JAM extractions of quark helicity and transversity

Jacob Ethier

on behalf of Jefferson Lab Angular Momentum (JAM) collaboration Transversity Workshop
December $12^{\text {th }}, 2017$

Proton spin structure from DIS

- Measured via longitudinal and transverse double spin asymmetries

$$
\begin{aligned}
& A_{\|}=\frac{\sigma^{\uparrow \Downarrow}-\sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow}+\sigma^{\uparrow \Uparrow}}=D\left(A_{1}+\eta A_{2}\right) \quad A_{\perp}=\frac{\sigma^{\uparrow \Rightarrow}-\sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow}+\sigma^{\uparrow \Leftarrow}}=d\left(A_{2}+\zeta A_{1}\right) \\
\rightarrow & \text { Virtual photoproduction asymmetries: } A_{1}=\frac{\left(g_{1}-\gamma^{2} g_{2}\right)}{F_{1}} A_{2}=\gamma \frac{\left(g_{1}+g_{2}\right)}{F_{1}} \quad \gamma^{2}=\frac{4 M^{2} x^{2}}{Q^{2}}
\end{aligned}
$$

Proton spin structure from DIS

- Measured via longitudinal and transverse double spin asymmetries

$$
\begin{aligned}
& A_{\|}=\frac{\sigma^{\uparrow \Downarrow}-\sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow}+\sigma^{\uparrow \Uparrow}}=D\left(A_{1}+\eta A_{2}\right) \quad A_{\perp}=\frac{\sigma^{\uparrow \Rightarrow}-\sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow}+\sigma^{\uparrow \Leftarrow}}=d\left(A_{2}+\zeta A_{1}\right) \\
\rightarrow & \text { Virtual photoproduction asymmetries: } A_{1}=\frac{\left(g_{1}-\gamma^{2} g_{2}\right)}{F_{1}} A_{2}=\gamma \frac{\left(g_{1}+g_{2}\right)}{F_{1}} \quad \gamma^{2}=\frac{4 M^{2} x^{2}}{Q^{2}}
\end{aligned}
$$

- First moment of polarized structure function g_{1} :

$$
\int_{0}^{1} d x g_{1}^{p}\left(x, Q^{2}\right)=\frac{1}{36}\left[8 \underline{\Delta \Sigma}+3 g_{A}+a_{8}\right]\left(1-\frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)+\mathcal{O}\left(\frac{1}{Q^{2}}\right)
$$

Quark contribution: $\Delta \Sigma\left(Q^{2}\right)=\int_{0}^{1} d x\left(\Delta u^{+}\left(x, Q^{2}\right)+\Delta d^{+}\left(x, Q^{2}\right)+\Delta s^{+}\left(x, Q^{2}\right)\right)$ "Plus" helicity distributions: $\Delta q^{+}=\Delta q+\Delta \bar{q}$
\rightarrow DIS requires assumptions about triplet and octet axial charges

Proton spin structure from DIS

- Measured via longitudinal and transverse double spin asymmetries

$$
\begin{aligned}
& A_{\|}=\frac{\sigma^{\uparrow \Downarrow}-\sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow}+\sigma^{\uparrow \Uparrow}}=D\left(A_{1}+\eta A_{2}\right) \quad A_{\perp}=\frac{\sigma^{\uparrow \Rightarrow}-\sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow}+\sigma^{\uparrow \Leftarrow}}=d\left(A_{2}+\zeta A_{1}\right) \\
\rightarrow & \text { Virtual photoproduction asymmetries: } A_{1}=\frac{\left(g_{1}-\gamma^{2} g_{2}\right)}{F_{1}} A_{2}=\gamma \frac{\left(g_{1}+g_{2}\right)}{F_{1}} \quad \gamma^{2}=\frac{4 M^{2} x^{2}}{Q^{2}}
\end{aligned}
$$

- First moment of polarized structure function g_{1} :

$$
\int_{0}^{1} d x g_{1}^{p}\left(x, Q^{2}\right)=\frac{1}{36}\left[8 \underline{\Delta \Sigma}+3 \underline{\underline{g_{A}+a_{8}}}\right]\left(1-\frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)+\mathcal{O}\left(\frac{1}{Q^{2}}\right)
$$

Quark contribution: $\Delta \Sigma\left(Q^{2}\right)=\int_{0}^{1} d x\left(\Delta u^{+}\left(x, Q^{2}\right)+\Delta d^{+}\left(x, Q^{2}\right)+\Delta s^{+}\left(x, Q^{2}\right)\right)$ "Plus" helicity distributions: $\Delta q^{+}=\Delta q+\Delta \bar{q}$
\rightarrow DIS requires assumptions about triplet and octet axial charges

- Assuming exact $\operatorname{SU}(3)_{f}$ values from weak baryon decays

$$
\begin{gathered}
\int d x\left(\Delta u^{+}-\Delta d^{+}\right)=g_{A} \sim 1.269 \quad \int d x\left(\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+}\right)=a_{8} \sim 0.586 \\
\Delta \Sigma_{\left[10^{-3}, 0.8\right]} \sim 0.3
\end{gathered}
$$

Proton spin structure from DIS

- Still much we don't know about collinear helicity distributions!
\rightarrow Minimal information about sea and glue helicity from DIS

JAM15: $\Delta \mathbf{s}^{+}=-0.1 \pm 0.01$
\square JAM15

- - - JAM13
-..- DSSV09
........ AAC09
--- BB10
---- LSS10
'".".". NNPDF14
$\Delta \mathbf{s}^{+}\left(Q^{2}\right)=\int_{0}^{1} d x \Delta s^{+}\left(x, Q^{2}\right)$
DSSV09: $\Delta \mathbf{s}^{+}=-0.11 \quad Q^{2}=1 \mathrm{GeV}^{2}$
N. Sato et. al. Phys. Rev. D94 114004 (2016)

Proton spin structure from DIS

- Still much we don't know about collinear helicity distributions!
\rightarrow Minimal information about sea and glue helicity from DIS

- Assuming $\sim 20 \% \mathrm{SU}(3)_{f}$ symmetry breaking in value of a_{8}

$$
\Delta \mathbf{s}^{+} \sim-0.03 \pm 0.03 \quad \text { C. Aidala et. al. Rev. Mod. Phys. } 85655(2013)
$$

- How does semi-inclusive DIS affect the shape of $\Delta \mathrm{s}+$?
\rightarrow More general: what can SIDIS tell us about sea quark contributions?

Proton spin structure from SIDIS

- Measured via longitudinal double spin asymmetries

$$
A_{1}^{h}\left(x, z, Q^{2}\right)=\frac{g_{1}^{h}\left(x, z, Q^{2}\right)}{F_{1}^{h}\left(x, z, Q^{2}\right)}
$$

- Polarized structure function at NLO defined in terms of 2-D convolution

$$
\begin{aligned}
g_{1}^{h}\left(x, z, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\{ & \Delta q\left(x, \mu_{F}\right) D_{q}^{h}\left(z, \mu_{F F}\right)+\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \\
& \left.\times\left(\Delta q \otimes \Delta C_{q q} \otimes D_{q}^{h}+\Delta q \otimes \Delta C_{g q} \otimes D_{g}^{h}+\Delta g \otimes \Delta C_{q g} \otimes D_{q}^{h}\right)\right\}
\end{aligned}
$$

- SIDIS allows separation of quark and anti-quark helicity distributions - however, valence is still the dominant contribution in most asymmetries

$$
\begin{aligned}
g_{1, p}^{K^{+}} & \sim 4 \Delta u D_{u}^{K^{+}}+\Delta \bar{s} D_{\bar{s}}^{K^{+}} \\
g_{1, p}^{K^{-}} & \sim 4 \Delta \bar{u} D_{\bar{u}}^{K^{-}}+\Delta s D_{s}^{K^{-}}+4 \Delta u D_{u}^{K^{-}} \\
g_{1, d}^{K^{+}} & \sim 4(\Delta u+\Delta d) D_{u}^{K^{+}}+2 \Delta \bar{s} D_{\bar{s}}^{K^{+}} \\
g_{1, d}^{K^{-}} & \sim 4(\Delta \bar{u}+\Delta \bar{d}) D_{\bar{u}}^{K^{-}}+2 \Delta s D_{s}^{K^{-}}+4(\Delta u+\Delta d) D_{u}^{K^{-}}
\end{aligned}
$$

Proton spin structure from SIDIS

- Measured via longitudinal double spin asymmetries

$$
A_{1}^{h}\left(x, z, Q^{2}\right)=\frac{g_{1}^{h}\left(x, z, Q^{2}\right)}{F_{1}^{h}\left(x, z, Q^{2}\right)}
$$

- Polarized structure function at NLO defined in terms of 2-D convolution

$$
\begin{aligned}
g_{1}^{h}\left(x, z, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\{ & \Delta q\left(x, \mu_{F}\right) D_{q}^{h}\left(z, \mu_{F F}\right)+\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \\
& \left.\times\left(\Delta q \otimes \Delta C_{q q} \otimes D_{q}^{h}+\Delta q \otimes \Delta C_{g q} \otimes D_{g}^{h}+\Delta g \otimes \Delta C_{q g} \otimes D_{q}^{h}\right)\right\}
\end{aligned}
$$

- SIDIS allows separation of quark and anti-quark helicity distributions - however, valence is still the dominant contribution in most asymmetries

$$
\begin{array}{lll}
g_{1, p}^{K^{+}} & \sim 4 \Delta u D_{u}^{K^{+}} & +\Delta \bar{s} D_{\bar{s}}^{K^{+}} \\
g_{1, p}^{K^{-}} & \sim 4 \Delta \bar{u} D_{\bar{u}}^{K^{-}}+\Delta s D_{s}^{K^{-}}+4 \Delta u D_{u}^{K^{-}} & \begin{array}{l}
\text { Dominate terms in } \\
\text { intermediate to } \\
\text { large- } x \text { region }
\end{array} \\
g_{1, d}^{K^{+}} \sim 4(\Delta u+\Delta d) D_{u}^{K^{+}}+2 \Delta \bar{s} D_{\bar{s}}^{K^{+}} & \text {Low-x sensitivity } \\
g_{1, d}^{K^{-}} \sim 4(\Delta \bar{u}+\Delta \bar{d}) D_{\bar{u}}^{K^{-}}+2 \Delta s D_{s}^{K^{-}}+4(\Delta u+\Delta d) D_{u}^{K^{-}}
\end{array}
$$

Proton spin structure from SIDIS

- Measured via longitudinal double spin asymmetries

$$
A_{1}^{h}\left(x, z, Q^{2}\right)=\frac{g_{1}^{h}\left(x, z, Q^{2}\right)}{F_{1}^{h}\left(x, z, Q^{2}\right)}
$$

- Polarized structure function at NLO defined in terms of 2-D convolution

$$
\begin{aligned}
g_{1}^{h}\left(x, z, Q^{2}\right)=\frac{1}{2} \sum_{q} e_{q}^{2}\{ & \Delta q\left(x, \mu_{F}\right) D_{q}^{h}\left(z, \mu_{F F}\right)+\frac{\alpha_{s}\left(\mu_{R}\right)}{2 \pi} \\
& \left.\times\left(\Delta q \otimes \Delta C_{q q} \otimes D_{q}^{h}+\Delta q \otimes \Delta C_{g q} \otimes D_{g}^{h}+\Delta g \otimes \Delta C_{q g} \otimes D_{q}^{h}\right)\right\}
\end{aligned}
$$

- SIDIS allows separation of quark and anti-quark helicity distributions - however, valence is still the dominant contribution in most asymmetries

$$
\begin{aligned}
& g_{1, p}^{K^{+}} \sim 4 \Delta u D_{u}^{K^{+}}+\Delta \bar{s} D_{\bar{s}}^{K^{+}} \\
& g_{1, p}^{K^{-}} \sim 4 \Delta \bar{u} D_{\bar{u}}^{K^{-}}+\Delta s D_{s}^{K^{-}}+4 \Delta u D_{u}^{K^{-}} \\
& g_{1, d}^{K^{+}} \sim 4(\Delta u+\Delta d) D_{u}^{K^{+}}+2 \Delta \bar{s} D_{\bar{s}}^{K^{+}} \\
& \begin{array}{ll}
g_{1, d}^{K^{-}} \sim 4(\Delta \bar{u}+\Delta \bar{d}) D_{\bar{u}}^{K^{-}}+2 \Delta s D_{s}^{K^{-}}+1+\underbrace{4(\Delta u+\Delta d) D_{u}^{K^{-}}}_{\text {small }}
\end{array}
\end{aligned}
$$

Transverse spin structure from SIDIS

- Measured via Collins single spin asymmetries

$$
A_{U T}^{\sin \left(\phi_{\mathrm{h}}+\phi_{\mathrm{s}}\right)}=\frac{2(1-y)}{1+(1-y)^{2}} \frac{F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}}{F_{U U}}
$$

- Structure functions defined in terms of TMD convolution operator

$$
\begin{aligned}
F_{U U} & =\mathcal{C}\left[f_{1} \otimes D_{1}\right] \\
F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} & =\mathcal{C}\left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{\perp}}{z m_{h}} \otimes h_{1} \otimes H_{1}^{\perp}\right]
\end{aligned}
$$

Unpolarized TMD PDF Unpolarized TMD FF

$$
f_{1}\left(x, k_{\perp}\right) \quad D_{1}\left(z, p_{\perp}\right)
$$

TMD transversity PDF Collins FF

$$
h_{1}\left(x, k_{\perp}\right)
$$

Q^{2} evolution governed by Collins-

$$
H_{1}^{\perp}\left(z, p_{\perp}\right)
$$ Soper equations

Recent JAM Analyses

First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis

J. J. Ethier, ${ }^{1,2}$ Nobuo Sato, ${ }^{3}$ and W. Melnitchouk ${ }^{2}$
${ }^{1}$ College of William and Mary, Williamsburg, Virginia 23187, USA
${ }^{2}$ Jefferson Lab, Newport News, Virginia 23606, USA
${ }^{3}$ University of Connecticut, Storrs, Connecticut 06269, USA
Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: October 4, 2017)

- Emphasis on SIDIS impact to sea quark helicity distributions
- $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ constraints used in DIS only analyses are released

$$
\begin{aligned}
& \int_{0}^{1} d x\left(\Delta u^{+}-\Delta d^{+}\right) \stackrel{?}{=} g_{A} \\
& \int_{0}^{1} d x\left(\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+}\right) \stackrel{?}{=} a_{8}
\end{aligned}
$$

\rightarrow Direct test of QCD
\rightarrow Combined DIS+SIDIS can determine values for g_{A} and a_{8}

Recent JAM Analyses

First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis

J. J. Ethier, ${ }^{1,2}$ Nobuo Sato, ${ }^{3}$ and W. Melnitchouk ${ }^{2}$
${ }^{1}$ College of William and Mary, Williamsburg, Virginia 23187, USA
${ }^{2}$ Jefferson Lab, Newport News, Virginia 23606, USA
${ }^{3}$ University of Connecticut, Storrs, Connecticut 06269, USA
Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: October 4, 2017)

First Monte Carlo global analysis of nucleon transversity with lattice QCD constraints

H.-W. Lin, ${ }^{1}$ W. Melnitchouk, ${ }^{2}$ A. Prokudin, ${ }^{2,3}$ N. Sato, ${ }^{4}$ and H. Shows III ${ }^{5}$
${ }^{1}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ Jefferson Lab, Newport News, Virginia 23606, USA
${ }^{3}$ Penn State Berks, Reading, Pennsylvania 19610, USA
${ }^{4}$ University of Connecticut, Storrs, Connecticut 06269, USA
${ }^{5}$ Louisiana State University, Baton Rouge, Louisiana 70803, USA
Jefferson Lab Angular Momentum (JAM) Collaboration

(Dated: November 26, 2017)

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
E[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
V[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid d a t a)=\frac{1}{Z} \mathcal{L}(d a t a \mid \vec{a}) \pi(\vec{a})
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
E[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
V[\mathcal{O}] & =\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\begin{gathered}
\mathcal{P}(\vec{a} \mid \text { data })=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a}) \\
\mathcal{L}=\exp \left(-\frac{1}{2} \chi^{2}(\vec{a})\right) \rightarrow \text { Gaussian form in data with } \chi^{2}=\sum_{e}^{N_{\text {exp }}} \sum_{i}^{N_{\text {data }}} \frac{\left(D_{i}^{e}-T_{i}\right)^{2}}{\left(\sigma_{i}^{e}\right)^{2}}
\end{gathered}
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
& E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
& V[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid d a t a)=\frac{1}{Z} \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})
$$

JAM Fitting Methodology

- Based on Bayesian statistical methods - robust determination of "observables" O (PDFs,FFs,etc.) and their uncertainties

$$
\begin{aligned}
& E[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data }) \mathcal{O}(\vec{a}) \\
& V[\mathcal{O}]=\int d^{n} a \mathcal{P}(\vec{a} \mid \text { data })[\mathcal{O}(\vec{a})-E[\mathcal{O}]]^{2}
\end{aligned}
$$

- Bayes' theorem defines probability \mathcal{P} as

$$
\mathcal{P}(\vec{a} \mid d a t a)=\frac{1}{Z} \mathcal{L}(d a t a \mid \vec{a}) \pi(\vec{a})
$$

- JAM uses Monte Carlo techniques to evaluate expectation value and variance integrals
\rightarrow samples parameter space and assigns weights w_{k} to each parameter a_{k} such that

$$
E[\mathcal{O}(\vec{a})]=\sum_{k} w_{k} \mathcal{O}\left(\vec{a}_{k}\right) \quad V[\mathcal{O}(\vec{a})]=\sum_{k} w_{k}\left(\mathcal{O}\left(\vec{a}_{k}\right)-E[\mathcal{O}]\right)^{2}
$$

Iterative Monte Carlo (IMC) (Used in JAM17 combined analysis)

\rightarrow Samples wide region of parameter space
\rightarrow Data is partitioned for cross-validation - training set is fitted via chi-square minimization
\rightarrow Posteriors sent through sampler Kernel density estimation (KDE): estimates the multi-dimensional probability density function of the parameters
\rightarrow Procedure iterated until converged

$$
\begin{aligned}
& \mathrm{E}[\mathcal{O}]=\frac{1}{n} \sum_{k=1}^{n} \mathcal{O}\left(\boldsymbol{a}_{k}\right) \\
& \mathrm{V}[\mathcal{O}]=\frac{1}{n} \sum_{k=1}^{n}\left(\mathcal{O}\left(\boldsymbol{a}_{k}\right)-\mathrm{E}[\mathcal{O}]\right)^{2}
\end{aligned}
$$

Nested Sampling

- Statistical mapping of multidimensional integral to 1-D

$$
Z=\int d^{n} a \mathcal{L}(\text { data } \mid \vec{a}) \pi(\vec{a})=\int_{0}^{1} d X \mathcal{L}(X)
$$

where the prior volume $d X=\pi(\vec{a}) d^{n} a$

$$
\begin{aligned}
& Z_{i} \sim \sum_{i} \mathcal{L}_{i} w_{i} \\
& \text { where } w_{i}=\frac{1}{2}\left(X_{i-1}-X_{i+1}\right)
\end{aligned}
$$

Feroz et al. arXiv:1306.2144
[astro-ph]

- Algorithm:
\rightarrow Initialize $X_{0}=1, L=0$ and choose N active points $X_{1}, X_{2}, \ldots, X_{\mathrm{N}}$ from prior
\rightarrow For each iteration, sample new point and remove lowest L_{i}, replacing with point such that L is monotonically increasing
\rightarrow Repeat until entire parameter space has been explored

Polarized PDF Distributions

Strange polarization

Strange polarization

\cdots	JAM17 + SU(3)
$\cdots \cdots$	DSSV09
--	JAM15

- $\Delta \mathrm{s}+$ distribution consistent with zero, slightly positive in intermediate x range
- Primarily influenced by HERMES Kdata from deuterium target

Why does DIS + SU(3) give large negative $\Delta \mathrm{s}+$?

- Low x DIS deuterium data from COMPASS prefers small negative $\Delta \mathrm{s}^{+}$
- Needs to be more negative in intermediate region to satisfy $\mathrm{SU}(3)$ constraint
- Large- x shape parameter for Δ s + typically fixed, producing a peak at $\mathrm{x} \sim 0.1$

Helicity Analysis - Moments

$g_{A}=1.24 \pm 0.04 \quad$ Confirmation of $\mathrm{SU}(2)$ symmetry to $\sim 2 \%$
$a_{8}=0.46 \pm 0.21 \quad \sim 20 \% \mathrm{SU}(3)$ breaking $\pm \sim 20 \%$; large uncertainty

- Need better determination of $\Delta \mathrm{s}^{+}$moment to reduce a_{8} uncertainty!

$$
\Delta \mathbf{s}^{+}=-0.03 \pm 0.09
$$

Transversity Analysis - Tensor charge

$$
\delta q=\int_{0}^{1} d x\left(h_{1}^{q}-h_{1}^{\bar{q}}\right) \quad \text { Isovector moment: } g_{T} \equiv \delta u-\delta d
$$

- Significant reduction of peak widths with lattice input $g_{T}^{\text {latt }}=1.01$ (6)

Lin et al analysis:
$2 \mathrm{GeV}^{2}\left[\begin{array}{l}\delta u=0.3(3) \rightarrow 0.3(2) \\ \delta d=-0.6(5) \rightarrow-0.7(2) \\ g_{T}=0.9(8) \rightarrow 1.0(1)\end{array}\right.$

Kang et al:

$$
\left.\begin{array}{l}
\delta u=0.39(11) \\
\delta d=-0.22(14) \\
g_{T}=0.61(25)
\end{array}\right]-10 \mathrm{GeV}^{2}
$$

Transversity distributions

H.-W. Lin et al. arXiv:1710.09858

- Distributions computed at $2 \mathrm{GeV}^{2}-$ yellow bands indicate SIDIS only fit, colored are SIDIS + Lattice fit
- Significant reduction of uncertainties with Lattice data
- Larger $\left|h_{1}\right|$ for down flavor w.r.t up comes from larger π^{-}asymmetry
- Fitted anti-quark distributions consistent with zero

Summary and Outlook

- Monte Carlo statistical methods important for rigorous determination of nonperturbative functions and their uncertainties
\rightarrow Will be needed in future global analyses that contain large data sets and require many fit parameters (TMDs, GPDs)
- JAM extraction of helicity distributions from DIS+SIDIS resolves strange polarization puzzle
\rightarrow Large uncertainties on sea distributions - need to include other observables sensitive to sea (W production)
\rightarrow Difficult to determine a_{8} with DIS+SIDIS, but results confirm $\mathrm{SU}(2)$ symmetry to $\sim 2 \%$
- JAM extraction of transversity distributions first to use Monte Carlo fitting methodology - shows compatibility between SIDIS data and lattice results
\rightarrow Significant reduction of uncertainties with lattice input

Backup Slides

Parameterizations and Chi-square

Template function: $\mathrm{T}(x ; \boldsymbol{a})=\frac{M x^{a}(1-x)^{b}(1+c \sqrt{x})}{B(n+a, 1+b)+c B\left(n+\frac{1}{2}+a, 1+b\right)}$

- PDFs: $\mathrm{n}=1 \Delta q^{+}, \Delta \bar{q}, \Delta g=\mathrm{T}(x ; \boldsymbol{a})$
- FFs: $\mathrm{n}=2, \mathrm{c}=0 \quad$ Favored: $D_{q^{+}}^{h}=\mathrm{T}(z ; \boldsymbol{a})+\mathrm{T}\left(z ; \boldsymbol{a}^{\prime}\right)$

$$
\text { Unfavored: } D_{q^{+}, g}^{h}=\mathrm{T}(z ; \boldsymbol{a})
$$

$$
\begin{gathered}
\text { Pions: } \\
D_{\bar{u}}^{\pi^{+}}=D_{d}^{\pi+}=\mathrm{T}(z ; \boldsymbol{a}) \\
D_{s}^{\pi^{+}}=D_{\bar{s}}^{\pi^{+}}=\frac{1}{2} D_{s^{+}}^{\pi^{+}}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \text { Kaons: } \\
& D_{\bar{u}}^{K^{+}}=D_{d}^{K^{+}}=\frac{1}{2} D_{d^{+}}^{K^{+}} \\
& D_{s}^{K^{+}}=\mathrm{T}(z ; \boldsymbol{a})
\end{aligned}
$$

- Chi-squared definition:

$$
\chi^{2}(\boldsymbol{a})=\sum_{e}\left[\sum_{i}\left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)}-T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}}\right)^{2}+\sum_{k}\left(r_{k}^{(e)}\right)^{2}\right]+\sum_{\ell}\left(\frac{a^{(\ell)}-\mu^{(\ell)}}{\sigma^{(\ell)}}\right)^{2}
$$

Parameterizations and Chi-square

Template function: $\mathrm{T}(x ; \boldsymbol{a})=\frac{M x^{a}(1-x)^{b}(1+c \sqrt{x})}{B(n+a, 1+b)+c B\left(n+\frac{1}{2}+a, 1+b\right)}$

- PDFs: $\mathrm{n}=1 \Delta q^{+}, \Delta \bar{q}, \Delta g=\mathrm{T}(x ; \boldsymbol{a})$
- FFs: $\mathrm{n}=2, \mathrm{c}=0 \quad$ Favored: $D_{q^{+}}^{h}=\mathrm{T}(z ; \boldsymbol{a})+\mathrm{T}\left(z ; \boldsymbol{a}^{\prime}\right)$ Unfavored: $D_{q^{+}, g}^{h}=\mathrm{T}(z ; \boldsymbol{a})$

$$
\begin{gathered}
\text { Pions: } \\
D_{\bar{u}}^{\pi^{+}}=D_{d}^{\pi+}=\mathrm{T}(z ; \boldsymbol{a}) \\
D_{s}^{\pi^{+}}=D_{\bar{s}}^{\pi^{+}}=\frac{1}{2} D_{s^{+}}^{\pi^{+}}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \text { Kaons: } \\
& D_{\bar{u}}^{K^{+}}=D_{d}^{K^{+}}=\frac{1}{2} D_{d^{+}}^{K^{+}} \\
& D_{s}^{K^{+}}=\mathrm{T}(z ; \boldsymbol{a})
\end{aligned}
$$

- Chi-squared definition:

$$
\begin{array}{r}
\chi^{2}(\boldsymbol{a})=\sum_{e}\left[\sum_{i}\left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)}-T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}}\right)^{2}+\sum_{k}\left(r_{k}^{(e)}\right)^{2}\right]+\sum_{\ell}\left(\frac{a^{(\ell)}-\mu^{(\ell)}}{\sigma^{(\ell)}}\right)^{2} \\
\text { Penalty for fitting normalizations }
\end{array}
$$

Parameterizations and Chi-square

Template function: $\mathrm{T}(x ; \boldsymbol{a})=\frac{M x^{a}(1-x)^{b}(1+c \sqrt{x})}{B(n+a, 1+b)+c B\left(n+\frac{1}{2}+a, 1+b\right)}$

- PDFs: $\mathrm{n}=1 \Delta q^{+}, \Delta \bar{q}, \Delta g=\mathrm{T}(x ; \boldsymbol{a})$
- FFs: $\mathrm{n}=2, \mathrm{c}=0 \quad$ Favored: $D_{q^{+}}^{h}=\mathrm{T}(z ; \boldsymbol{a})+\mathrm{T}\left(z ; \boldsymbol{a}^{\prime}\right)$ Unfavored: $D_{q^{+}, g}^{h}=\mathrm{T}(z ; \boldsymbol{a})$

$$
\begin{gathered}
\text { Pions: } \\
D_{\bar{u}}^{\pi^{+}}=D_{d}^{\pi+}=\mathrm{T}(z ; \boldsymbol{a}) \\
D_{s}^{\pi^{+}}=D_{\bar{s}}^{\pi^{+}}=\frac{1}{2} D_{s^{+}}^{\pi^{+}}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \text { Kaons: } \\
& D_{\bar{u}}^{K^{+}}=D_{d}^{K^{+}}=\frac{1}{2} D_{d^{+}}^{K^{+}} \\
& D_{s}^{K^{+}}=\mathrm{T}(z ; \boldsymbol{a})
\end{aligned}
$$

- Chi-squared definition:

$$
\chi^{2}(\boldsymbol{a})=\sum_{e}\left[\sum_{i}\left(\frac{\mathcal{D}_{i}^{(e)} N_{i}^{(e)}-T_{i}^{(e)}(\boldsymbol{a})}{\alpha_{i}^{(e)} N_{i}^{(e)}}\right)^{2}+\sum_{k}\left(r_{k}^{(e)}\right)^{2}\right]+\sum_{\ell}\left(\frac{a^{(\ell)}-\mu^{(\ell)}}{\sigma^{(\ell)}}\right)^{2}
$$

Modified likelihood to include prior information

Data vs Theory - SIDIS

$$
A_{1}^{h}=\frac{g_{1}^{h}}{F_{1}^{h}}
$$

process	target	$N_{\text {dat }}$	χ^{2}
DIS	$p, d,{ }^{3} \mathrm{He}$	854	854.8
SIA $\left(\pi^{ \pm}, K^{ \pm}\right)$		850	997.1

SIDIS ($K^{ \pm}$)

Good agreement with all SIDIS data!

Moments

$\Delta \Sigma=0.36 \pm 0.09$
Preference for slightly positive sea asymmetry; not very well

Slightly larger central value than previous analyses, but consistent within uncertainty constrained by SIDIS

Transversity Parameterizations

Factorized form:

$$
f^{q}\left(x, k_{\perp}^{2}\right)=f^{q}(x) \mathcal{G}_{f}^{q}\left(k_{\perp}^{2}\right) \quad f^{q}=f_{1}^{q} \text { or } h_{1}^{q}
$$

where

$$
\mathcal{G}_{f}^{q}\left(k_{\perp}^{2}\right)=\frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle_{f}^{q}} \exp \left[-\frac{k_{\perp}^{2}}{\left\langle k_{\perp}^{2}\right\rangle_{f}^{q}}\right]
$$

Similarly for the TMD FFs:

$$
\begin{aligned}
& D_{1}^{h / q}\left(z, p_{\perp}^{2}\right)=D_{1}^{h / q}(z) \mathcal{G}_{D_{1}}^{h / q}\left(p_{\perp}^{2}\right) \\
& H_{1}^{\perp h / q}\left(z, p_{\perp}\right)=\frac{2 z^{2} m_{h}^{2}}{\left\langle p_{\perp}^{2}\right\rangle_{H_{1}^{\perp}}^{h / q}} H_{1 h / q}^{\perp(1)}(z) \mathcal{G}_{H_{1}^{\perp}}^{h / q}\left(p_{\perp}^{2}\right)
\end{aligned}
$$

Data vs Theory - Single Spin Asymmetries

