r_{k}^{(e)} \right)^{2} \right] + \sum_{\ell} \left(\frac{a^{(\ell)} - \mu^{(\ell)}}{\sigma^{(\ell)}} \right)^{2}$$
Penalty for fitting normalizations

Parameterizations and Chi-square

<u>Template function</u>: $T(x; a) = \frac{M x^a (1-x)^b (1+c\sqrt{x})}{B(n+a, 1+b) + cB(n+\frac{1}{2}+a, 1+b)}$ • PDFs: $\mathbf{n} = 1 \Delta q^+, \Delta \bar{q}, \Delta g = T(x; \boldsymbol{a})$ FFs: n = 2, c = 0 Favored: $D_{q^+}^h = T(z; a) + T(z; a')$ Unfavored: $D_{q^+,g}^h = T(z; \boldsymbol{a})$ $\begin{array}{l} \underline{\text{Pions:}} \\ D_{\bar{u}}^{\pi^+} = D_d^{\pi^+} = \mathrm{T}(z; \boldsymbol{a}) \\ D_s^{\pi^+} = D_{\bar{s}}^{\pi^+} = \frac{1}{2} D_{s^+}^{\pi^+} \end{array} \qquad \begin{array}{l} \underline{\text{Kaons:}} \\ D_{\bar{u}}^{K^+} = D_d^{K^+} = \frac{1}{2} D_{d^+}^{K^+} \\ D_s^{K^+} = \mathrm{T}(z; \boldsymbol{a}) \end{array}$

Chi-squared definition:

$$\chi^{2}(\boldsymbol{a}) = \sum_{e} \left[\sum_{i} \left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)} - T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}} \right)^{2} + \sum_{k} \left(r_{k}^{(e)} \right)^{2} \right] + \sum_{\ell} \left(\frac{a^{(\ell)} - \mu^{(\ell)}}{\sigma^{(\ell)}} \right)^{2}$$

Modified likelihood to include prior information 29

Data vs Theory – SIDIS

Good agreement with all SIDIS data!

Moments

$$\Delta \Sigma = 0.36 \pm 0.09$$

Slightly larger central value than previous analyses, but consistent within uncertainty

Preference for slightly positive sea asymmetry; not very well constrained by SIDIS

 $\Delta \bar{u} - \Delta \bar{d} = 0.05 \pm 0.08$

Transversity Parameterizations

Factorized form:

$$f^{q}(x,k_{\perp}^{2}) = f^{q}(x)\mathcal{G}_{f}^{q}(k_{\perp}^{2})$$
 $f^{q} = f_{1}^{q} \text{ or } h_{1}^{q}$

where

$$\mathcal{G}_{f}^{q}(k_{\perp}^{2}) = \frac{1}{\pi \langle k_{\perp}^{2} \rangle_{f}^{q}} \exp\left[-\frac{k_{\perp}^{2}}{\langle k_{\perp}^{2} \rangle_{f}^{q}}\right]$$

Similarly for the TMD FFs:

$$D_1^{h/q}(z, p_{\perp}^2) = D_1^{h/q}(z) \ \mathcal{G}_{D_1}^{h/q}(p_{\perp}^2)$$
$$H_1^{\perp h/q}(z, p_{\perp}) = \frac{2z^2 m_h^2}{\langle p_{\perp}^2 \rangle_{H_1^{\perp}}^{h/q}} H_{1 h/q}^{\perp(1)}(z) \ \mathcal{G}_{H_1^{\perp}}^{h/q}(p_{\perp}^2)$$

Data vs Theory – Single Spin Asymmetries

