

New and future transverse spin physics results at PHENIX

Marie Boër, Catholic University of America,

on behalf of the PHENIX collaboration

Transversity conference, December 11 - 15, 2017, Frascati, Italy.

Outline

Asymmetries in light hadron production:

(1) Neutral: π° and η mesons at central and forward rapidity, in p+p and p+A RHIC

(2) Charged hadrons at forward rapidity in p+p and p+Au

<u>Asymmetries in heavy flavored mesons production</u>:
(3) Heavy flavor decay muons at forward rapidity, in p+p collisions
(4) J/Ψ at forward rapidity, in p+p and p+A collisions

• Asymmetries in neutron production: (5) Neutrons at very forward rapidity in p+p and p+A collisions

PHENIX spectrometer at RHIC, cut view

Polarized proton runs at RHIC from 2006 to 2015 and A_N measurement

Year	√s (GeV)	Recorded Luminosity for longitudinally / transverse polarized p+p STAR	Recorded Luminosity for longitudinally / transverse polarized p+p PHENIX	<p> in %</p>	$A_N = \frac{\sigma_L^{\uparrow} - \sigma_R^{\uparrow}}{\sigma_L^{\uparrow} + \sigma_R^{\uparrow}}$
2006	62.4 200	$ \text{pb}^{-1} / 0.2 \text{ pb}^{-1}$ 6.8 pb ⁻¹ / 8.5 pb ⁻¹	$0.08 \text{ pb}^{-1} / 0.02 \text{ pb}^{-1}$ 7.5 pb $^{-1} / 2.7 \text{ pb}^{-1}$	48 57	· · · ·
2008	200	$ \text{pb}^{-1} / 7.8 \text{ pb}^{-1}$	$ \text{pb}^{-1} \neq 5.2 \text{ pb}^{-1}$	45	p' +p collisions Left
2009	200 500	25 pb ⁻¹ / pb ⁻¹ 10 pb ⁻¹ / pb ⁻¹	$16 \text{ pb}^{-1} / \text{ pb}^{-1}$ $14 \text{ pb}^{-1} / \text{ pb}^{-1}$	55 39	
2011	500	12 pb ⁻¹ / 25 pb ⁻¹	18 pb ⁻¹ / pb ⁻¹	48	Right
2012	200 510	pb ⁻¹ / 22 pb ⁻¹ 82 pb ⁻¹ / pb ⁻¹	pb ⁻¹ 9.7 pb ⁻¹ 32 pb ⁻¹ / pb ⁻¹	61/56 50/53	Night
2013	510	300 pb ⁻¹ / pb ⁻¹	155 pb ⁻¹ / pb ⁻¹	51/52	p ⁺ +A collisions
2015	200	52 pb ⁻¹ / 52 pb ⁻¹	pb ⁻¹ 60 pb ⁻¹	53/57	
2015 (200 p A	total delivered Lui	minosity $\neq 1.27 \text{ pb}^{-1}$	60	
2015 (200 p A	total delivered Lui	minosity = 3.97 pb^{-1}	54	
o tran	isversel	y polarized beam		-	

Run 2015 : for the first time polarized p⁺+A collisions 5 times luminosity of past transversely polarized runs PH^{*}ENIX

Transverse Momentum Distributions k_⊤ dependent approach ⇒ need 2 scales: Q² » p_⊤² Correlation functions, twist 3 (and >) integrated over k_{T} \Rightarrow need 1 hard scale (large Q², large p_T)

Sivers f_{1T}^{\perp} : correlation of nucleon spin and partons k_T^{\perp} \rightarrow contribute to initial state effects in p+p

Boer-Mulders h_1^{\perp} correlation of partons spin and their k_{τ}

Transversity h₁ correlation of parton and nucleon spins

transversity * Collins fragmentation correlation of parton spin and hadron k_{T} \rightarrow contribute to final state effects in p+p

gg and qg interactions authorize spin flip...

• Access TMDs through k_{τ} moments

• PHENIX kinematics: this framework to interpret ${\rm A}_{\rm N}$ in hadron production

(1) A_{N} in π° production at central rapidity in p+p and p+A

(1) A_{N} in light neutral hadrons production: π° and η at forward rapidity

Unexpected large $A_{_{N}}$ found by all experiments in both π° and η production, at same level

- Large asymmetries measured at forward rapidity ($\propto x_{_F}$), while compatible with zero at mid-(previous slide) and backward rapidity.
- Weak energy dependence
- Pink fit: twist-3 calculations using quark-gluon correlation functions
- A_N origin may be: gluon correlation at initial state, final state effect with twist 3 fragmentation₇...

(2) Transverse spin asymmetries in charged light hadrons production

- non zero asymmetry for h^+ at forward rapidity in p+p, increasing as a function of X_{F} .
- comparable with BRAHMS result (not same kinematic)
- suppression of the asymmetry in p+A

⇒ A suppression coming from saturation effect is predicted in: Kang, Yuan, Phys.RevD. 84, 034019(2011); Kovchegov, Sievert, Phys.RevD.86, 034028(2012); Yoshitaka Hatta et al, Phys.RevD.95, 014008(2017)

(2) Transverse spin asymmetries in charged light hadrons production

- A_{N} compatible with 0 for negative hadrons
- \Rightarrow small A_N anticipated from BRAHMS results with π/K separation:

positive $A_{N}(K^{-})$, negative $A_{N}(\pi^{-})$ in BRAHMS

For positive hadrons: positive $A_N(K^+)$ and $A_N(\pi^+)$ in BRAHMS PRL101,042001(2008), arXiv:0908.4551

(3) Open heavy flavor transverse spin asymmetry

- Sensitive to gluon Sivers function, as moment related to correlation function (see Kang et al, Phys.Rev.D83:094001,2011)
- Production is dominated by tri-gluon correlation in collinear factorization approach.
- non zero asymmetry would be expected from initial state effect

twist 2 "generic" diagrams for $p+p \rightarrow D X$ twist 3 "generic" diagrams for $p+p \rightarrow D X$

Phys.Rev.D84:014026,2011

(3) Open heavy flavor transverse spin asymmetry (vs xF)

- Main contribution to single muons: D-meson decay (~ 60% to 92% at lower p_{τ})
- Results consistent with zero within uncertainties, for μ + and μ -
- Model predictions at twist 3 within collinear factorization framework consistent with measurement. Original calculations for D meson translated to single μ decay.

Twist 3 model: Y. Koike, S. Yoshida, PRD84:014021 (2011) AN calculations for D mesons provided by S. Yoshida.

Recently published: Phys. Rev. D 95, 112001 (2017)

(4) Transverse spin asymmetry in inclusive J/ψ production

Sensitive to production mechanism: only color singlet can produce non zero A_N

Color singlet

Initial state interaction

Initial state interaction

 $Q Q Q = [Q \overline{Q}]_c^{(8)}$

Final state interaction

<u>Comparison :</u>

4 data sets, last one in 2015 with *5 improved luminosity and first time transversely polarized p+A

Run	Luminosity	Pol
Run6	1.8 pb ⁻¹	53%
Run8	4.5 pb ⁻¹	45%
Run12	9.2 pb ⁻¹	60%
Run15	50 pb ⁻¹	60%

Interpretation: F. Yuan et al, Phys.Rev. D56 (1997) 321-328, fig from F. Yuan talk

(4) A_N for inclusive J/ ψ production: p+p and p+A

(5) A_N in very forward neutron production

 A_{N} measured in p+p, p+Al, p+Au for neutron, $|\eta| > 6.8$, "very forward"

(5) Interpretation of the neutron asymmetries and A dependence

• Unpolarized neutron production cross section in p+p: can be described with π exchange

• Non zero A_N in p+p [Fukao et al, Phys.Lett.B650:325-330,2007]

can be explained by interference between π exchange (spin flip) and a_1 Reggeon (non spin flip) [Kopeliovich et al, Phys. Rev. D 84, 114012 (2011)]. <u>But</u>: predicted weak nuclear dependence

• New PHENIX results with large nuclear dependence

- observation of larger asymmetry and sign change when there are less interactions around the neutron \Rightarrow Ultra Peripheral Collisions with γ^* exchange $(\gamma^* p^{\dagger} \rightarrow \pi^+ [\Delta^* ... \rightarrow N])$ can explain it \Rightarrow virtual photon flux increase in Z² can explain the nuclear dependence

• Model and simulations mixing "hadronic" collisions + UPC reproduce PHENIX results

- simulations predict an average of small negative asymmetries as expected for only hadronic collisions and large positive asymmetries expected for only electromagnetic process [Mitsuka, Eur.Phys.J.C75:614,2015]

- ongoing studies of $p_{_{\rm T}}$ and $x_{_{\rm F}}$ dependence

arXiv:1703.10941

Summary

(1) Large asymmetries in light hadron production at forward rapidity, while found compatible with zero at central and backward rapidity. Results can be reproduced with some models including twist 3 correlation functions.

(2) Large asymmetries in positive hadron production at forward rapidity in p+p. Effect tend to be suppressed in p+Au, some models explain it from saturation. Asymmetry compatible with zero for negative inclusive light hadrons (π^- , K^- ...). Compatible with BRAHMS results.

(3) Asymmetries found compatible with zero for inclusive heavy flavored mesons production (dominated by D). Can be reproduced with some twist 3 parameterizations

(4) J/ ψ asymmetry in p+p compatible with zero, unexplained asymmetry found in p+Au

(5) Large asymmetry and strong nuclear dependence in very forward neutron production. Interpreted by contribution of $\gamma^* p \rightarrow \pi^+ n$ in UPC, results can be reproduced with model including UPC.

• Near future:

Heavy flavor muons $A_{_N}$ with high precision data at forward rapidity, direct photon $A_{_N}$ at midrapidity, DY $A_{_N}$

(1) A_N in light neutral hadrons production: π° and η at central rapidity

PH^{*}ENIX

π° and η A_N in p+p at 200 GeV → access gluon Sivers function through correlation function

Mid-rapidity: $|\eta| < 0.35$

 A_N found consistent with zero for the whole p_T range in p+p collisions, within statistic uncertainties.

(2) Transverse spin asymmetries in charged light hadrons production

• non zero asymmetry for h^+ at forward rapidity in p+p, increasing as a function of X_{F} .

- comparable with BRAHMS result (not same kinematic)
- suppression of the asymmetry in p+A

⇒ A suppression coming from saturation effect is predicted in: Kang, Yuan, Phys.RevD. 84, 034019(2011); Kovchegov, Sievert, Phys.RevD.86, 034028(2012); Yoshitaka Hatta et al, Phys.RevD.95, 014008(2017)

(3) Open heavy flavor transverse spin asymmetry (vs pT)

- Main contribution to single muons: D-meson decay (~ 60% to 92% at lower p_{τ})
- Results consistent with zero within uncertainties, for $\mu \text{+}$ and $\mu \text{-}$
- Model predictions at twist 3 within collinear factorization framework consistent with measurement. Original calculations for D meson translated to single μ decay.

Twist 3 model: Y. Koike, S. Yoshida, PRD84:014021 (2011) AN calculations for D mesons provided by S. Yoshida.

PH^{*}ENIX

Recently published: Phys. Rev. D 95, 112001 (2017)

(4) A_N for inclusive J/ ψ production: p+p and p+A

Results from 2006 to 2012:

- AN compatible with zero for p+p
- Confirmed with more statistics (next slide)

