

W and Z production at the LHC

on behalf of

Frascati, 14/12/17

In the LHC physics, the precise understanding of Parton Distribution Functions plays a major role (e.i. Higgs boson discovery, searches for new physics, ...). In recent years a new generation of PDF sets have been developed for the LHC Run II and this has a fall-out also on other research fields. In the LHC physics, the precise understanding of Parton Distribution Functions plays a major role (e.i. Higgs boson discovery, searches for new physics, ...). In recent years a new generation of PDF sets have been developed for the LHC Run II and this has a fall-out also on other research fields.

W, Z production (sensitive to the underlying dynamics of strongly interacting particles):

- constitutes important tests for the SM (e.w. mixing angle, W mass, etc...)

-provides access to PDFs in different regions on the phase-space. In particular: -at high-x -at low-x ~10⁻⁶ (unexplored by other

experiments)

LHC 13 TeV Kinematics

In the LHC physics, the precise understanding of Parton Distribution Functions plays a major role (e.i. Higgs boson discovery, searches for new physics, ...). In recent years a new generation of PDF sets have been developed for the LHC Run II and this has a fall-out also on other research fields.

-ATLAS and CMS have precision tracking in central region and can reconstruct electrons and jets in the forward calorimeter for the Vector Boson associate production

-**LHCb** provides precision measurements with a coverage for 2<η<5, performing complementary measurements

LHC 13 TeV Kinematics

Measurements

- Inclusive
- Vector Boson + Jet
- Vector Boson + Heavy Flavour Jet

13 TeV production cross section - **VATLAS**

Cross section ratios performed in the fiducial region of the detector

Results compared to NNLO pQCD prediction for different PDF sets, variation shows the sensitivity to PDFs

Z cross section ratios at different center-of-mass energies

JHEP 02 (2017) 117

PDF uncertainty small \rightarrow a precision test for understanding the energy evolution

13 TeV production cross section - **VATLAS**

PLB 759 (2016) 601

PDF uncertainty small \rightarrow a precision test for understanding the energy evolution

13 TeV production cross section -

CMS-PAS-SMP-16-009

x region probed 10⁻⁴<x<1

Z production -

leptonic final states: $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$

JHEP 09 (2016) 136

W production -

JHEP 10 (2016) 030

NNLO predictions with different parameterizations of the PDFs

Overall the measurements are compatible with the theory predictions. Discrepancy (3 σ) seen for W⁺ cross section in the very forward region

$$A_e \equiv \frac{\sigma_{W^+ \to e^+\nu_e} - \sigma_{W^- \to e^-\overline{\nu}_e}}{\sigma_{W^+ \to e^+\nu_e} + \sigma_{W^- \to e^-\overline{\nu}_e}}$$

Change in sign of asymmetry due to V - A structure of weak force

It extends ATLAS and CMS measurements into the forward region

Lepton ($e-\mu$) universality in the weak vector-boson decays

EPJ C 77 (2017) 367

Measurement of the electronto-muon cross-section ratios for the W and Z production

SM expectation of $R_W = R_Z = 1$

The ellipse represents the 68% CL for the correlated measurement of R_w and R_z

Well confirmed!

The strangeness content of the proton by

EPJ C 77 (2017) 367

Deviations of the predictions obtained with many PDF sets, hint to a special impact of the data on the determination of the quark distributions, in particular on the strange

$$R_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{u}(x,Q^2) + \bar{d}(x,Q^2)}$$

- Global fit results favour suppression of strangeness
- Data suggest more strange than up and down sea quarks in the proton
 Difficult to explain by nonperturbative QCD arguments 12

PDF constraints by Kicp data

Because of the longitudinal boost required for a W,Z boson to be produced in the forward region, LHCb results are particularly sensitive to effects at low and high values of x

-shift of the central values -uncertainties are reduced up to a factor 2, more marked at large x

Models where non-perturbative charm can carry much more than 1% of the total proton's momentum are strongly disfavoured

Measurements

- Inclusive
- Vector Boson + Jet
- Vector Boson + Heavy Flavour Jet

W and Z + jet production at

$W \rightarrow \mu\nu$, $Z \rightarrow \mu\mu$, jet \rightarrow anti- k_{T} with R=0.5

JHEP 05 (2016) 131

Benchmark for the jet reconstruction at LHCb

Different contributions by NLO predictions (MCFM)

W and Z + jet production at

$W \rightarrow \mu\nu, Z \rightarrow \mu\mu, \text{ jet } \rightarrow \text{ anti-k}_T \text{ with } R=0.5$

JHEP 05 (2016) 131

Benchmark for the jet reconstruction at LHCb

Different contributions by NLO predictions (MCFM)

Measurements are in good agreement with POWHEG and aMC@NLO predictions

PRD 95 (2017) 052002

- Comparison over 30 different differential distributions
- Comparison to different MC varying the factorization and renormalization scales by a factor of 0.5 or 2

The predictions generally describe the jet multiplicity within the uncertainties

QCD splitting at

Jet k_T algorithm (R=0.4, R=1.0) combines particles using:

$$d_{ij} = \min\left(p_{\mathrm{T},i}^2, p_{\mathrm{T},j}^2\right) \times \frac{\Delta R_{ij}^2}{R^2}$$

Splitting scale d_k with k the order of the scale

 $d_k = \min_{i,j} (d_{ij}, d_{ib}).$

Distributions sensitive to both hard and soft non-perturbative QCD

Clear discrepancy between data and theory at low scales

Impact on the gluon distribution for NNPDF3.1

arXiv 1706.00428

The best precision in the large-x gluon description is achieved by combining jets, top-pair and Z pt data

Measurements

- Inclusive
- Vector Boson + Jet
- Vector Boson + Heavy Flavour Jet

Jets heavy flavour identification at

JINST 10 (2015) P06013

Jets reconstructed if secondary Vx compatible with c or b-hadron decay and within the jet radius 0.5

Boosted Decision Tree: -BDT(bc|udsg) separates HF from L-jets -BDT(b|c) separates b from cjets

$W \rightarrow e/\mu v + 2 \text{ HF jet}$ (anti- k_{τ} with R=0.5)

 $-W+c\bar{c}$ is the first of its kind -top production in W+b final state, very sensitive at high-x for gluon PDF LHCb, $\sqrt{s} = 8 \text{ TeV}$ MCFM CT10 Data sta Data ...

cross-sections in agreement with the SM predictions calculated at NLO using MCFM and CT10 PDF set.

 $\sigma(W^++b\overline{b})$ $\sigma(W + b\overline{b})$

PLB 767 (2017) 110

Z+b-jet production at

EPC J 77 (2017) 751

b-jets discriminated from lighter-jets using fit to mass of secondary vertex within jet

theoretical predictions agree with the data, although MADGRAPH event generator fails to describe simultaneously both the low- and high- p_T b-jet regions

The ratios of differential cross sections for the production of a Z boson in association with at least one b-jet and the inclusive Z+jets production shows clear discrepancies between theory and data in softer regime

Impact of the LHC data on NNPDF (an example)

Conclusions

ATLAS, CMS and LHCb access the electroweak sector in a very precise and complementary way

-Inclusive measurements put important constraints on the PDFs providing precision information on the inner structure of the proton. Some intriguing discrepancies?

-Jets coupled to the Vector Boson production are able to create the interplay between pQCD in parton showers and hard matrix elements

-Heavy Flavour tagging adds more information on PDFs and reduces the background processes

Conclusions

ATLAS, CMS and LHCb access the electroweak sector in a very precise and complementary way

-Inclusive measurements put important constraints on the PDFs providing precision information on the inner structure of the proton. Some intriguing discrepancies?

-Jets coupled to the Vector Boson production are able to create the interplay between pQCD in parton showers and hard matrix elements

-Heavy Flavour tagging adds more information on PDFs and reduces the background processes

These measurements provide a unique handle on the SM and on the structure of the proton, from the quark flavour separation at large-x, to the gluon distribution at small-x or to the constraint of the non-perturbative charm

