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Outline & Issues

❖ DY data: basic test of TMD factorization

❖ Theory status of unpolarized TMD’s

❖ Scale prescriptions, convergence, models, theoretical errors,..

❖ The impact of LHC

❖ arTeMiDe
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….TMD factorization ….
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.. for DY  and heavy boson production we  have (Collins 2011, Echevarria, Idilbi, Scimemi (EIS) 2012 )

The pathological behavior is associated to a particular kind of divergences: rapidity divergences
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The  renormalization of the rapidity divergences is responsible for  the a new resummation scale

We have new non-perturbative effects which cannot be included in PDFs.

The case of unpolarized TMDs:  the perturbative calculable part of unpolarized TMDs is 
known at NNLO! How can  we use this information? 

Which scale prescription allows an optimal extraction of TMD’s? 
What is the range of validity of the TMD factorization theorem? 

Do LHC data have an impact on TMD extraction?

…and similar formulas are valid for SIDIS  (EIC) and hadron  production in ee colliders



TMD’s factorization and Operator Product Expansion:  
general outlook

Q=M=di-lepton invariant mass

The factorization theorem predicts that each coefficient
can be extracted on its own.

The evolution of TMD is universal (process independent)
Renomalons: power corrections are x-dependent 

Factorized hadronic tensor
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Factorization
OPE

Very
important

All these matchings  on  collinear functions are just the asymptotic expansion of  a 
more  complex structure: how can we explore it?

F̃n = C̃n j(xn, b, Q
2, µ2)⌦ fj h(xn, µ

2) +O(xnb
2/B2)



TMD’s factorization and Operator Product Expansion:  
general outlook

Q=M=di-lepton invariant mass

TMDs  are built  joining a perturbative calculable part (in QCD)
and a non-perturbative part (Models, Lattice):
This separation is crucial for TMD extractions

Factorized hadronic tensor
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Factorization
OPE

Very
important

Each experiment has its own  sensitiveness to each part

F̃n = C̃n j(xn, b, Q
2, µ2)⌦ fj h(xn, µ

2) +O(xnb
2/B2)



Status of unpolarized TMDs in perturbation theory
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❖ Evolution  to N3LO Y. Li, H.X. Zhu,  arXiv:1604.01404 A. Vladimirov, arXiv:1610.05791  
❖ Soft function  at NNLO M.G. Echevarría, I.S., A. Vladimirov, arXiv:1511.05590.
❖ NNLO coefficients for TMDPDFs  M.G. Echevarría, I.S., A. Vladimirov,  

arXiv1604.07869, T. Lübbert, J. Oredsson, M. Stahlhofen, arXiv:1602.01829, T. Gehrmann, T. 
Lübbert, Li Lin Yang arXiv:1403.6451

❖ NNLO coefficients for TMD Fragmentation Functions M.G. Echevarría, I.S., A. 
Vladimirov, arXiv:1509.06392,  arXiv:1604.07869

❖ Global Fits (SIDIS+DY) A. Bacchetta et al. arxiv:1703.10157, Talk of F. Delcarro
❖ DY and Z-boson fits (ResBos, D’Alesio et al. arXiv:1410.4522 up to NNLL)
❖ Implementation of standard CSS (DYres/DyqT)

It is possible to make a complete analysis of unpolarized TMD in Drell-Yan and SIDIS 
using NNLO results 

The study of polarized TMDs at the same precision is just started: 
D. Gutierrez-Reyes, I.S., A. Vladimirov, arXiv:1702.06558

Perturbative
Calculations

Phenomenology



Regions  in b-space
Fq�h

b

b~B b~�-1

P
er
tu
rb
a
ti
v
e

L
ea
d
in
g
o
rd
er
O
P
E

P
er
tu
rb
a
ti
v
e

H
ig
h
er
o
rd
er
O
P
E

N
o
n
-
P
er
tu
rb
a
ti
v
e

b
�
1
/Q

n=0

n
=
1

n
=
2

n
=
3

The factorization theorem 
works in b-space. 
The perturbative expansion 
does not work on the whole 
space…

Each region needs a particular treatment

Y
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TMD-to-PDF matching

Renormalons 

OPE power expansion 
orders
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Regions  in b-space
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The factorization theorem 
works in b-space. 
The perturbative expansion 
does not work on the whole 
space…

Z-boson production 
data

Drell-Yan Data 

Not all regions are equally important for each experiment

OPE power expansion 
orders
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Cross section and TMD structure
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Cross section and TMD structure
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In the implementation we  must choose

matching prescriptions such that the 


perturbative series is as convergent as 

possible, undesired power corrections are 


 not introduced
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Perturbative orders…

…Theoretical uncertainties…

NEW!!
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Details of scale variations
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This uncertainty arises from the dependence (at the fixed perturbative order) on the initial evolution point  and  
should be compensated between the Sudakov factor and the boundary term in the TMD evolution factor.

c1 ⇠ perturbative matching of rapidity anomalous dimension

This uncertainty arises from the dependence (at the fixed perturbative order) on the hard factorization scale which 
is to be compensated between the hard coefficient function and the TMD evolution factor. 

c2 ⇠ hard factorization scale

c3 ⇠ TMD evolution factor

This uncertainty arises from the dependence (at the fixed perturbative order) on initial scale of TMD evolution, 
which is to be compensated between the evolution integral and the mu-dependence of  zeta_i.

c4 ⇠ small-b matching

This uncertainty arises from the dependence (at the fixed perturbative order) on the scale of the small-b matching 
mu_OPE which is to be compensated between the small-b Wilson coefficient function C_{f /f’} and the evolution 
of PDF.



Details of scale variations
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c1 ⇠ perturbative matching of rapidity anomalous dimension

c2 ⇠ hard factorization scale

c3 ⇠ TMD evolution factor

c4 ⇠ small-b matching

Usually these two scales 

changed together: C3



TMD evolution and scale prescriptions
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The  perturbative expression for the evolution kernel work  only up	to	a	certain	scale…

…and in principle we include some (renormalon consistent) corrections

What is the best prescription  to choose scales?
b* prescription is not satisfactory (not fully inconsistent, but very confusing): 
❖ It is not fully consistent with renormalon calculations (I.S., A. Vladimirov 2016) 
❖ It introduces undesired power corrections (which alter model building): 
Often parameters  are due just to cancel induced power corrections



-prescription
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See also other prescription as in D. Kang, C. Lee, V. Vaidya, arXiv:1710.00078 
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µ = µb =
C0

b
+ 2 GeV

-prescription⇣

In this prescription the structure of coefficient is much simpler
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We do not introduce undesired power corrections

We have several proof of scale stability: TMD area, …
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DATA: Z-boson production….

NEW!
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DATA: and Drell-Yan…. NEW!

Lepton cuts…

Lepton cuts have implemented numerically for LHC. 
However all experiments suffer from lepton cuts: they should always be reported!!



Normalization of the cross sections
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Not all experiments provide a value for total cross sections:
• NE288=0.8 fixed
• For CDF, D0  we use DYNNLO
• for LHC we normalize areas of partially integrated cross sections.  

General agreement within errors with published results 
N=th/exp



Models, data, stability
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Data are sensitive to models for non-perturbative part of TMDs.  
We explore models with 
• Minimal set of parameters 
• renormalon consistency 
• Independent on number of data points (Stability)  
• We do not include Y-terms: we should select qT/Q  proper interval 

To be checked on data!!



Models fun
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Non-perturbative corrections 
to TMD-PDF matching

Renormalon  for kernel
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I.S., A. Vladimirov: arXiv:1609.06147

?

• High energy data favors Gaussian (also theoretically)
• Low energy data favors Exponential (also theoretically)
The difference between model is not much at NLO, 
but it is important at NNLO
❖ We need at least 2 parameters (+gK)

NNLO



Models fun

NEW (renormalon consistent) ansatz!
+ ren.

model 1

model 2
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Stability
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• Different models show different stability of chi^2: Check on high energy data
• For                                 power corrections (Y-terms) are not needed�T = qT /Q . 0.2



Fitted constants
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• Not much difference between models

• gK consistent with renormalons

• Renormalons effects small

• Error on fitted constants converges



arTeMiDe:  
 Results for LHC in Z-production ….
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…and Drell-Yan at NNLO



Errors  and orders: E288
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Errors  and orders: LHCb
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Conclusions
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❖ A NNLO analysis is necessary for fitting data and extracting TMD (many issues 
solved just increasing the perturbative order). 

❖  LHC provides very precise data that should  be included in fits (especially data off 
the Z-boson peak). ATLAS  and CMS could do better at 13 TeV!! 

❖ We have discussed a number of issues which are relevant in TMD analysis (data 
choice, normalizations, prescriptions, scale choices, stability, theoretical 

errors,..etc.) 
❖ All this is included  in arTeMiDe  (version 1.1)
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Back up
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Results of the fit



Tevatron Z-boson plots
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