OVERVIEW OF COMPASS RESULTS IN SIDIS AND FUTURE PLANS

Andrea Bressan University of Trieste and INFN

TRANSVERSITY 2017, 11-15/12/2016 INFN-Laboratori Nazionali di Frascati fixed target experiment at the CERN SPS data taking: since 2002

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS Collaboration

Дубна (LPP and LNP), Москва (INR, LPI, State University), Протвино

Liberec (TU) Brno (ISI-ASCR)

Calcutta (Matrivian)

Lisboa/Aveiro

Torino (University,INFN), Trieste (University,INFN)

Bochum, Bonn (ISKP & PI), Erlangen, Freiburg, Mainz, München TU

USA (UIUC)

Saclay

Taipei (AS)

About 250 physicists from 24 Institutions of 13 Countries

COMPASS-I

the polarized target system (>2005)

COMPASS data taking

Muon beam	deuteron (⁶ LiD) PT	2002 2003 2004 2006	80% L/20% T target polarisation L target polarisation
	Hadron	LH target	2008
		2009	
Muon beam	proton (NH ₃) PT	2010	T target polarisation
		2011	L target polarisation
Hadron	Ni target	2012	Primakoff
Muon beam	LH ₂ target	2012	Pilot DVCS & unpol. SIDIS
Hadron	Proton (NH₃) DT	2014	Pilot DY run
	° PT	2015	DY run
Muon beam	LH ₂ target	2016	DVCS & unpol. SIDIS
		2017	
Hadron	Proton (NH ₃) PT	2018	DY run
		Transversity 2017	

Measurements with the target transversely polarized:

Year	Obs	
2005	$A^h_{Siv,d}$, $A^h_{Col,d}$	First ⁶ LiD data
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data
2012	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics
2012	$A_{UT,d}^{sin(\phi_{ ho}-\phi_{S})}, A_{UT,p}^{sin(\phi_{ ho}-\phi_{S})}$	Exclusive ρ^0
2013	$A_{UT,d}^{\left(\phi _{ ho },\phi _{S} ight) }$, $A_{UT,p}^{\left(\phi _{ ho },\phi _{S} ight) }$	Exclusive ρ^0 , all asyms.
2014	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD and NH ₃
2014	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full NH ₃ statistics
2015	Interplay $A_{UT,p}^{sin\phi_{RS}}$ vs $A_{Col,p}^{h}$	Full NH ₃ statistics
2016	P_{hT} -weighted Sivers asyms	Full NH ₃ statistics
2017	P_{Λ}	Full NH ₃ statistics

Year	Obs	
2013	$dn^h/(dN^\mu dz dp_T^2)$	Unpolarized multiplicities on d, 2004
2014	$A_{UU,d}^{\cos\phi_h}$, $A_{UU,d}^{\cos 2\phi_h}$, $A_{LU,d}^{\sin\phi_h}$	2004, part
2016	$dn^{\pi}/(dN^{\mu}dz)$	Unpolarized multiplicities on d, 2006
2016	$dn^h/(dN^\mu dzdP_{hT}^2)$	Unpolarized multiplicities on d, 2006
2016	$dn^K/(dN^\mu dz)$	Unpolarized multiplicities on d, 2006

- The cross-section dependence from p_T^h results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
 - A Gaussian ansatz for k_\perp and p_\perp leads to
 - $\cdot \quad \left< P_{hT}^2 \right> = z^2 \left< k_\perp^2 \right> + \left< p_\perp^2 \right>$
- The azimuthal modulations in the unpolarized cross sections comes from:
 - Intrinsic k_{\perp} of the quarks
 - The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance
- COMPASS and HERMES have
 - results on ${}^{6}LiD$ ($\sim d$) and d and on p (Hermes only)
 - No COMPASS measurements on p since on NH_3 ($\sim p$) nuclear effects may be important
- \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

Positive vs Negative charged hadrons

Mean values

is chiral-odd:

observable effects are given only by the product of h_1^q (x) and an other chiral-odd function can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

$$\begin{split} \ell N^{\uparrow} &\to \ell' h X & \text{``Collins'' asymmetry} \\ \ell N^{\uparrow} &\to \ell' h h X & \text{``Collins'' Fragmentation Function} \\ \ell N^{\uparrow} &\to \ell' h h X & \text{``two-hadron'' asymmetry} \\ \text{``Interference'' Fragmentation Function} \\ \ell N^{\uparrow} &\to \ell' \Lambda X & \text{A polarisation} \\ & \text{Fragmentation Function of } q_{\uparrow} \to \Lambda \end{split}$$

Collins asymmetry on proton and ${}^{3}P_{0}$ model for FF

Albi Kerbizi @ DSPIN17 http://theor.jinr.ru/~spin/2017/

- The curves are fits of the Monte Carlo data, scaled by $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$
- Agreement with the measured Collins asymmetry is quite satisfactory

Collins asymmetry on proton. Multidimensional

First extraction of TSAs within a Multi-D $(x: Q^2: z: p_T)$ approach

One dense plot out of many

2h asymmetries on p

$$a_P^{u\uparrow \to h^+h^-X} = \langle \sin(\phi_R + \phi_S - \pi) \rangle$$
 and $\vec{R} = \frac{z_2 \vec{P}_{h_1} - z_1 \vec{P}_{h_2}}{z_1 + z_2}$ and as before $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$

Hadron correlations

Interplay between Collins and IFF asymmetries

common hadron sample for Collins and 2h analysis

Asymmetries for x > 0.032 vs $\Delta \phi = \phi_{h^+} - \phi_{h^-}$

ratio of the integrals compatible with $4/\pi$

Hints for a common origin of 1h and 2h mechanisms

 $\sigma_{II}(\Delta \phi$

a $\sqrt{2}(1-\cos\Delta\phi)$

a $(1 - \cos \Delta \phi)$

a $(1 - \cos \Delta \phi)$

Sivers asymmetry on proton. Multidimensional

First ever extraction of TSAs within such a Multi-D $(x: Q^2: z: p_T)$ approach

Sivers asymmetry on deuteron and proton for Gluons

COMPASS

COMMENT ON TMD studies

- SIDIS has opened the way to this field more than 10 years ago:
 - Collins and DiHadron asymmetries on protons are sizeable
 - The Sivers asymmetry is also different from zero and we are now probing it's pseudo universality
 - The other TMDs are small, compatible to zero in most of the cases, at present precision
 - We measured sizeable $\cos\phi$ and $\cos 2\phi$ asymmetries but we don't really know yet if the Boer-Mulders TMD PDF is different from zero
 - The measurement of the azimuthal asymmetries on protons is one of the tasks of the analysis of the near future

Future

• Let us start with what was sent in 2012 for the European Strategy group

Table 2: Summary of the different physics items for the far and near future. Already approved measurements are in bold.

	physics item	key aspects of the measurement	
GPD	Н	RPD, Beam Charge and Spin Asymmetries	
	<i>t</i> -slope parameter B	$d\sigma/dt$	
	E	transversely polarized proton target	
SIDIS	hadron multiplicities for π and K	PID and absolute acceptance	
	$oldsymbol{h}_{1,u}^{\perp},oldsymbol{h}_{1,d}^{\perp}$	azimuthal modulations and PID	
	h_1^d with same accuracy as h_1^u	transversely polarized deuteron target	
	f_1^{\perp} evolution	100 GeV and transversely polarized proton target	
DY	sign change for f_1^\perp and h_1^\perp	transversely polarized proton target	
	universality of TMD PDFs	higher statistics with transversely polarized proton target	
	flavor separation	transversely polarized deuteron target	
	test of the Lam-Tung relation	hydrogen target	
	EMC effect in DY	different nuclear targets	

From 2016 and 2017 running with the LH_2 target

Moreover we will extract P_{hT} dependent hadron multiplicities on protons

- Poin-to-poiny extraction [Physical Review D 91, 014034 (2015)]
- Keep in mind that we are the only one to have measured TSA on deuteron

 xh_{i} 0.5 points/squares – from dihadron Open Closed points/squares – from Collins -0.5 10^{-2} 10^{-1} х

ERRORS ON h_1^d ARE A FACTOR 4 LARGER THAT THE ONES ON h_1^u

From ⁶LiD (2002 – 2004) to $NH_3(2007 - 2010)$

- We have done many progresses:
 - New 3 cells target / 1.3 gain due to larger diameter
 - New superconducting magnet / Factor 2.5 increase of acceptance at large x
 - New large x trigger with LAST / Factor 2 increase at large x

New deuteron data

• 1 full year (same as 2010). We also gain from $\frac{f_p P_{pT}}{f_D P_{DT}} = \frac{0.155 \times 0.8}{0.40 \times 0.5} = 0.6$

From Collins asymmetries to transversity

• Following Physical Review D 91, 014034 (2015), in the valence region

$$xh_{1}^{u} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) + \frac{1}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) \right]$$

$$xh_1^d = \frac{1}{5} \frac{1}{\tilde{a}_P^h(1-\tilde{\alpha})} \left[\frac{4}{3} \left(xf_d^+ A_d^+ - xf_d^- A_d^- \right) - \left(xf_p^+ A_p^+ - xf_p^- A_p^- \right) \right]$$

With \tilde{a}_P^h and $\tilde{\alpha}$ constants

New deuteron data

• 1 full year (same as 2010). We also gain from $\frac{f_p P_{pT}}{f_D P_{DT}} = \frac{0.155 \times 0.8}{0.40 \times 0.5} = 0.6$

THIS IS A MEASUREMENT THAT WILL IMPACT OUR KNOWLEDGE, BEFORE THE START OF AN EIC

Conclusions

- The study of TMDs has entered the phase of multidimensional analysis
- An important step in this direction is the large sample of precise unpolarised data, both as multiplicities and as azimuthal modulations
- In the next years more of such data will be available both from COMPASS and from JLab12
- Waiting for the EIC to extend the accessible phase space, the description of such data is a mandatory task for the theory of TMDs

Thank you

Ennanna

#

M

FEEGH