Transverse single-spin asymmetries in $p p \rightarrow W^{\pm}Z^{0} X$ at RHIC

Salvatore Fazio

5th International Workshop on Transverse Polarization Phenomena in Hard Processes TRANSVERSITY 2017 INFN – Frascati National Lab (Italy), December 11-15, 2017

• Ws naturally separate quark flavors

> rapidity: sea vs. valence quarks

Ws are maximally parity violating

> select only to one helicity of the couples (anti)quarks

Ws are theoretically clean

> no fragmentation function involved

- Complementary to SIDIS
 - > high Q²-scale ($M^2 \sim 6400 \text{ GeV}^2$) tests the universality of PDFs

The Sivers function

8 TMDs are allowed by gauge invariance

- The TMD known as **Sivers function** is
- sensitive to proton spin parton transverse motion correlations
- predicted not to be universal between SIDIS & pp

transverse single-spin asymmetry amplitude

$$A_N \approx \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Measure A_N for weak boson (W^{+/-}, Z⁰) and Drell-Yan (DY) processes

Motivations – Transverse Single Spin Asymmetry (A_N)

A_N for weak bosons

> Asymmetry from decay lepton sizeable in a very small p_T region

 \rightarrow Full kinematical reconstruction of the produced boson is needed

> Z⁰ easy to reconstruct (but small cross-section)

> W kin. can be reconstructed from the hadronic recoil

The TMD evolution & sea-quarks Sivers

500 GeV

Z.-B. Kang & J.-W. Qui arXiv:0903.3629

Z.-B. Kang & J.-W. Qui Phys.Rev.D81:054020,2010

n

200 GeV

TMD evolution needs nonperturbatiove input

What is the sea-quark Sivers fct.?

٧

3

2

- \rightarrow Sea quarks are mostly unconstrained from existing SIDIS data... but they can give a relevant contribution!
- \rightarrow W's ideal \rightarrow rapidity dependence of A_N separates guarks from antiguarks

W[±] data can constrain the sea-quark **Sivers function**

The Relativistic Heavy-Ion Collider

 RHIC is the world's first and only polarized hadron collider Its top energy is enough to produce weak bosons

Weak bosons at STAR

Detector acceptance relevant to measurements of weak bosons

- 2π coverage Electromagnetic Calorimeter
 - Barrel: -1 < η< 1
 - End-cap: 1.1 < η < 2</p>
- Main tracker Time projection chamber (TPC): |η| < 1.3

Main selection Criteria

- Isolation: (P^{track}+E^{cluster}) / Σ[P^{tracks} in R=0.7 cone] > 0.8
- Imbalance: no energy in opposite cone (E<20 GeV)
- E_T > 25 GeV
- Track $|\eta| < 1$
- |Z-vertex|<100 cm
- Charge separation (avoids charge misidentification): 0.4 < |Charge (TPC) x E_T (EMC) / P_T (TPC)| < 1.8
- Signed P_T balance > 18 GeV/c (rejects QCD Background)
- 0.5 GeV/c < P_T^W < 10 GeV /c
 Dec 14, 2017

A_N of weak bosons @ STAR

Ingredients for the analysis

- Isolated electron
- neutrino (not measured directly)
- Hadronic recoil

W boson momentum reconstruction technique well tested at FermiLab and LHC [CDF: PRD 70, 032004 (2004); ATLAS: JHEP 1012 (2010) 060]

□ Select events with the W-signature (STEP 1)

 \succ Isolated high P_T electron

□ Neutrino transverse momentum is reconstructed from missing P_T (Step 2) $\vec{P}_{T}^{\nu} \approx -\sum \vec{P}_{T}^{i}$

$\vec{P}_T^{\nu} \approx -\sum_{i \in tracks \\ clusters} \vec{P}_T^i$

Neutrino's longitudinal momentum is reconstructed from the decay kinematics (Step 3)

$$M_{W}^{2} = \left(E_{e} + E_{v}\right)^{2} - \left(\vec{p}_{e} + \vec{p}_{v}\right)^{2}$$

The STAR detector @ RHIC

A_N of weak bosons @ STAR

This measurement is STAR's first time to reconstruct the produced W boson's kinematics

We use the "left-right" formula to cancel dependencies on geometry and luminosity A_N

$$\approx \frac{1}{P} \frac{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} - \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}{\sqrt{N_{R}^{\uparrow} N_{L}^{\downarrow}} + \sqrt{N_{L}^{\uparrow} N_{R}^{\downarrow}}}$$

Average RHIC polarization (p+p run 2011 tran.) <P> = 53%

PRL 116, 132301 (2016) Editor's suggestion

World's first direct experimental test of Sivers in p+p collisions

A_N vs W-rapidity

Results versus rapidity are compared with:

- KQ model [Z.-B. Kang and J. -W. Qiu, Phys. Rev. Lett. 103, 172001 (2009)]
 - It does not include TMD evolution
 - Grey band is the theory uncertainty
- EIKV model [M. G. Echevarria, A. Idilbi, Z.-B. Kang, I. Vitev, Phys. Rev. D89, 074013 (2014)]
 - Includes the largest prediction for TMD evolution
- Grey hatched area represents the current theoretical uncertainty on TMD evolution

The Sivers' sign change (no TMD evol.)

A STAR global fit to the KQ prediction (Assumes NO evolution!)

- **solid line:** assumption of a <u>sign change</u> in the Sivers function
- \rightarrow Chi2/d.o.f. = 7.4/6
- dashed line: assumption of <u>no sign change</u> in the Sivers function → Chi2/d.o.f. = 19.6/6

Current data show hint for small evolution effects in asymmetries and sign-change

An independent test of sign-change

M. Anselmino, M. Boglione, U. D'Alesio, F. Murgia, A. Prokudin arXiv:1612.06413

- Parameters trained on
 SIDIS data from: COMPAS,
 HERMES, JLAB

 -> latest fit of Sivers
 -> latest fit of Sivers
 - -> different kine. region
- No evolution effects included in the predictions
- Global fit on our W⁺ and W⁻ data

- The model with sign change hypothesis gives a slightly better chi-square
- > generally the agreement with the model is poor
- Authors conclude for the need of more precise data

Z⁰ Asymmetry

 $pp \rightarrow Z^0 \rightarrow e^+e^-$

- Clean experimental momentum reconstruction
- Negligible background
- electrons rapidity peaks within tracker accept. (|η|< 1)
- Statistics limited

PRL 116, 132301 (2016)

A_N measured in a single y, P_T bin

STAR run 17 projections

STAR collected 350 pb⁻¹ transverse p+p in 2017

Large statistics will allow us to

- \blacktriangleright **Precisely measure A_N for Ws within a few %** in several P_T, y bins.
- > Measure the very clean **Z⁰ channel**.
- > Aim at a conclusive test of TMD evolution effects and sign change
- Run 17 data production and calibration studies ongoing now

A_N of Drell-Yan at STAR

Very Challenging: (RHIC QCD WP arXiv:1602.03922)

- QCD background ~10⁵-10⁶ larger than DY cross-section
 - Probability of wrongly identifying hadrons to be suppressed to ~0.01% while maintaining efficiency in identifying electrons
- COMPASS (CERN) and proposed E-906/SeaQuest (FNAL) pursue the investigation of TMD through this process
- STAR can measure it... with an upgrade
 - We installed for run-17 a forward Post-Shower detector behind the the FMS detector and its Pre-Shower

Dec 14, 2017

Preshower Detector (FPS): 3 layers of scintillator stripes with SiPMT-based read-out in front of the FMS,

- → distinguish photons and electrons/positrons
- → Installed for RUN-15

Postshower Detector (FPost): similar to the FPS but located behind the FMS,

- → distinguish electrons and hadrons
- → Installed for RUN-17

Drell-Yan at STAR – Background suppression

∫L_{del}=400 pb⁻¹

-0.1

-3

-2

2

Conclusions

- RHIC run 11: STAR published the first measurement sensitive to the Sivers function in p+p collisions, based on 25 pb⁻¹ of transversely polarized p+p data at √s= 500 GeV
 - Data hint for small TMD evolution effects and Sivers sign change
 - Large statistical uncertainties

- RHIC run 17: STAR collected 350 pb⁻¹ of transversely polarized p+p data at Vs= 510 GeV, which can give statistical significance to
 - Pin down TMD evolution
 - Investigate the contribution from sea-quarks to the Sivers fcn.
 - Ultimate test of the Sivers sign change measuring γ, W[±], Z⁰, DY, all in one venue!

White Papers

arXiv: 1501.01220

arXiv:1602.03922

BACKUP

The structure of a proton

Today we know that a proton (nucleon) is a very complex object! What is the dynamic structure of the nucleons?

Emerging questions:

Proton Spin puzzle

What is the role of sea quarks and gluons in building the nucleon spin?

Visualize color interactions in QCD

understand deep aspects of gauge theories revealed by ${\bf k}_{\rm T}$ dependent distributions

Summary table

	A _N (₩⁺/⁻,Z⁰)	A _N (DY)	Α_Ν(γ)
sensitive to sign change through TMDs	yes	yes	no
sensitive to sign change through Twist-3 T _{q,F} (x,x)	no	no	yes
sensitive to TMD evolution	yes	yes	no
sensitive to sea- quark Sivers fct.	yes	yes	no
need detector upgrades	no	yes at minimum: FMS postshower	yes pre-showers installed for run-15
biggest experimental challenge	integrated luminosity	background suppression & integrated luminosity	need to still proof analysis on data
$A_N(W^{+/-},Z^0)$ clean probe sensitive to all questions without the			
Dec 14. 2017	need for upgrades S. Fazio - BNL		22

RHIC – a unique opportunity for TMDs!

Till today TMDs come only from fixed target low scale, high x measurements should establish concept at high \sqrt{s} and different x \rightarrow polarised pp / pA at RHIC

A_N of direct-photons at STAR

A_N for direct photon production:

- sensitive to sign change, but in TWIST-3 formalism
- not sensitive to TMD evolution
 - no sensitivity to sea-quarks; mainly u_v and d_v at high x
- collinear objects but more complicated evolutions than simple DGLAP
- indirect constraints on Sivers fct.

How do we access the sign change?

If the correlation due to different color interactions for initial and final state between the **Sivers fcn** and the **twist-3 correlation fcn** in the k_T integral would be violated, the asymmetry would be positive but the same magnitude

$$-\int d^2k_{\perp} \frac{\left|k_{\perp}^2\right|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$$

Not a replacement for a $A_N(W^{+/-}, Z^0, DY)$ measurement but an important complementary piece in the puzzle

Jets to access Transversity x Collins

$$A_{UT}^{\pi^{*}} \approx \frac{h_{1}^{q_{1}}(x_{1},k_{T})f_{q_{2}}(x_{2},k_{T})\hat{\sigma}_{UT}(\hat{s},\hat{t},\hat{u})}{f_{q_{1}}(x_{1},k_{T})f_{q_{2}}(x_{2},k_{T})\hat{\sigma}_{UU}D_{q_{1}}^{\pi^{*}}(z,j_{T})}$$

- 200 vs. 500 GeV Comparison:
- first observation of a TMD at low x and high Q²
- Evolution: 200 GeV ← → 500 GeV factor 3 in Q
- Test of factorization & Universality
 compare with transversity from IFF
 compare with SIDIS and e+e Triggered a lot of theory work proof of factorization: Kang et al. arXiv:1705.08443 asymmetry calculation: Kang et al. arXiv:1707.00913

