Ignazio Scimemi (UCM)

Recent analysis of DY (and Z-boson) data

Most recent results in collaboration with Alexey Vladimirov

Outline \& Issues

* DY data: basic test of TMD factorization
* Theory status of unpolarized TMD's
* Scale prescriptions, convergence, models, theoretical errors,..
* The impact of LHC
* aufTCeMMilde

....TMD factorization

.. for DY and heavy boson production we have (Collins 2011, Echevarria, Idilbi, Scimemi (EIS) 2012)

$$
\begin{aligned}
\frac{d \sigma}{d Q^{2} d q_{T} d y} & =\sum_{q} \sigma_{q}^{\gamma} H\left(Q^{2}, \mu^{2}\right) \int \frac{d^{2} \mathbf{b}}{4 \pi} e^{-i \mathbf{q}_{\mathbf{T}} \cdot \mathbf{b}} \Phi_{q / A}\left(x_{A}, \mathbf{b}, \zeta_{A}, \mu\right) \Phi_{q / B}\left(x_{B}, \mathbf{b}, \zeta_{B}, \mu\right) \\
\sqrt{\zeta_{A} \zeta_{B}} & =Q^{2}
\end{aligned}
$$

\ldots...and similar formulas are valid for SIDIS (EIC) and hadron production in ee colliders
The pathological behavior is associated to a particular kind of divergences: rapidity divergences
The renormalization of the rapidity divergences is responsible for the a new resummation scale We have new non-perturbative effects which cannot be included in PDFs.

TMD's factorization and Operator Product Expansion:

> general outlook

Factorized hadronic tensor

$$
q^{2}=Q^{2} \gg q_{T}^{2} \quad \mathrm{Q}=\mathrm{M}=\text { di-lepton invariant mass }
$$

Factorization
OPE

$\tilde{M}=H\left(Q^{2} / \mu^{2}\right) \tilde{F}_{n}\left(x_{n}, b ; Q^{2}, \mu^{2}\right) \tilde{F}_{\bar{n}}\left(x_{\bar{n}}, b ; Q^{2}, \mu^{2}\right)$

The factorization theorem predicts that each coefficient can be extracted on its own.
The evolution of TMD is universal (process independent)
Renomalons: power corrections are x-dependent

TMD's factorization and Operator Product Expansion:

general outlook

Factorized hadronic tensor

$$
q^{2}=Q^{2} \gg q_{T}^{2} \quad \mathrm{Q}=\mathrm{M}=\text { di-lepton invariant mass }
$$

Factorization
OPE

$\tilde{M}=H\left(Q^{2} / \mu^{2}\right) \tilde{F}_{n}\left(x_{n}, b ; Q^{2}, \mu^{2}\right) \tilde{F}_{\bar{n}}\left(x_{\bar{n}}, b ; Q^{2}, \mu^{2}\right)$
important

TMDs are built joining a perturbative calculable part (in QCD) and a non-perturbative part (Models, Lattice): This separation is crucial for TMD extractions

Status of unpolarized TMDs in perturbation theory

IT IS POSSIBLE TO MAKE A COMPLETE ANALYSIS OF UNPOLARIZED TMD IN DRELL-YAN AND SIDIS USING NNLO RESULTS

The study of polarized TMDs at the same precision is just started:
D. Gutierrez-Reyes, I.S., A. Vladimirov, arXiv:1702.06558

Regions in b-space

The factorization theorem works in b-space.
The perturbative expansion does not work on the whole space...

EACH REGION NEEDS A PARTICULAR TREATMENT

Regions in b-space

The factorization theorem works in b-space.
The perturbative expansion does not work on the whole space...

NOT ALL REGIONS ARE EOUALLY IMPORTANT FOR EACH EXPERMMENT

Cross section and TMD structure

Cross section and TMD structure

Perturbative orders．．．

Name	$\left\|C_{V}\right\|^{2}$	$C_{f \leftarrow f^{\prime}}$	Γ	γ_{V}	\mathcal{D}	PDF set	a_{s}（run）	ζ_{μ}
NLL／LO	a_{s}^{0}	a_{s}^{0}	a_{s}^{2}	a_{s}^{1}	a_{s}^{2}	nlo	nlo	NLL
NLL／NLO	a_{s}^{1}	a_{s}^{1}	a_{s}^{2}	a_{s}^{1}	a_{s}^{2}	nlo	nlo	NLO
NNLL／NLO	a_{s}^{1}	a_{s}^{1}	a_{s}^{3}	a_{s}^{2}	a_{s}^{3}	nlo	nlo	NNLL
NNLL／NNLO	a_{s}^{2}	a_{s}^{2}	a_{s}^{3}	a_{s}^{2}	a_{s}^{3}	nnlo	nnlo	NNLO

．．．Theoretical uncertainties．．．

MAルCVルNe SCAUES

In the implementation we must choose matching prescriptions such that the perturbative series is as convergent as possible，undesired power corrections are not introduced

$$
\begin{aligned}
& \text { Raplaty } \\
& \text { Evolution } \\
& \frac{d \sigma}{d Q^{2} d y d\left(q_{T}^{2}\right)}=\frac{4 \pi}{3 N_{c}} \frac{\mathcal{P}}{s Q^{2}} \sum_{G G^{\prime}} z_{l l^{\prime}}^{G G^{\prime}}(q) \sum_{f f^{\prime}} z_{f f^{\prime}}^{G G^{\prime}} \int \frac{d^{2} \vec{b}}{4 \pi} e^{i(\vec{b} \vec{q})}\left|C_{V}\left(Q, c_{2} Q\right)\right|^{2}\left\{R^{f}\left[\vec{b} ;\left(c_{2} Q, Q^{2}\right) \rightarrow\left(c_{3} \mu_{i}, \zeta_{c_{3} \mu_{i}}\right) ; c_{1} \mu_{i}\right]\right\} \\
& \times F_{f \leftarrow h_{1}}\left(x, \vec{b} ; c_{4} \mu_{\mathrm{OPE}}, \zeta_{c_{4} \mu_{\mathrm{OPE}}}\right) F_{f^{\prime} \leftarrow h_{2}}\left(x, \vec{b} ; c_{4} \mu_{\mathrm{OPE}}, \zeta_{c_{4} \mu_{\mathrm{OPE}}}\right) \\
& \text { Parameters and quality of the fits }
\end{aligned}
$$ depend strongly on the choices made for the implementation

Details of scale variations

```
c
```

This uncertainty arises from the dependence (at the fixed perturbative order) on the initial evolution point and should be compensated between the Sudakov factor and the boundary term in the TMD evolution factor.

$$
c_{2} \sim \text { hard factorization scale }
$$

This uncertainty arises from the dependence (at the fixed perturbative order) on the hard factorization scale which is to be compensated between the hard coefficient function and the TMD evolution factor.
$c_{3} \sim$ TMD evolution tactor
This uncertainty arises from the dependence (at the fixed perturbative order) on initial scale of TMD evolution, which is to be compensated between the evolution integral and the mu-dependence of zeta_i.
$c_{4} \sim$ small- b matching
This uncertainty arises from the dependence (at the fixed perturbative order) on the scale of the small-b matching mu_OPE which is to be compensated between the small-b Wilson coefficient function $\mathrm{C}_{-}\left\{\mathrm{f} / \mathrm{f}^{\prime}\right\}$ and the evolution of PDF.

Details of scale variations

$c_{1} \sim$ perturbative matching of rapidity anomalous dimension

TMD evolution and scale prescriptions

The perturbative expression for the evolution kernel work only up to a certain scale...

$$
R^{f}\left[\mathbf{b} ;\left(\mu_{f}, \zeta_{f}\right) \leftarrow\left(\mu_{i}, \zeta_{i}\right) ; \mu_{0}\right]=\exp \left[\int_{\mu_{i}}^{\mu_{f}} \frac{d \mu}{\mu} \gamma_{F}^{f}\left(\mu, \zeta_{f}\right)-\int_{\mu_{0}}^{\mu_{i}} \frac{d \mu}{\mu} \Gamma^{f}(\mu) \ln \left(\frac{\zeta_{f}}{\zeta_{i}}\right)\right]\left(\frac{\zeta_{f}}{\zeta_{i}}\right)^{-\mathcal{D}_{\text {perp }}^{f}\left(\mu_{0}, \mathbf{b}\right)-g_{K} \mathbf{b}^{2}} \ldots . .
$$

...and in principle we include some (renormalon Consistent) corrections

What is the best prescription to choose scales?

b* prescription is not satisfactory (not fully inconsistent, but very confusing):

* It is not fully consistent with renormalon calculations (I.S., A. Vladimirov 2016)
* It introduces undesired power corrections (which alter model building):

Often parameters are due just to cancel induced power corrections

ζ-prescription

In practice we implement.. $\mu^{2} \frac{d F\left(x, \mathbf{b} ; \mu, \zeta_{\mu}\right)}{d \mu^{2}}=0$. ...and obtain iso-evolution curves..

$$
\begin{aligned}
\zeta_{\mu} & =\frac{2 \mu}{b} \exp \left(-\gamma_{E}+a_{s}\left[\frac{11 C_{A}-4 T_{F} N_{f}}{36} \mathbf{L}_{\mu}^{2}+C_{F}\left(-\frac{3}{4}+\pi^{2}-12 \zeta_{3}\right)+C_{A}\left(\frac{649}{108}-\frac{17 \pi^{2}}{12}+\frac{19}{2} \zeta_{3}\right)\right.\right. \\
& \left.\left.+T_{F} N_{f}\left(-\frac{53}{27}+\frac{\pi^{2}}{3}\right)\right]+\mathcal{O}\left(a_{s}^{2}\right)\right)
\end{aligned}
$$

ζ-prescription

In this prescription the structure of coefficient is much simpler

$$
C_{q \leftarrow q}\left(x, \mathbf{L}_{\mu} ; \mu, \zeta_{\mu}\right)=\delta(\bar{x})+a_{s}(\mu) C_{F}\left[-2 \mathbf{L}_{\mu}\left(\frac{2}{(1-x)_{+}}-1-x\right)+2 \bar{x}+\delta(\bar{x})\left(-3 \mathbf{L}_{\mu}-\frac{\pi^{2}}{6}\right)\right]+\cdots
$$

We do not introduce undesired power corrections
We have several proof of scale stability: TMD area, ..

$$
\int_{0}^{1} d x C_{q \leftarrow q}\left(x, \mathbf{L}_{\mu} ; \mu, \zeta_{\mu}\right)=1+a_{s}(\mu) C_{F}\left(1-\frac{\pi^{2}}{6}\right)+\cdots
$$

Cancellation of logs

$$
\mu^{2} \frac{d}{d \mu^{2}} C_{f \leftarrow f^{\prime}}\left(x, \mathbf{b} ; \mu, \zeta_{\mu}\right) \otimes f_{f^{\prime} \leftarrow h}(x, \mu)=0
$$

We are left with the freedom to choose

$$
\mu=\mu_{b}=\frac{C_{0}}{b}+2 \mathrm{GeV}
$$

DATA: Z-boson production....

	CDF run I	D0 run I
\sqrt{s}	1.8 TeV	1.8 TeV
process	$p+\bar{p} \rightarrow Z \rightarrow e^{+} e^{-}$	$p+\bar{p} \rightarrow Z \rightarrow e^{+} e^{-}$
$M_{l l}$ range	$66-116 \mathrm{GeV}$	$75-105 \mathrm{GeV}$
y	y-integrated	y-integrated
Observable	$\frac{d \sigma}{d q_{T}}$	$\frac{d \sigma}{d q_{T}}$
Exp. $\sigma_{\text {tot }}[\mathrm{pb}]$	248 ± 17	$\sigma=221 \pm 11$

	CDF run II	D0 run II
\sqrt{s}	1.96 TeV	1.96 GeV
process	$p+\bar{p} \rightarrow Z \rightarrow e^{+} e^{-}$	$p+\bar{p} \rightarrow Z \rightarrow e^{+} e^{-}$
$M_{l l}$ range	$66-116 \mathrm{GeV}$	$70-110 \mathrm{GeV}$
y	y-integrated	y-integrated
Observable	$\frac{d \sigma}{d q_{T}}$	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$
Exp. $\sigma_{\text {tot }}[\mathrm{pb}]$	256 ± 2.91	$\sigma=255$

	ATLAS	ATLAS
\sqrt{s}	7 TeV	8 TeV
process	$p p \rightarrow Z \rightarrow e e+\mu \mu$	$p p \rightarrow Z \rightarrow \mu \mu$
$M_{l l}$ range	$66-116 \mathrm{GeV}$	$66-116 \mathrm{GeV}$
lepton cuts	$p_{T}>20 \mathrm{GeV}$	$p_{T}>20 \mathrm{GeV}$
	$\|\eta\|<2.4$	$\|\eta\|<2.4$
y	$-2.4<y<2.4$	$-2.4<y<2.4$
Observable	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$

	CMS	CMS
\sqrt{s}	7 TeV	8 TeV
process	$p p \rightarrow Z \rightarrow e e+\mu \mu$	$p p \rightarrow Z \rightarrow \mu \mu$
$M_{l l}$ range	$60-120 \mathrm{GeV}$	$60-120 \mathrm{GeV}$
lepton cuts	$p_{T}>20 \mathrm{GeV}$	$p_{T}>15 \mathrm{GeV}$
	$\|\eta\|<2.1$	$\|\eta\|<2.1$
y	$\|y\|<2.1$	$\|y\|<2.1$
Observable	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$

	LHCb	LHCb	LHCb
	7 TeV	8 TeV	13 TeV
	$p p \rightarrow Z \rightarrow \mu \mu$	$p p \rightarrow Z \rightarrow \mu \mu$	$p p \rightarrow Z \rightarrow \mu \mu$
$M_{l l}$ range	$60-120 \mathrm{GeV}$	$60-120 \mathrm{GeV}$	$60-120 \mathrm{GeV}$
lepton cuts	$p_{T}>20 \mathrm{GeV}$	$p_{T}>20 \mathrm{GeV}$	$p_{T}>20 \mathrm{GeV}$
	$2<\eta<4.5$	$2<\eta<4.5$	$2<\eta<4.5$
y	$2<y<4.5$	$2<y<4.5$	$2<y<4.5$
Observable	$d \sigma\left(q_{T}\right)$	$d \sigma\left(q_{T}\right)$	$\frac{d \sigma}{d q_{T}}$
Norm. exp.	$\sigma=76.0 \pm 3.1 \mathrm{pb}$	$\sigma=95.0 \pm 3.2 \mathrm{pb}$	$\sigma=198.0 \pm 13.3 \mathrm{pb}$

DATA: and Drell-Yan....

	E288 200	E288 300	E288 400
\sqrt{s}	19.4 GeV	23.8 GeV	27.4 GeV
process	$\mathrm{p}+\mathrm{Cu} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}$	$\mathrm{p}+\mathrm{Cu} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}$	$\mathrm{p}+\mathrm{Cu} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}$
Q range	$4-9 \mathrm{GeV}$	$4-9 \mathrm{GeV}$	$5-14 \mathrm{GeV}$
ΔQ-bin	1 GeV	1 GeV	1 GeV
y	$\mathrm{y}=0.4$	$\mathrm{y}=0.21$	$\mathrm{y}=0.03$
Observable	$E \frac{d^{3} \sigma}{d^{3} q}$	$E \frac{d^{3} \sigma}{d^{3} q}$	$E \frac{d^{3} \sigma}{d^{3} q}$

	ATLAS	ATLAS
\sqrt{s}	8 TeV	8 TeV
process	$p p \rightarrow Z / \gamma^{*} \rightarrow \mu \mu$	$p p \rightarrow Z / \gamma^{*} \rightarrow \mu \mu$
$M_{l l}$ range	$46-66 \mathrm{GeV}$	$116-150 \mathrm{GeV}$
lepton cuts	$p_{T}>20 \mathrm{GeV}$	$p_{T}>20 \mathrm{GeV}$
	$\|\eta\|<2.4$	$\|\eta\|<2.4$
y	$-2.4<y<2.4$	$-2.4<y<2.4$
Observable	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$	$\frac{1}{\sigma} \frac{d \sigma}{d q_{T}}$

Lepton cuts...

Lepton cuts have implemented numerically for LHC.
However all experiments suffer from lepton cuts: they should always be reported!!

Normalization of the cross sections

Not all experiments provide a value for total cross sections:

- $\mathrm{N}_{\text {E288 }}=0.8$ fixed
- For CDF, D0 we use DYNNLO
- for LHC we normalize areas of partially integrated cross sections. N=th/exp General agreement within errors with published results

order	ATLAS Z-boson 7 TeV	ATLAS Z-boson 8 TeV	$\begin{gathered} \text { ATLAS } \\ 46-66 \\ 8 \mathrm{TeV} \\ \hline \end{gathered}$	$\begin{gathered} \text { ATLAS } \\ 116-150 \\ 8 \mathrm{TeV} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{CMS} \\ & 7 \mathrm{TeV} \end{aligned}$	$\begin{aligned} & \mathrm{CMS} \\ & 8 \mathrm{TeV} \end{aligned}$	$\begin{gathered} \mathrm{LHCb} \\ 7 \mathrm{TeV} \end{gathered}$	$\begin{gathered} \mathrm{LHCb} \\ 8 \mathrm{TeV} \end{gathered}$	$\begin{aligned} & \mathrm{LHCb} \\ & 13 \mathrm{TeV} \end{aligned}$
NLL/NLO	438 pb	0.92	1.01	0.93	369 pb	407 pb	0.92	0.93	0.93
NNLL/NLO	438 pb	0.92	1.01	0.93	368 pb	407 pb	0.92	0.93	0.93
NNLL/NNLO	461 pb	0.97	1.08	0.98	387 pb	429 pb	0.97	0.99	0.98

Models, data, stability

Data are sensitive to models for non-perturbative part of TMDs.
We explore models with

- Minimal set of parameters
- renormalon consistency
- Independent on number of data points (Stability)
- We do not include Y-terms: we should select qT/Q proper interval

To be checked on data!!

Theory prediction: very small or zero $g_{K}=0.01 \pm 0.03 \mathrm{GeV}^{2}$
I.S., A. Vladimirov: arXiv:1609.06147

$$
F_{q \leftarrow h}(x, \boldsymbol{b} ; \mu, \zeta)=\int_{x}^{1} \frac{d z}{z} \sum_{f} C_{q \leftarrow f}(z, \boldsymbol{b} ; \mu, \zeta) f_{f \leftarrow h}\left(\frac{x}{z}, \mu\right) \stackrel{\circ}{\circ} \cdot \stackrel{f_{N P}}{ }(z, \boldsymbol{b})
$$

Non-perturbative corrections to TMD-PDF matching

$$
f_{N P}=1\left|f_{N P}=e^{-\lambda_{1} b^{2}}\right| f_{N P}=e^{-\lambda_{1} b}\left|f_{N P}=1, g_{K} \neq 0\right|: ?
$$

NNLO

data $/ f_{N P}$	$e^{-\lambda b}$	$e^{-\lambda b^{2}}$	$\cosh ^{-1}(\lambda b)$
ATLAS	4.78	1.43	1.42
E288	2.70	5.68	3.64
E288+ATLAS	8.18	5.77	3.72

- High energy data favors Gaussian (also theoretically) - Low energy data favors Exponential (also theoretically) The difference between model is not much at NLO, but it is important at NNLO
* We need at least 2 parameters (+gK)

$$
\begin{aligned}
\frac{\chi^{2}}{\text { d.o.f. }}(\text { Total }) & \simeq 1.2 \\
\frac{\chi^{2}}{\text { d.o.f. }}(\text { High E. data }) & \simeq 1.0 \\
\frac{\chi^{2}}{\text { d.o.f. }}(\text { Low E. data }) & \simeq 1.4
\end{aligned}
$$

MODEL $1 \quad f_{N P}(b)=\frac{\cosh \left(\left(\frac{\lambda_{2}}{\lambda_{1}}-\frac{\lambda_{1}}{2}\right) b\right)}{\cosh \left(\left(\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{1}}{2}\right) b\right)}$
MODEL $2 \quad f_{N P}(z, \boldsymbol{b})=\exp \left(\frac{-\lambda_{q} z \boldsymbol{b}^{2}}{\sqrt{1+z^{2} \boldsymbol{b}^{2} \frac{\lambda_{q}^{2}}{\lambda_{1}^{2}}}}\right)+$ ren. NEW (renormalon consistent) ansatz!

auf Tre:Mrildie

Stability

- Different models show different stability of chi^2: Check on high energy data
- For $\delta_{T}=q_{T} / Q \lesssim 0.2$ power corrections (Y-terms) are not needed

Fitted constants

Variation	$\frac{\chi^{2}}{\text { d.o.f. }}$	λ_{1}	λ_{2}	$g_{K} \times 10^{-2}$
Model 1 NNLL/NLO				
$c_{1,2,3,4}=1$	1.17	0.189	0.425	2.31
$c_{1}=2$	1.31 (+0.14)	$0.201(+0.012)$	0.316 (-0.109)	3.00 (+0.69)
$c_{1}=0.5$	1.10 (-0.07)	$0.184(-0.005)$	0.308 (-0.117)	1.60 (-0.71)
$c_{2}=2$	1.19 (+0.02)	$0.204(+0.015)$	0.223 (-0.202)	2.12 (-0.19)
$c_{2}=0.5$	1.20 (+0.03)	0.219 (+0.030)	0.226 (-0.199)	1.93 (-0.38)
$c_{3}=2$	1.23 (+0.06)	$0.251(+0.062)$	0.315 (-0.110)	3.75 (+1.44)
$c_{3}=0.5$	1.13 (-0.04)	0.160 (-0.029)	0.220 (-0.205)	1.12 (-1.19)
$c_{4}=2$	1.76 (+0.59)	0.137 (-0.052)	0.473 (+0.046)	2.71 (+0.40)
$c_{4}=0.5$	2.49 (+1.32)	0.303 (+0.114)	0.175 (-0.250)	1.15 (-1.16)
Result	$1.17{ }_{-0.07}^{+1.32}$	$0.189_{-0.052}^{+0.114}$	$0.425_{-0.250}^{+0.047}$	$2.311_{-1.19}^{+1.44}$
Model $1 \mathrm{~N}^{3} \mathrm{LL} / \mathrm{NNLO}$				
$c_{1,2,3,4}=1$	1.23	0.228	0.306	0.73
$c_{1}=2$	1.40 (+0.17)	0.242 (+0.014)	0.296 (-0.010)	1.21 (+0.48)
$c_{1}=0.5$	$1.14(-0.09)$	0.221 (-0.007)	0.346 (+0.020)	0.12 (-0.61)
$c_{2}=2$	1.22 (-0.01)	0.217 (-0.011)	0.295 (-0.011)	0.86 (+0.13)
$c_{2}=0.5$	1.26 (+0.03)	$0.252(+\mathbf{0 . 0 2 4)}$	0.326 (+0.020)	0.48 (-0.25)
$c_{3}=2$	1.27 (+0.04)	0.260 (+0.032)	0.344 (+0.038)	1.82 (+1.09)
$c_{3}=0.5$	$1.31(+0.08)$	0.198 (-0.030)	0.358 (+0.052)	0.00 (-0.73)
$c_{4}=2$	1.10 (-0.13)	0.168 (-0.060)	0.571 (+0.265)	1.27 (+0.54)
$c_{4}=0.5$	1.53 (+0.30)	$0.262(+0.034)$	0.243 (-0.063)	0.68 (-0.05)
Result	$1.23{ }_{-0.13}^{+0.30}$	$0.228_{-0.060}^{+0.034}$	$0.306_{-0.063}^{+0.265}$	$0.73_{-0.73}^{+1.09}$

- Not much difference between models
- gK consistent with renormalons
- Renormalons effects small
- Error on fitted constants converges

aur ${ }^{\text {The Mildide }: ~}$

Results for LHC in Z-production

...and Drell-Yan at NNLO

Errors and orders: E288

Errors and orders: LHCb

Conclusions

A NNLO ANALYSIS IS NECESSARY FOR FITTING DATA AND EXTRACTING TMD (MANY ISSUES SOLVED JUST INCREASING THE PERTURBATIVE ORDER).

* LHC PROVIDES VERY PRECISE DATA THAT SHOULD BE INCLUDED IN FITS (ESPECIALLY DATA OFF THE Z-BOSON PEAK). ATLAS AND CMS COULD DO BETTER AT 13 TEV!!
WE HAVE DISCUSSED A NUMBER OF ISSUES WHICH ARE RELEVANT IN TMD ANALYSIS (DATA CHOICE, NORMALIZATIONS, PRESCRIPTIONS, SCALE CHOICES, STABILITY, THEORETICAL ERRORS,..ETC.)
All This is included in aule $]$ (e Miilde (VERSION 1.1)

Back up

Results of the fit

Data set	point	Model 1			Model 2		
		$\begin{aligned} & \text { NLL/ } \\ & \text { NLO } \end{aligned}$	$\begin{aligned} & \text { NNLL/ } \\ & \text { NLO } \end{aligned}$	$\begin{aligned} & \text { NNLL// } \\ & \text { NNLO } \end{aligned}$	$\begin{aligned} & \text { NLL/ } \\ & \text { NLO } \end{aligned}$	$\begin{aligned} & \text { NNLL/ } \\ & \text { NLO } \end{aligned}$	$\begin{aligned} & \text { NNLL/ } \\ & \text { NNLO } \end{aligned}$
CDF run1	30	0.67	0.68	0.64	0.67	0.67	0.64
D0 run1	14	0.50	0.52	0.60	0.49	0.51	0.62
CDF run2	36	1.22	1.36	1.30	1.17	1.29	1.33
D0 run2	7	2.52	2.69	2.75	2.45	2.64	2.79
ATLAS (7TeV) Z-boson	9	1.54	1.55	2.01	1.60	1.59	2.27
ATLAS (8TeV) Z-boson	9	2.32	2.48	2.69	2.46	2.70	2.79
ATLAS (8TeV) $46-66 \mathrm{GeV}$	5	0.04	0.05	0.16	0.05	0.04	0.20
ATLAS (8TeV) 116-150 GeV	9	0.30	0.35	0.31	0.30	0.36	0.30
CMS (7 TeV)	7	1.38	1.39	1.36	1.38	1.38	1.36
CMS (8 TeV)	7	1.38	1.38	1.54	1.38	1.37	1.58
LHCb (7 TeV)	10	0.26	0.26	0.31	0.25	0.26	0.33
LHCb (8 TeV)	10	0.11	0.12	0.27	0.11	0.12	0.32
LHCb (13 TeV)	10	0.50	0.50	0.28	0.50	0.50	0.27
High energy data	163	0.95	1.00	0.94	0.94	1.00	1.04
E288(200) 4-5 GeV	5	3.86	4.28	3.86	4.25	4.59	4.30
E288(200) 5-6 GeV	6	3.00	3.03	1.92	3.05	3.07	1.92
E288(200) 6-7 GeV	7	1.68	1.68	0.84	1.66	1.67	0.79
E288(200) $7-8 \mathrm{GeV}$	8	1.10	1.10	0.93	1.13	1.11	1.00
E288(200) 8-9 GeV	9	1.83	1.84	0.78	1.89	1.87	1.87
E288(300) 4-5 GeV	5	1.93	2.20	4.09	2.24	2.44	4.90
E288(300) 5-6 GeV	6	1.15	1.18	1.15	1.19	1.21	1.21
E288(300) 6-7 GeV	7	0.84	0.83	0.66	0.85	0.83	0.69
E288(300) $7-8 \mathrm{GeV}$	8	1.18	1.17	0.90	1.16	1.17	0.86
E288(300) 8-9 GeV	9	1.13	1.14	1.13	1.11	1.36	1.10
E288(300) 11-12 GeV	12	1.08	1.08	1.00	1.11	1.10	1.04
E288(400) 5-6 GeV	6	2.11	2.04	1.12	1.94	1.92	1.01
E288(400) 6-7 GeV	7	2.59	2.68	2.55	2.59	2.64	2.55
E288(400) $7-8 \mathrm{GeV}$	8	0.83	0.97	2.02	0.99	1.07	2.44
E288(400) 8-9 GeV	9	1.36	1.31	1.37	1.37	1.32	1.54
E288(400) 11-12 GeV	12	1.08	1.06	1.25	1.05	1.05	1.17
E288(400) 12-13 GeV	12	0.88	0.88	1.10	0.87	0.88	1.14
E288(400) 13-14 GeV	12	0.39	0.38	0.72	0.39	0.39	0.71
Low energy data	146	1.38	1.41	1.35	1.50	1.48	1.49
Total	309	1.17	1.21	1.23	1.18	1.22	1.29

Tevatron Z-boson plots

