Overview of 3D structure of the nucleon from lattice QCD

Martha Constantinou

$$
\mathbb{T}
$$

Temple University

Transversity 2017
INFN - Frascati National Laboratories
December 13, 2017

Nucleon Characterization

ROADMAP OF TALK

A

Motivation

Synergy of the EIC and LQCD

"measurements at the EIC and lattice calculations will have a high degree of complementarity. For some quantities,... a precise determination will be possible both in experiment and on the lattice. Using this to validate the methods used in lattice calculations, one will gain confidence in computing quantities whose experimental determination is very hard, such as generalized form factors. Furthermore, one can gain insight into the underlying dynamics by computing the same quantities with values of the quark masses that are not realized in nature, so as to reveal the importance of these masses for specific properties of the nucleon."

Where are we today?

\star Long history of calculating moments of PDFs and GPDs

- proton spin
- FFs and GFF vs momentum transfer
- proton radius
- Investigation of sea quark and gluon contributions
\star Exploration of novel approaches to access PDFs and TMDs directly from the lattice
- x-dependence of unpolarized, polarized and transversity quark distributions
- Sivers function, Boer-Mulders function, generalized tensor charge, Worm Gear function
- quark Orbital Angular Momentum in different decompositions

DoE funded Topical Collaboration for theory

OTMD
 Collaboration

18 institutions

Theory, phenomenology, lattice QCD Several postdoc positions. 2 tenure track positions:Temple, NMSU Support of undergraduates.

The TMD Collaboration
Spokespersons: William Detmold (MIT) and Jianwei Qiu (BNL)
Co-Investigators - (in alphabetical order of institutions):
Jianwei Qiu and Raju Venugopalan (Brookhaven National Laboratory) Thomas Mehen (Duke University)
Ted Rogers (Jefferson Laboratory and Old Dominion University) Alexei Prokudin (Jefferson Laboratory and Penn State University at Berks) Feng Yuan (Lawrence Berkeley National Laboratory)
Christopher Lee and Ivan Vitev (Los Alamos National Laboratory) William Detmold, John Negele and Iain Stewart (MIT)
Matthias Burkardt and Michael Engelhardt (New Mexico State University) Leonard Gamberg (Penn State University at Berks)

Andreas Metz (Temple University)
Sean Fleming (University of Arizona)
Keh-Fei Liu (University of Kentucky)
Xiangdong Ji (University of Maryland)
Simonetta Liuti (University of Virginia)

$\diamond 5$ years of funding
$\diamond 18$ institutions
\diamond Theory, phenomenology, lattice QCD
\diamond Several postdoc and tenure track positions are created
\diamond "To address the challenges of extracting novel quantitative information about the nucleon's internal landscape"
\diamond "To provide compelling research, training, and career opportunities for young nuclear theorists"

B

Lattice QCD

Lattice formulation of QCD

＊Space－time discretization on a finite－sized 4－D lattice
－Quark fields on lattice points
－Gluons on links

Lattice formulation of QCD

\star Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links

Technical Aspects

* Parameters (define cost of simulations):
- quark masses (aim at physical values)
- lattice spacing (ideally fine lattices)
- lattice size (need large volumes)
\star Discretization not unique:
- Wilson, Clover, Twisted Mass,
- Staggered, Overlap, Domain Wall

Nucleon Structure

Connected

Disconnected

Disconnected

Nucleon Structure

Connected

Disconnected

Disconnected
\star Calculation of 2pt- and 3-pt functions

$$
G_{\mathcal{O}}\left(\Gamma^{\kappa}, \vec{q}, t\right)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}} e^{-i \vec{x}_{f} \cdot \vec{p}^{\prime}} \Gamma_{\beta \alpha}^{\kappa}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle(3 \mathrm{pt})
$$

Nucleon Structure

Connected

Disconnected

Disconnected

* Calculation of 2pt- and 3-pt functions

$$
G_{\mathcal{O}}\left(\Gamma^{\kappa}, \vec{q}, t\right)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}} e^{-i \vec{x}_{f} \cdot \vec{p}^{\prime}} \Gamma_{\beta \alpha}^{\kappa}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle(3 \mathrm{pt})
$$

\star Construction of optimized ratios
$R_{\mathcal{O}}^{\mu}(\Gamma, \vec{q}, t)=\frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G\left(\overline{0}, t_{f}\right)} \times \sqrt{\frac{G\left(-\vec{q}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(-\vec{q}, t) G\left(-\vec{q}, t_{f}\right)}}$ (fit to a plateau)

Nucleon Structure

Connected

Disconnected Quark loop

Disconnected
\star Calculation of 2pt- and 3-pt functions
$G_{\mathcal{O}}\left(\Gamma^{\kappa}, \vec{q}, t\right)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}} e^{-i \vec{x}_{f} \cdot \vec{p}^{\prime}} \Gamma_{\beta \alpha}^{\kappa}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle$ (3pt)
\star Construction of optimized ratios
$R_{\mathcal{O}}^{\mu}(\Gamma, \vec{q}, t)=\frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \times \sqrt{\frac{G\left(-\vec{q}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(-\vec{q}, t) G\left(-\vec{q}, t_{f}\right)}}$ (fit to a plateau)
\star Renormalization $\Pi^{R}(\Gamma, \vec{q})=Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$ (Simpler case!)

Nucleon Structure

Connected

Disconnected

Disconnected Gluon loop
\star Calculation of 2pt- and 3-pt functions
$G_{\mathcal{O}}\left(\Gamma^{\kappa}, \vec{q}, t\right)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}_{c}} e^{-i \vec{x}_{f} \cdot \vec{p}^{\prime}} \Gamma_{\beta \alpha}^{\kappa}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle(3 \mathrm{pt})$
\star Construction of optimized ratios
$R_{\mathcal{O}}^{\mu}(\Gamma, \vec{q}, t)=\frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G\left(\overline{0}, t_{f}\right)} \times \sqrt{\frac{G\left(-\vec{q}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(-\vec{q}, t) G\left(-\vec{q}, t_{f}\right)}}$ (fit to a plateau)
\star Renormalization $\Pi^{R}(\Gamma, \vec{q})=Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})$ (Simpler case!)

* Decomposition into form factors

$$
A_{\mu}^{3} \equiv \bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi \Rightarrow \bar{u}_{N}\left(p^{\prime}\right)\left[\mathbf{G}_{\mathbf{A}}\left(\mathbf{q}^{2}\right) \gamma_{\mu} \gamma_{5}+\mathbf{G}_{\mathbf{p}}\left(\mathbf{q}^{2}\right) \frac{q_{\mu} \gamma_{5}}{2 m_{N}}\right] u_{N}(p)
$$

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

2 Finite Volume Effects

3 Contamination from other hadron states

4 Not simulating the physical world

5 Renormalization and mixing

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices ($a<0.1 \mathrm{fm}$)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

3 Contamination from other hadron states

4 Not simulating the physical world

5 Renormalization and mixing

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices ($a<0.1 \mathrm{fm}$)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \rightarrow \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi}>3.5$)

3 Contamination from other hadron states

4 Not simulating the physical world

5 Renormalization and mixing

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices ($a<0.1 \mathrm{fm}$)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \rightarrow \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi}>3.5$)

3 Contamination from other hadron states

- Various methods for extracting information from lattice data

4 Not simulating the physical world

5 Renormalization and mixing

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices ($a<0.1 \mathbf{f m}$)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \rightarrow \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi}>3.5$)

3 Contamination from other hadron states

- Various methods for extracting information from lattice data

4 Not simulating the physical world

- Chiral extrapolation
- Simulations at physical parameters are now feasible

5 Renormalization and mixing

Systematic uncertainties: Challenges \& Progress

1 Cut-off Effects: finite lattice spacing

- Continuum limit $a \rightarrow 0$
- Simulations with fine lattices ($a<0.1 \mathbf{f m}$)
- Improve actions, algorithmic improvements

2 Finite Volume Effects

- Infinite volume limit $L \rightarrow \infty$
- Simulating hadrons in large volumes (Rule of thumb: $L m_{\pi}>3.5$)

3 Contamination from other hadron states

- Various methods for extracting information from lattice data

4 Not simulating the physical world

- Chiral extrapolation
- Simulations at physical parameters are now feasible

5 Renormalization and mixing

- Subtraction of lattice artifacts, utilize perturbation theory

C

FFs \& GFFs

FFs \& GFFs

Spin Structure from First Principles

DIS experiment (1988) show $\mathbf{2 0 - 3 0} \%$ of spin carried by valence quarks Spin Sum Rule (Ji):

$$
\frac{1}{2}=\sum_{q} J^{q}+J^{G}=\sum_{q}\left(L^{q}+\frac{1}{2} \Delta \Sigma^{q}\right)+J^{G}
$$

$L_{q}:$ Quark orbital angular momentum
$\Delta \Sigma_{q}:$ intrinsic spin
$J^{G}:$ Gluon part

Image by Z.-E. Meziani

Spin Structure from First Principles

DIS experiment (1988) show $\mathbf{2 0} \mathbf{- 3 0} \%$ of spin carried by valence quarks Spin Sum Rule (Ji):

$$
\frac{1}{2}=\sum_{q} J^{q}+J^{G}=\sum_{q}\left(L^{q}+\frac{1}{2} \Delta \Sigma^{q}\right)+J^{G}
$$

L_{q} : Quark orbital angular momentum
$\Delta \Sigma_{q}$: intrinsic spin
J^{G} : Gluon part

Extraction from LQCD:

$$
J^{q}=\frac{1}{2}\left(A_{20}^{q}+B_{20}^{q}\right), \quad L^{q}=J^{q}-\Sigma^{q}, \quad \Sigma^{q}=g_{A}^{q}
$$

We need a theoretical formulation to address the proton spin puzzle

Valence Quark Contributions (u-d)

Investigation of systematic uncertainties

Significant effort for addressing systematic uncertainties
[ETMC: C. Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017)]
$N_{f}=2$ TM fermions, $m_{\pi}=130 \mathrm{MeV}$
\star Excited states: Mild for $g_{A}, \mathbf{1 0 - 1 5 \%}$ for $\langle x\rangle$

* Volume effects: negligible for g_{A}, non-zero for $\langle x\rangle$
\star Renormalization: elimination of lattice artifacts (up to 10\%)

Sea quark \& gluon contributions

$$
N_{f}=2 \text { TM fermions, } m_{\pi}=130 \mathrm{MeV}
$$

[C. Alexandrou et al. (ETMC), Phys. Rev. D 96, 054503 (2017)]

\star Similar calculation of the strange and charm quark contribution
\star disconnected contributions is crucial for spin

$$
\begin{gathered}
g_{A}^{u+d}=-0.153(23)(7) \\
\left\langle x_{u+d}\right\rangle=0.215(113)(95)
\end{gathered}
$$

\star Mixing of $\langle x\rangle_{g}$ with $\langle x\rangle_{u+d}$
\star Computation of mixing coefficients in lattice pert. theory
\star Upon disentangling the gluon momentum fraction from the quark:

$$
\langle x\rangle_{g}^{R}=0.267(22)(19)(24)
$$

Collected Results

Satisfaction of spin and momentum sum rule is not forced

\star important check of results and the systematic uncertainties

Striped segments: valence quark contributions (connected)
Solid segments: sea quark \& gluon contributions (disconnected)
C. Alexandrou et al., Phys. Rev. Lett. 119, 142002 (2017)

Collected Results

Quark Orbital Angular momentum - Intrinsic spin

* Largest contribution from up-quark
* d-quark: orbital angular momentum almost cancelled by its intrinsic spin

Alternative Spin Decomposition

$$
\frac{1}{2}=\sum_{q}\left(L^{q}+\frac{1}{2} \Delta \Sigma^{q}\right)+\Delta_{G}+L_{G}
$$

［R．Jaffe and A．Manohar，Nucl．Phys．B 337， 509 （1990）］

$$
\begin{aligned}
& \Delta G=\int d x \frac{i}{2 x P^{+}} \int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+}} \xi^{-}\langle P S| F_{a}^{+\alpha}\left(\xi^{-}\right) \mathcal{L}^{a b}\left(\xi^{-}, 0\right) \tilde{F}_{\alpha, b}^{+}(0)|P S\rangle \\
& \downarrow \int d x \\
& \tilde{S}_{G}=\left[\vec{E}^{a}(0) \times\left(\vec{A}^{a}(0)-\frac{1}{\nabla^{+}}\left(\vec{\nabla} A^{+, b}\right) \mathcal{L}^{b a}\left(\xi^{-}, 0\right)\right)\right]^{z} \\
& \text { gauge-invariant gluon helicity operator }
\end{aligned}
$$

\star In Coulomb gauge（ $\vec{\partial} \cdot \vec{A}=0$ ）： scale dependence is different with that of glue helicity
$\star \quad \tilde{S}_{G}$ can be matched to Δ_{G} via a factorization formula in LaMET

$$
\vec{S}_{G}=2 \int d^{3} x \operatorname{Tr}\left[\vec{E}_{c} \times \vec{A}_{c}\right]
$$

Glue Spin

[χ QCD: Y-B Yang et al., Phys. Rev. Lett. 118, 102001 (2017)]

Symbol	$L^{3} \times T$	$a(\mathrm{fm})$	$m_{\pi}^{(s)}(\mathrm{MeV})$	$N_{c f g}$
32ID	$32^{3} \times 64$	$0.1431(7)$	170	200
48I	$48^{3} \times 96$	$0.1141(2)$	140	81
24I	$24^{3} \times 64$	$0.1105(3)$	330	203
32I	$32^{3} \times 64$	$0.0828(3)$	300	309
32If	$32^{3} \times 64$	$0.0627(3)$	370	238

Large momentum limit: $S_{G}=0.251(47)(16)$ at $\mathbf{1 0} \mathbf{G e V}^{2}$

D

PDFs directly

from LQCD

FFs \& GFFs

Probing Nucleon Structure via PDFs

* powerful tool to describe the structure of a nucleon
* Lattice QCD: long history of moments of PDFs rely on OPE to reconstruct the PDFs (difficult task):
- signal-to-noise is bad for higher moments
- $\mathbf{n}>3$: operator mixing (unavoidable!)

Probing Nucleon Structure via PDFs

＊powerful tool to describe the structure of a nucleon
＊Lattice QCD：long history of moments of PDFs rely on OPE to reconstruct the PDFs（difficult task）：
－signal－to－noise is bad for higher moments
－ $\mathbf{n}>3$ ：operator mixing（unavoidable！）
＊Alternative approaches to access PDFs：
Purely spatial matrix elements that can be matched to PDFs
－quasi－PDFs
［X．Ji，Phys．Rev．Lett．110，（2013）262002］
－pseudo－PDFs
－good lattice cross－sections
［A．Radyushkin，Phys．Rev．D 96， 034025 （2017）］
［Y－Q Ma\＆J．Qiu，PRL，arXiv：1709．03018］

PDFs on the Lattice

Various aspect of direct approaches have been investigated, e.g.:
\star Renormalization of lattice operators
\star Matching procedure (LaMET)

PDFs on the Lattice

Various aspect of direct approaches have been investigated, e.g.:

\star Renormalization of lattice operators
 \star Matching procedure (LaMET)

Exploratory studies are maturing:

[X. Xiong et al., arXiv:1310.7471], [H-W. Lin et al., arXiv:1402.1462], [Y. Ma et al., arXiv:1404.6860],
[Y.-Q. Ma et al., arXiv:1412.2688], [C. Alexandrou et al., arXiv:1504.07455], [H.-N. Li et al., arXiv:1602.07575],
[J.-W. Chen et al., arXiv:1603.06664], [J.-W. Chen et al., arXiv:1609.08102], [T. Ishikawa et al., arXiv:1609.02018],
[C. Alexandrou et al., arXiv:1610.03689], [C. Monahan et al., arXiv:1612.01584], [A. Radyushkin et al., arXiv:1702.01726],
[C. Carlson et al., arXiv:1702.05775], [R. Briceno et al., arXiv:1703.06072], [M. Constantinou et al., arXiv:1705.11193],
[C. Alexandrou et al., arXiv:1706.00265], [J-W Chen et al., arXiv:1706.01295], [X. Ji et al., arXiv:1706.08962],
[K. Orginos et al., arXiv:1706.05373], [T. Ishikawa et al., arXiv:1707.03107], [J. Green et al., arXiv:1707.07152], [Y-Q Ma et al., arXiv:1709.03018], [J. Karpie et al., arXiv:1710.08288, [J-W Chen et al., arXiv:1711.07858], [C.Alexandrou et al., arXiv:1710.06408]

Also talks by: K. Orginos and M. Testa in this session

Access of PDFs on a Euclidean Lattice

［X．Ji，Phys．Rev．Lett．110，（2013）262002］
\star quasi－PDF purely spatial for nucleons with finite momentum

$$
\tilde{q}\left(x, \mu^{2}, P_{3}\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{3}\right)\right| \bar{\Psi}(z) \gamma^{z} \mathcal{A}(z, 0) \Psi(0)\left|N\left(P_{3}\right)\right\rangle_{\mu^{2}}
$$

－ $\mathcal{A}(z, 0)$ ：Wilson line from $0 \rightarrow z \quad$－z ：distance in any spatial direction（momentum boost in z direction）

\star At finite but feasibly large momenta on the lattice：
a large momentum EFT can relate Euclidean \tilde{q} to PDFs through a factorization theorem
\star use of Perturbation Theory for the matching

Landscape of Simulations

\star Large values for $z_{\text {max }}$ from large volumes
$\star z_{\text {max }} \gg 1$: not reliable region (affects small x region)
$\star \quad P_{\max } \gg 1$ in quasi-PDFs: crucial for matching to physical PDFs
\star ETMC, LP ${ }^{3}$: quasi-PDFs, Orginos: pseudo-PDFs
\star quasi-PDFs \& pseudo-PDFs use same raw data

Bare Nucleon Matrix Elements (Unpolarized u-d)

[H-W. Lin, Phys. Rev. D 91, 054510 (2015)] $N_{f}=2+1+1$ Clover/HISQ
$m_{\pi}=310 \mathrm{MeV}$

extrapolated from $P_{3}=2 \pi / L *\{1,2,3\}$
[ETMC: C. Alexandrou et al., Phys. Rev. D 92, 014502 (2015)]
$N_{f}=2+1+$ Twisted Mass
$m_{\pi}=375 \mathrm{MeV}$

$P_{3}=6 \pi / L, 5$ HYP steps

- $-q(-x)$: anti-quark distribution

Status until mid-2016

* Renormalization missing
* Linear Divergence (from Wilson line) not subtracted
* Mixing for unpolarized not known

Bare Matrix Elements (Physical point!)

[C. Alexandrou et al. (ETMC), arXiv:1710.06408]
Twisted Mass Fermions \& clover term, $m_{\pi}=130 \mathrm{MeV} P_{3}=6 \pi / L$

Unpolarized

Polarized

Transversity

\star Momentum smearing allows to reach higher momenta

2017: Renormalization... At last!

[M. Constantinou, H. Panagopoulos, Phys. Rev. D96, 054506 (2017), [arXiv:1705.11193]]

Exploration of renormalization in lattice Perturbation Theory

\star Computation of conversion factor between various schemes

* Explore renormalization pattern
* Mixing was revealed... not anticipated earlier

Affects the computation of the unpolarized quasi-PDF

2017: Renormalization... At last!

[M. Constantinou, H. Panagopoulos, Phys. Rev. D96, 054506 (2017), [arXiv:1705.11193]]

Exploration of renormalization in lattice Perturbation Theory

* Computation of conversion factor between various schemes
* Explore renormalization pattern
* Mixing was revealed... not anticipated earlier

Affects the computation of the unpolarized quasi-PDF
\star Understanding renormalization led to development of non-pert. prescription (RI-type scheme):
[C. Alexandrou, et al. (ETMC), Nucl. Phys. B923 (2017) 394 (Frontiers Article)]

* Procedure followed in other works:
[J.-W. Chen et al, (LP ${ }^{3}$) [arXiv:1706.01295]]
\star Possibilities for matching: $\overline{\mathrm{MS}} \rightarrow \overline{\mathrm{MS}}$ or $R I \rightarrow \overline{\mathrm{MS}}$

Renormalized PDFs @ $P_{z}=6 \pi / L$

[C. Alexandrou, et al. (ETMC), Nucl. Phys. B923 (2017) 394]

Unpolarized

Polarized

Mixing not included

Twisted Mass fermions:
Mixing with Pseudoscalar ($\mathcal{O}(a)$)

Results are promising

- Renormalization brings lattice data closer to the phenomenological estimates
- Need to reach higher momenta

pseudo－PDFs

［A．Radyushkin，Phys．Rev．D 96， 034025 （2017）］

Talk by：K．Orginos，Wed＠3：40pm

\star Same matrix elements as quasi－PDFs
＊Form the ratio

$$
\mathcal{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{M_{p}\left(\nu, z_{3}^{2}\right)}{M_{p}\left(0, z_{3}^{2}\right)} \quad \nu \equiv P_{3} z: \text { loffe time }
$$

\star UV divergences cancel in $\mathcal{M}\left(\nu, z_{3}^{2}\right)$
（Provided there is no mixing，e．g．g_{0} for unpolarized）

$$
\mathcal{M}\left(\nu, z_{3}^{2}\right)=\mathcal{Q}\left(\nu, z_{3}^{2}\right)+\mathcal{O}\left(z_{3}^{2}{ }_{\underset{F . T .}{ }}^{\rightarrow} f\left(x, \mu^{2}\right)+\mathcal{O}\left(z_{3}^{2}\right)\right.
$$

［K．Orginos et al．，Phys．Rev．D96（2017）094503，J．Karpie et al．，［arXiv：1710．08288］］

$$
\mathcal{M}\left(\nu, z_{3}^{2}\right)=\lim _{t \rightarrow \infty} \frac{M_{e f f}\left(Z_{3} P, z_{3}^{2} ; t\right)}{\left.M_{e f f}\left(Z_{3} P, z_{3}^{2} ; t\right)\right|_{z_{3}=0}} \times \frac{\left.M_{e f f}\left(Z_{3} P, z_{3}^{2} ; t\right)\right|_{z_{3}=0}}{\left.M_{e f f}\left(Z_{3} P, z_{3}^{2} ; t\right)\right|_{P=0}}
$$

optimized to remove lattice spacing effects，where

$$
M_{e f f}\left(Z_{3} P, z_{3}^{2} ; t\right)=\frac{C_{P}^{3 p t}(z ; t+1)}{C_{P}^{2 p t}(t+1)}-\frac{C_{P}^{3 p t}(z ; t)}{C_{P}^{2 p t}(t)}
$$

pseudo-PDFs

\star Pert. evolution of $z<=10 a$ data to $z=2 a$ to remove residual z-dependence

$$
\mathcal{M}\left(\nu, z^{\prime}{ }_{3}^{2}\right)=\mathcal{M}\left(\nu, z_{3}^{2}\right)=\frac{2}{3} \frac{\alpha_{s}}{\pi} \ln \left(z^{\prime 2}{ }_{3}^{2} / z_{3}^{2}\right) B \otimes \mathcal{M}\left(\nu, z_{3}^{2}\right)
$$

B : evolution kernel

[J. Karpie et al., arXiv:1710.08288]

Good Lattice Cross-Sections

[Y. Q. Ma \& J. Qiu, accepted in Phys. Rev. Lett., [arXiv:1709.03018]]
Talk by: J. Qiu, Mon @ 9:15am

* LQCD: a tool to compute -directly- time-independent good "lattice cross sections"
\star Computation of current-current correlators (4pt-functions)

$$
\begin{gathered}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle \\
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}} Z_{j_{2}} j_{1}(\xi) j_{2}(0)
\end{gathered}
$$

Good Lattice Cross-Sections

[Y. Q. Ma \& J. Qiu, accepted in Phys. Rev. Lett., [arXiv:1709.03018]]
Talk by: J. Qiu, Mon @ 9:15am
\star LQCD: a tool to compute -directly- time-independent good "lattice cross sections"
\star Computation of current-current correlators (4pt-functions)

$$
\begin{gathered}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle \\
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}} Z_{j_{2}} j_{1}(\xi) j_{2}(0)
\end{gathered}
$$

\star Renormalization easier than quasi-PDFs (no linear divergence)
\star PDFs extracted from global analysis of such lattice data

Good Lattice Cross-Sections

[Y. Q. Ma \& J. Qiu, accepted in Phys. Rev. Lett., [arXiv:1709.03018]]

Talk by: J. Qiu, Mon @ 9:15am
\star LQCD: a tool to compute -directly- time-independent good "lattice cross sections"
\star Computation of current-current correlators (4pt-functions)

$$
\begin{gathered}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle \\
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}} Z_{j_{2}} j_{1}(\xi) j_{2}(0)
\end{gathered}
$$

\star Renormalization easier than quasi-PDFs (no linear divergence)
\star PDFs extracted from global analysis of such lattice data
\star Characteristics:

- calculable in LQCD with an Euclidean time
- well-defined continuum limit
- same and factorizable log collinear divergences as PDFs

Good Lattice Cross-Sections

[Y. Q. Ma \& J. Qiu, accepted in Phys. Rev. Lett., [arXiv:1709.03018]]

Talk by: J. Qiu, Mon @ 9:15am
\star LQCD: a tool to compute -directly- time-independent good "lattice cross sections"
\star Computation of current-current correlators (4pt-functions)

$$
\begin{gathered}
\sigma_{n}\left(\omega, \xi^{2}, P^{2}\right)=\langle P| T\left\{\mathcal{O}_{n}(\xi)\right\}|P\rangle \\
\mathcal{O}_{j_{1} j_{2}}(\xi) \equiv \xi^{d_{j_{1}}+d_{j_{2}}-2} Z_{j_{1}} Z_{j_{2}} j_{1}(\xi) j_{2}(0)
\end{gathered}
$$

\star Renormalization easier than quasi-PDFs (no linear divergence)

* PDFs extracted from global analysis of such lattice data
\star Characteristics:
- calculable in LQCD with an Euclidean time
- well-defined continuum limit
- same and factorizable log collinear divergences as PDFs
\star Matching coefficients have been computed to LO

E

TMDs from LQCD

TMDs

TMDs from LQCD

[B. Yoon et al., Phys. Rev. D 96, 094508 (2017), and earlier works of M. Engelhardt]

Correlator studied on the lattice:

$$
\tilde{\Phi}_{\text {unsubtr. }}^{[\Gamma]}(b, P, S) \equiv\langle P, S| \bar{\psi}(-b / 2) \Gamma \mathcal{U}[-b / 2, b / 2] \psi(b / 2)|P, S\rangle
$$

$\star \mathcal{U}$: Staple of gauge links

$\star \tilde{\Phi}_{\text {unsubtr. }}^{[\Gamma]}$ includes ultraviolet and soft divergences

* $n=0$ may also be studied (straight wilson line)
$\star|n| \rightarrow \infty$: gluon exchange in SIDIS and DY
$\star \quad b$: transverse to proton momentum (P)
\star different structures for Γ give access to: Sivers ratio, Boer-Mulders ratio, $h_{1}, g_{1 T}$

Plot:

Collins-Soper parameter: $\hat{\zeta} \equiv \frac{u \cdot P}{|u||P|}$, light cone: $\hat{\zeta} \rightarrow \infty$

Exp. value: global fit to HERMES, COMPASS and JLab data [M. Echevarria et al., Phys. Rev. D 89 (2014)]

TMDs and Orbital Angular momentum

Talk by: M. Engelhardt, Wed @ 5:00pm

[Abha et al., Phys. Rev. D 94, 034041 (2016), M. Engelhardt, Phys. Rev. D 95, 094505 (2017)]

$$
\begin{align*}
\frac{1}{2} & =\frac{1}{2} \sum_{q} \Delta_{q}+\sum_{q} L_{q}+J_{g} \tag{Ji}\\
\frac{1}{2} & =\frac{1}{2} \sum_{q} \Delta_{q}+\sum_{q} \mathcal{L}_{q}+\Delta_{g}+\mathcal{L}_{g}
\end{align*}
$$

$\star L_{q}$ extracted indirectly in LQCD: $L_{q}=J_{q}-\frac{1}{2} \Delta_{q}$
$\star \quad \mathcal{L}_{q}$ not accessible in LQCD

* straight link operators related to L_{q}
\star staple-link operators related to \mathcal{L}_{q}
* operator same as in TMD studies (off-forward matrix element)
\star Difference is torque accumulated due to final state interaction

Plot: \mathcal{L}_{q} vs staple length parameter, in units of L_{q}

F

DISCUSSION

DISCUSSION

Lattice QCD has achieved a lot：

DISCUSSION

Lattice QCD has achieved a lot:

\star Addressing open questions, e.g. the proton spin

DISCUSSION

Lattice QCD has achieved a lot:

\star Addressing open questions, e.g. the proton spin
\star Calculation of more complicated quantities:

- quasi-PDF
- pseudo-PDFs
- TMDs

DISCUSSION

Lattice QCD has achieved a lot:

\star Addressing open questions, e.g. the proton spin
\star Calculation of more complicated quantities:

- quasi-PDF
- pseudo-PDFs
- TMDs
- Many more "mountain peaks" to conquer
- Individual quark quasi-PDFs and pseudo-PDFs
- Gluon distribution functions
- Renormalization of staple-link operators (TMDs)

DISCUSSION

Lattice QCD has achieved a lot：

\star Addressing open questions，e．g．the proton spin
\star Calculation of more complicated quantities：
－quasi－PDF
－pseudo－PDFs
－TMDs
－Many more＂mountain peaks＂to conquer
－Individual quark quasi－PDFs and pseudo－PDFs
－Gluon distribution functions
－Renormalization of staple－link operators（TMDs）
Modern Lattice calculations require thinking outside the box

$$
\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & ?
\end{array}
$$

DISCUSSION

Lattice QCD has achieved a lot:

\star Addressing open questions, e.g. the proton spin
\star Calculation of more complicated quantities:

- quasi-PDF
- pseudo-PDFs
- TMDs
- Many more "mountain peaks" to conquer
- Individual quark quasi-PDFs and pseudo-PDFs
- Gluon distribution functions
- Renormalization of staple-link operators (TMDs)

Modern Lattice calculations require thinking outside the box
1
2
3
5
4
?

THANK YOU

BACKUP SLIDES

Refining Renormalization

＊Improvement Technique：

－Computation of 1－loop lattice artifacts to $\mathcal{O}\left(g^{2} a^{\infty}\right)$
－Subtraction of lattice artifacts from non－perturbative estimated
＊Application to the quasi－PDFs：PRELIMINARY

Quark Orbital Angular Momentum

