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Outline
• How	to	obtain	small-x	asymptotics of	TMDs	– the	small-x	evolution	
equations	and	their	solution.	What	we	mean	by	small-x	asymptotics:	small	x	
(linear	evolution)	vs.	very	small	x	(saturation).

• Unpolarized nucleon:	small-x	asymptotics of
• Unpolarized quark	and	gluon	TMDs;
• Linearly	polarized	gluon	TMDs.

• Longitudinally	polarized	nucleon:	small-x	asymptotics of	quark	and	gluon	
helicity	TMDs.

• Transversely	polarized	nucleon:	small-x	asymptotics of	transversity and	
Sivers distribution.

• Outlook:	
• Small-x	asymptotics of	TMDs	beyond	the	ones	listed	above;	
• connecting	small-x,	CSS	and	DGLAP	evolutions?
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My	goal	here
• In	this	talk	I	will	try	to	describe	the	small-x	asymptotics of	quark	and	

gluon	TMDs,	in	the	cases	where	it	is	known.

• Note	that	when	small-x	asymptotics is	known,	the	kT dependence	is	
usually	known	as	well	(theoretically).	
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Small-x	Evolution
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Dipole	picture	of	DIS

• In	the	dipole	picture	of	DIS	the	virtual	photon	splits	into	a	
quark-antiquark	pair,	which	then	interacts	with	the	target.

• The	total	DIS	cross	section	and	structure	functions	are	
calculated	via:

q

γ∗
x⊥ x⊥
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Dipole	Amplitude

• The	total	DIS	cross	section	is	expressed	in	terms	of	the	(Im
part	of	the)	forward	quark	dipole	amplitude	N:

��⇤A
tot =

Z
d2x?
2⇡

d2b?

1Z

0

dz

z (1� z)
| �⇤!qq̄(~x?, z)|2 N(~x?,~b?, Y )

q

γ∗
x⊥ x⊥

b?, Y

z

1� z
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Dipole	Amplitude
• The	quark	dipole	amplitude	is	defined	by

• Here	we	use	the	Wilson	lines	along	the	light-cone	direction

• In	the	classical	Glauber-Mueller/McLerran-Venugopalan
approach	the	dipole	amplitude	resums multiple	rescatterings:

N(x1, x2) = 1� 1

Nc
htr

⇥
V (x1)V

†(x2)
⇤
i

V (x) = P exp

2

4i g
1Z

�1

dx+ A�(x+, x� = 0, x)

3

5

x⊥

x1

x2
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Dipole	Amplitude
• The	energy	dependence	comes	in	through	nonlinear	small-x	

BK/JIMWLK	evolution,	which	resums the	long-lived	s-channel	
gluon	corrections:

↵s ln
1

x
⇠ ↵s Y ⇠ 1
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Notation	(Large-NC)
x⃗1⊥

x⃗2⊥
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Real	emissions	in	the	
amplitude	squared

(dashed	line	– all	
Glauber-Mueller	exchanges
at	light-cone	time	=0)

Virtual	corrections	in	the	amplitude	
(wave	function)
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Nonlinear	Evolution
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To	sum	up	the	gluon	cascade	at	large-NC we	write	the	following	equation	
for	the	dipole	S-matrix:

@Y Sx0,x1(Y ) =
↵s Nc

2⇡2

Z
d2x2

x2
01

x2
02 x

2
21

[Sx0,x2(Y )Sx2,x1(Y )� Sx0,x1(Y )]

dashed line =
all interactions 
with the target

Remembering	that	S=	1-N	we	can	rewrite	this	equation	in	terms	of	
the	dipole	scattering	amplitude	N.
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Nonlinear	evolution	at	large	Nc
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@Y Nx0,x1(Y ) =
↵s Nc

2⇡2

Z
d2x2

x2
01

x2
02 x

2
21

[Nx0,x2(Y ) +Nx2,x1(Y )�Nx0,x1(Y )�Nx0,x2(Y )Nx2,x1(Y )]

Balitsky ‘96,	Yu.K.	‘99

As	N=1-S	we	write
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Solution	of	BK	equation
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αSY = 0, 1.2, 2.4, 3.6, 4.8 numerical	solution	
by	J.	Albacete	‘03
(earlier	solutions	were
found	numerically	by
Golec-Biernat,	Motyka,	Stasto,	
by	Braun	and	by	Lublinsky et	al	
in	‘01)	

�qq̄A = 2

Z
d2bN(x?, b?, Y )

BK	solution	preserves	the	black	disk	limit,	N<1	always	
(unlike	the	linear	BFKL	equation)

1/Qs

12



Small-x	Asymptotics
• BFKL	solution	gives	(x<<1)

with	

• NLO	corrections	are	known	(Fadin,	Lipatov ’98;	Ciafaloni,	Camici ‘98).

• Full	BK	equation	solution	also	leads	to	saturation	at	very	small	x	(x<<<1):

• Below	we	will	refer	to	the	BFKL-like	linear	regime	as	the	“small-x	
asymptotics”	of	TMDs.	It	should	be	understood	that	at	even	smaller	x	
saturation	is	expected	to	come	in	and	stop	the	small	x	evolution.	

N ⇠
✓
1

x

◆↵P�1

↵P � 1 =
4↵s Nc

⇡
ln 2 ⇡ 2.77

↵s Nc

⇡

N ⇠ const
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Going	Beyond	Large	NC:	JIMWLK
To	do	calculations	beyond	the	large-NC limit	on	has	to	use	a	functional
integro-differential	equation	written	by	Iancu,	Jalilian-Marian,	Kovner,	
Leonidov,	McLerran and	Weigert (JIMWLK):

where	the	functional	Z[r]	can	then	be	used	for	obtaining	
wave	function-averaged	observables	(like	Wilson	loops	for	DIS):

@Z

@Y
= ↵s

⇢
1

2

�2

�⇢(u) �⇢(v)
[Z �(u, v)]� �

�⇢(u)
[Z �(u)]

�

hOi =
Z

D⇢Z[⇢]O[⇢]
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Unpolarized Nucleon	TMDs
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Unpolarized Gluon	TMD
• We	start	with	the	unpolarized gluon	TMD	at	small	x:
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Dipole	Gluon	TMD

• We	start	with	the	gluon	dipole	TMD:

• Here	U[+] and	U[-] are	future	and	
past-pointing	fundamental	Wilson	line	
staples (hence	the	name	`dipole’	TMD
– it	looks	like	a	quark	dipole	scattering	
on	a	proton)

• Dipole	gluon	TMD	enters	a	number	of	
cross	sections:	DIS,	DY,	SIDIS,	hadron
production	in	pA.

• Dominguez,	Marquet,	Xiao,	Yuan	’11;	
M.	Braun	’00;	YK,	Tuchin ‘01,	
Kharzeev,	YK,	Tuchin ’03.

t

z

i

i

U^[+]

U^[−]

proton

fGdip
1 (x, k2T ) =

2

xP+

Z
d⇠� d2⇠

(2⇡)3
eixP

+ ⇠��ik·⇠ hP |tr
h
F+i(0) U [+][0, ⇠] F+i(⇠) U [�][⇠, 0]

i
|P i⇠+=0
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Dipole	Gluon	TMD

• One	can	show	that	the	gluon	dipole	TMD	at	small	x	is	indeed	related	to	
the	dipole	amplitude	N=	1-S	(Dominguez	et	al,	’11;	M.	Braun	’00;	YK,	
Tuchin ‘01,	Kharzeev,	YK,	Tuchin ’03):

• The	resulting	small-x	asymptotics is	given	by	the	BFKL	evolution,

• The	kT dependence	is	also	determined	by	the	small-x	evolution.

fGdip
1 (x, k2T ) =

k2T Nc

(2⇡)3 ⇡ ↵s x

Z
d2b d2r e�i~k?·~r? S(~r?,~b?, Y = ln(1/x))

= � k2T Nc

(2⇡)3 ⇡ ↵s x

Z
d2b d2r e�i~k?·~r? N(~r?,~b?, Y = ln(1/x))

fGdip
1 (x, k2T ) ⇠

1

x
N(~r?,~b?, Y = ln(1/x)) ⇠

✓
1

x

◆1+ 4↵s Nc
⇡ ln 2+O(↵2

s)
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WW	Gluon	TMD

• Next	consider	the	Weizsacker-Williams	gluon	TMD:

• Here	U[+] is	the	future-pointing	fundamental	
Wilson	line	staple (can	use	past-pointing	too)

• Jalilian-Marian,	Kovner,	McLerran,	Weigert ‘97;	
Dominguez,	Marquet,	Xiao,	Yuan	’11.

• WW	gluon	TMD	can	be	measured	in	dijet
production	in	DIS	and	in	pA

t

z

i

i

U^[+]

U^[+] dagger

proton

fGWW
1 (x, k2T ) =

2

xP+

Z
d⇠� d2⇠

(2⇡)3
eixP

+ ⇠��ik·⇠ hP |tr
h
F+i(0) U [+][0, ⇠] F+i(⇠) U [+] †[⇠, 0]

i
|P i⇠+=0
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WW	Gluon	TMD
• At	small	x	the	WW	gluon	TMD	is	proportional	to	a	different	object,	now		
made	out	of	4	Wilson	lines,	the	quadrupole	amplitude	Q:

• Small-x	evolution	for	the	quadrupole	amplitude	Q	is	given	by	an	
evolution	equation	different	from	BK.	(Jalilian-Marian,	YK	‘04;	
Dominguez,	Mueller,	Munier,	Xiao	‘11.)

• In	the	linear	regime	the	dipole	amplitude	Q	obeys	BFKL	equation,	such	
that	the	small-x	asymptotics of	the	WW	gluon	TMD	is	the	same	as	for	
the	dipole	gluon	TMD:

• The	difference	between	the	two	TMDs	is	inside	the	saturation	region.

Q(x1, x2, x3, x4) =
1

Nc
htr[V1 V

†
2 V3 V

†
4 ]i

fG WW
1 (x, k2T ) ⇠

1

x
Q ⇠

✓
1

x

◆1+ 4↵s Nc
⇡ ln 2+O(↵2

s)
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Linearly	Polarized	Gluon	TMD
• Let	us	discuss	the	linearly	polarized	(WW)	gluon	TMD	ℎ"#:

• Linearly	polarized	TMDs	at	small	x	can	be	measured	from	cos(2	𝜑)
modulation	of	the	angles	in	dijet production	in	DIS	(Dumitru,	Lappi,	
Skokov ‘15).
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Linearly	Polarized	Gluon	TMD

• If	we	keep	the	indices	of	the	two	𝐹-. different,	we	get	access	to	the	
linearly	polarized	(WW)	gluon	TMD	ℎ"# (Metz,	Zhou,	‘11):

• The	linearly	polarized	WW	gluon	TMD	is	thus	also	related	to	the	color-
quadrupole	amplitude	Q.	

• In	the	linear	(BFKL)	regime	the	small-x	asymptotics is	the	same,

• For	more	on	small-x	evolution	of	the	linear	gluon	polarization	see	recent	
work	by	Dumitru,	Skokov ‘17.		

1

P+

Z
d⇠� d2⇠

(2⇡)3
eixP

+ ⇠��ik·⇠ hP |tr
h
F+i(0) U [+][0, ⇠] F+j(⇠) U [+] †[⇠, 0]

i
|P i⇠+=0

=
1

2
�ij x fG WW

1 (x, k2T ) +
2kikj � k2T �ij

4 k2T
xh?

1, WW (x, k2T )

h?

1, WW (x, k2T ) ⇠
1

x
Q ⇠

✓
1

x

◆1+ 4↵s Nc
⇡ ln 2+O(↵2
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Unpolarized Quark	TMD

• Next,	let’s	talk	about	the	unpolarized quark	TMDs:
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Quark	Production	in	SIDIS	at	Small-x
• To	find	the	unpolarized-nucleon	quark	TMDs	at	small-x	it	is	convenient	to	

start	by	considering	the	quark	production	cross	section	for	SIDIS	on	an
unpolarized nucleon.	

• The	dominant	process	is	due	to	gluon	exchanges,	even	at	the	lowest	
order:

• Compared	to	the	standard	LO	process,	
the	one	above	comes	in	with	an	extra	factor	of

and	is	dominant	at	very	low	x.	

x⊥ y⊥

⇠ ↵s

x
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SIDIS	to	All	Orders
• SIDIS	process	can	now	be	easily	generalized	to	include	all-order	

interactions	with	the	shock	waves:

• The	SIDIS	cross	section	is

x⊥ y⊥

x⊥ y⊥ x⊥ y⊥

x⊥ y⊥

z⊥

z⊥

d�SIDIS
T,L

d2kT
=

1Z

0

dz

z (1� z)

Z
d2x? d2y? d2z?

2(2⇡)3
e�ik·(x�y) �⇤!qq̄

T,L (x� z, z)
h
 �⇤!qq̄

T,L (y � z, z)
i⇤

⇥
h
S[+1,�1]
x,y � S[+1,�1]

x,z � S[+1,�1]
z,y + 1

i

Now	we	have	infinite
Wilson	lines!
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Quark	TMD	Evolution	at	Small-x
• Taking	the	large-Q2 limit	of	the	SIDIS	cross	section	we	can	extract	the	

unpolarized quark	TMD	out	of	it	(A.H.	Mueller	‘99;	 Marquet,	Xiao	and	
Yuan,	‘09;	YK,	Sievert	‘15):

• Since	the	Wilson	lines	are	now	infinite,	we	have	infinite	dipoles,	whose	
evolution	is	given	by	the	BK	equation	at	large-Nc:

fA
1 (x, kT ) =

2Nc

⇡3 x

Z
d2x? d2y? d2z?

2(2⇡)3
e�ik·(x�y) x� z

|x� z|2 ·
y � z

|y � z|2

⇥
|x� z|4 � |y � z|4 � 2 |x� z|2 |y � z|2 ln |x�z|2

|y�z|2

(|x� z|2 � |y � z|2)3
h
S[+1,�1]
x,y � S[+1,�1]

x,z � S[+1,�1]
z,y + 1

i

@Y Sx0,x1(Y ) =
↵s Nc

2⇡2

Z
d2x2

x2
01

x2
02 x

2
21

[Sx0,x2(Y )Sx2,x1(Y )� Sx0,x1(Y )]
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Unpolarized Quark	TMD
• We	conclude	that	the	small-x	asymptotics of	the	unpolarized quark	TMD	is

• One	needs	to	re-check	the	above	conclusions	using	the	operator	definition	
of	the	unpolarized quark	TMD,	but	the	x-dependence	above	will	remain	
the	same.	

fq
1 (x, k

2
T ) ⇠

1

x
N ⇠

✓
1

x

◆1+ 4↵s Nc
⇡ ln 2+O(↵2

s)
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Mini-Summary

• So	far,	all	the	quark	and	gluon	TMDs	for	an	unpolarized
nucleon	had	the	same	x-dependence	at	small	x,

• Not	all	the	unpolarized-nucleon	TMDs	have	their	small-x	
asymptotics derived	yet	-- it	has	not	been	derived	for	Boer-
Mulders	distribution	to	the	best	of	my	knowledge.

TMDq,G
unpolarized(x, k

2
T ) ⇠

✓
1

x

◆1+ 4↵s Nc
⇡ ln 2+O(↵2

s)
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Longitudinally	Polarized	Nucleon	
TMDs

Yu.K.,	M.	Sievert,	arXiv:1505.01176	[hep-ph]
Yu.K.,	D.	Pitonyak,	M.	Sievert,	arXiv:1511.06737	[hep-ph],
arXiv:1610.06197	[hep-ph],	arXiv:1610.06188	[hep-ph],
arXiv:1703.05809	[hep-ph], arXiv:1706.04236	[nucl-th]	
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Quark	Helicity	TMD
• We	now	want	to	calculate	quark	and	gluon	helicity	TMDs	at	small	x:
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How	much	spin	is	at	small	x?

• E.	Aschenaur et	al,	arXiv:1509.06489 [hep-ph]
• Uncertainties are	very large at small x!
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Quark	Helicity	TMD	from	SIDIS	Cross	Section

• One	can	show	that	the	quark	helicity	TMD	at	small	x	can	be	expressed	in	
terms	of	the	polarized	dipole	amplitude	(flavor	singlet	case):	

• Here	s	is	cms energy	squared,	zi=L2/s,	

x⊥
y⊥

w⊥

x⊥ y⊥

w⊥

k⊥ k⊥σ σγ∗ γ∗ γ∗ γ∗

z zσ′ σ′q q

Σ Σ

gS1 (x,Q
2) =

Nc Nf

2⇡2↵EM

1Z

zi

dz

z2(1� z)

Z
dx2

01

"
1

2

X

���0

| T
���0 |2(x2

01,z)
+

X

��0

| L
��0 |2(x2

01,z)

#
G(x2

01, z),

�qS(x,Q2) =
Nc Nf

2⇡3

1Z

zi

dz

z

1
zQ2Z

1
zs

dx2
01

x2
01

G(x2
01, z),

gS1L(x, k
2
T ) =

8Nc Nf

(2⇡)6

1Z

zi

dz

z

Z
d2x01 d

2x001 e
�ik·(x01�x001)

x01 · x001

x2
01x

2
001

G(x2
01, z)

G(x2
01, z) ⌘

Z
d2b G10(z)
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Polarized	Dipole
• All	flavor	singlet	small-x	helicity	observables	depend	on	one	object,	
“polarized	dipole	amplitude”:

• Double	brackets	denote	an	object	with	energy	suppression	scaled	out	
(single	brackets	= averaging	in	the	target	state):

DD
O

EE
(z) ⌘ zs

D
O

E
(z)

G10(z) ⌘
1

2Nc

DD
tr
h
V0V

pol †
1

i
+ tr

h
V pol
1 V †

0

i EE
(z)

polarized	quark	(“polarized	Wilson	line”):	
eikonal propagation,	non-eikonal
spin-dependent	interaction

unpolarized quark

Vx ⌘ P exp

2

4ig
1Z

�1

dx+ A�(x+, 0�, x)

3

5
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“Polarized	Wilson	line”

k

p2 p2 − k

p1

σσ′

To	obtain	an	explicit	expression	for	the	“polarized	Wilson	line”	operator	due	to	
a	sub-eikonal gluon	exchange	(as	opposed	to	the	sub-eikonal quarks	exchange,	which	
needs	to	be	added	as	well),	consider	multiple	Coulomb	gluon	exchanges	with	the	target:

Most	gluon	exchanges	are	eikonal spin-independent	interactions,	while	one	of	them
is	a	spin-dependent	sub-eikonal exchange.	(cf.	Mueller	‘90,	McLerran,	Venugopalan ‘93)

+

-
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“Polarized	Wilson	line”
• A	simple	calculation	in	A-=0	gauge	yields	the	“polarized	
Wilson	line”:

where																																								

is	the	spin-dependent	sub-eikonal gluon	field	of	the	plus-
direction	moving	target	with	helicity	S.	

(𝐴- is	the	unpolarized eikonal field.)
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Polarized	Dipole	Amplitude
• The	polarized	dipole	amplitude	is	then	defined	by

with	the	standard	light-cone	
Wilson	line
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Evolution	for	Polarized	Quark	Dipole
• We	can	evolve	the	polarized	dipole	operator	and	obtain	its	small-x	
evolution	equation:

• From	the	first	two	graphs	on	the	right	we	get
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Evolution	for	Polarized	Quark	Dipole
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One	can	construct	an	evolution	equation	for	the	polarized	dipole:

Spin-dependent	(non-eikonal)	vertex
polarized
particle

box	=
target	shock
wave

similar	to	
unpolarized
BK	evolution
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Resummation Parameter
• For	helicity	evolution	the	resummation parameter	is	different	from	BFKL,	
BK	or	JIMWLK,	which	resum powers	of	leading	logarithms	(LLA)																															

• Helicity	evolution	resummation parameter	is	double-logarithmic	(DLA):

• The	second	logarithm	of	x	arises	due	to	transverse	momentum	(or	
transverse	coordinate)	integration	being	logarithmic	both	in	UV	and	IR.

• This	was	known	before:	Kirschner and	Lipatov ’83;	Kirschner ’84;	Bartels,	
Ermolaev,	Ryskin ‘95,	‘96;	Griffiths	and	Ross	’99;	Itakura et	al	’03;	Bartels	
and	Lublinsky ‘03.	
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Polarized	Dipole	Evolution	in	the	Large-Nc Limit

In	the	large-Nc limit	the	equations	close,	leading	to	a	system	of	2	equations:	
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Solution	of	the	large-NC Equations

• Numerical	solution	results	in	the	following	small-x	asymptotics:
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Quark	Helicity	TMD:	Small-x	Asymptotics

• The	above	equations	can	be	solved	analytically	too,	giving	the	helicity	
intercept

• This	is	in	complete	agreement	with	the	numerical	solution!

• The	small-x	asymptotics of	quark	helicity	is	(at	large	Nc)	
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Impact	of	our	DS on	the	proton	spin
• We	have	attached	a																																											curve	to	the	existing	hPDF’s fits	
at	some	ad	hoc	small	value	of	x	labeled	x0 :
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Impact	of	our	DS on	the	proton	spin
• Defining																																																														we	plot	it		for	x0=0.03,	0.01,	
0.001:

• We	observe	a	moderate	to	significant	enhancement	of	quark	spin.	
• More	detailed	phenomenology	is	needed	in	the	future.	
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Impact	on	proton	spin

45

• Here	we	compare	our	results	with	DSSV,	
now	including	the	error	band.

• We	observe	consistency	of	our	lower	two
curves	with	DSSV.

• Our	upper	curve	disagrees	with	DSSV,	
but	agrees	with	NNPDF	
(Nocera,	Santopinto,	‘16).

• Better	phenomenology	is	needed.	EIC	would
definitely	play	a	role.



Gluon	Helicity	TMD
• We	now	want	to	calculate	quark	and	gluon	helicity	TMDs	at	small	x:
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Dipole	Gluon	Helicity	TMD
• Now	let	us	repeat	the	calculation	for	gluon	helicity	TMDs.

• We	start	with	the	definition	of	the	gluon	dipole	helicity	TMD:

• Here	U[+] and	U[-] are	future	and	
past-poiting Wilson	line	staples
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Dipole	Gluon	Helicity	TMD

• At	small	x,	the	definition	of	dipole	gluon	helicity	TMD	can	be	massaged	
into

• Here	we	obtain	a	new	operator,	which	is	a	transverse	vector	(written	
here	in	A-=0	gauge):

• Note	that																	can	be	thought	of

as	a	transverse	curl	acting	on

and	not	just	on																							-- different

from	the	polarized	dipole	amplitude!
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Evolution	Equation

• To	construct	evolution	equation	for	the	operator	𝐺.
governing	the	gluon	helicity	TMD	we	resum similar	
(to	the	quark	case)	diagrams:	

“c.c.”

other LLA diagrams
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Large-Nc Evolution:	Equations
• This	results	in	the	following	evolution	equations:
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Large-Nc Evolution	Equations:	Solution

• These	equations	can	be	solved	in	the	asymptotic	high-energy	region	
yielding the	small-x	gluon	helicity	intercept

• We	obtain	the	small-x	asymptotics of	the	gluon	helicity	distributions:
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Impact	of	our	DG	on	the	proton	spin
• We	have	attached	a																																											curve	to	the	existing	hPDF’s fits	
at	some	ad	hoc	small	value	of	x	labeled	x0 :
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Impact	of	our	DG	on	the	proton	spin
• Defining																																																														we	plot	it		for	x0=0.08,	0.05,	
0.001:

• We	observe	a	moderate	enhancement	of	gluon	spin.	
• More	detailed	phenomenology	is	needed	in	the	future.	
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Transversely	Polarized	Nucleon	
TMDs
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Transversely	Polarized	Nucleon	TMDs
• Now	let’s	consider	transversity and	the	Sivers TMD	function	(for	quarks	and	
gluons).	I	will	mainly	talk	about	gluons,	since	we	know	more	theoretically	
about	their	small-x	asymptics.	

ƒ1 =

g1L =

h1 =
g1T

┴ =ƒ1T
┴ =

h1
┴ =

h1L
┴ =

h1T
┴ =Sivers

Boer-Mulders

Helicity

Transversity

Leading Twist TMDs
Quark Polarization

Nu
cl

eo
n 

Po
la

riz
at

io
n

Un-Polarized
(U)

Longitudinally Polarized
(L)

Transversely Polarized
(T)

Nucleon Spin Quark Spin

—

—

—

—

—

—

—

U

L

T

55

Gluon



Gluon	TMDs	of	the	Transversely	
Polarized	Nucleon
• Boer,	Echevarria,	Mulders	and	Zhou	‘15	argued	that	one	could	relate	the	
dipole-type	T-odd	gluon	TMDs	for	a	transversely	polarized	nucleon,	such	
as	the	Sivers function	and	transversity,	to	the	so-called	spin-dependent	
odderon operator	(Zhou,	‘14):	

• The	latter	two	TMDs	give	us	transversity
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The	Odderon

• To	determine	the	small-x	asymptotics of	the	Sivers function	and	
transversity TMD	we	need	to	find	the	small-x	asymptotics of	the	
odderon.	

• There	is	a	rich	history	behind	this	question.
• The	end	result	is	that	we	know	that	(probably	an	exact	result	in	QFT)

• This	is	shown	to	be	true	in
• LO	QCD:	Bartels,	Lipatov,	Vacca (‘00);	YK,	Szymanowski,	Wallon ‘03	– dipole	approach
• NLO	QCD:	YK,	Diffraction	conference	proceedings,	‘12
• Large-coupling	N=4	SYM:	Brower,	Djuric,	Tan	‘08
• Exact	in	large-Nc QCD:	Caron-Huot and	Herranen,	‘16.
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Gluon	and	Quark	TMDs	of	the	
Transversely	Polarized	Nucleon
• Combining	the	Boer,	Echevarria,	Mulders	and	Zhou	‘15	result	with	the	
odderon’s small-x	asymptotics,	we	conclude	that	

• Unlike	other	asymptotic	expressions	I	showed,	this	one	could	be	exact!	
(It	is	exact	at	large	Nc.)

• Quark	transversity may	have	a	similar	asymptotics,	but	an	unresolved	
controversy	exists,	whether	the	small-x	asymptotics is	given	by	the	
odderon with																	

or	by	the	DLA	small-x	evolution	(similar	to	helicity)	with

(Kirschner,	Mankiewicz,	Schafer,	Szymanowski ’96).
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Outlook
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Unifying	Small-x,	DGLAP	and	CSS	Evolution

Balitsky,
Tarasov	‘15
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Unifying	Small-x,	DGLAP	and	CSS	Evolution:	
very	promising,	but	complicated
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Summary
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Summary
• We	have	described	what	is	theoretically	known	abuot the	small-x	
asymptotics of	TMDs:

• Unpolarized-nucleon	TMDs	all	seem	to	scale	as	the	BFKL	solution,

• Longitudinally	polarized	nucleon:	Helicity	TMDs	(at	large	Nc)	scale	as

• Transversely	polarized	nucleon:	Transversity and	the	Sivers function	are

• While	significant	progress	has	been	made,	many	more	TMDs	are	left	to	
explore!
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