HERMES results on TMDs and GPDs

Charlotte Van Hulse
University of the Basque Country

Outline

- Helicity amplitude ratios for hard exclusive ρ^{0} production
- Spin-asymmetries in semi-inclusive DIS on transversely polarized hydrogen target
- Beam-helicity asymmetry in semi-inclusive DIS on unpolarized hydrogen and deuterium targets

Helicity amplitude ratios for exclusive ρ^{0}

- transversely polarized H target

Exclusive meson production

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

- unpolarized target:
nucleon-helicity-non-flip GPDs $\mathrm{H}, \tilde{\mathrm{H}}$ and $\bar{E}_{T}=2 \mathrm{H}_{T}+\tilde{\mathrm{E}}_{\mathrm{T}}$.
- transversely polarized target: nucleon-helicity-flip GPDs E, \tilde{E} and H_{T}.

Exclusive meson production

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

- unpolarized target:
nucleon-helicity-non-flip GPDs $\mathrm{H}, \tilde{\mathrm{H}}$ and $\bar{E}_{T}=2 \mathrm{H}_{\mathrm{T}}+\tilde{\mathrm{E}}_{\mathrm{T}}$.
- transversely polarized target: nucleon-helicity-flip GPDs E, \tilde{E} and H_{T}.

Exclusive meson production

Exclusive meson production

- probe various types of GPDs with different sensitivity and different flavour combinations
- complementary to DVCS

Target polarization state

- unpolarized target: nucleon-helicity-non-flip GPDs $\mathrm{H}, \tilde{\mathrm{H}}$ and $\bar{E}_{T}=2 \mathrm{H}_{\mathrm{T}}+\tilde{\mathrm{E}}_{\mathrm{T}}$.
- transversely polarized target: nucleon-helicity-flip GPDs E, \tilde{E} and H_{T}.

Helicity amplitude ratios and SDMEs

$$
\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\lambda_{N}^{\prime}\right)
$$

- Helicity amplitude $F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}$

Helicity amplitude ratios and SDMEs

$$
\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\lambda_{N}^{\prime}\right)
$$

- Helicity amplitude $F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}$

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}
$$

Helicity amplitude ratios and SDMEs

$$
\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\lambda_{N}^{\prime}\right)
$$

- Helicity amplitude $F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}$

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}
$$

Helicity amplitude ratios and SDMEs

$$
\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\lambda_{N}^{\prime}\right)
$$

- Helicity amplitude $F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}$

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}
$$

- Helicity amplitude ratios

$$
t_{\lambda_{V} \lambda_{\gamma}}^{(n)}=T_{\lambda_{V} \lambda_{\gamma}}^{(n)} / T_{0 \frac{1}{2} 0 \frac{1}{2}}
$$

$$
u_{\lambda_{V} \lambda_{\gamma}}^{(n)}=U_{\lambda_{V} \lambda_{\gamma}}^{(n)} / T_{0 \frac{1}{2} 0 \frac{1}{2}}
$$

$$
\begin{array}{cc}
n=1 & \lambda_{N}=\lambda_{N}^{\prime} \\
n=2 & \lambda_{N} \neq \lambda_{N}^{\prime}
\end{array}
$$

Helicity amplitude ratios and SDMEs

$$
\gamma^{*}\left(\lambda_{\gamma}\right)+N\left(\lambda_{N}\right) \rightarrow V\left(\lambda_{V}\right)+N\left(\lambda_{N}^{\prime}\right)
$$

- Helicity amplitude $F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}$

$$
F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}=T_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}+U_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}}
$$

- Helicity amplitude ratios

$$
\begin{aligned}
& t_{\lambda_{V} \lambda_{\gamma}}^{(n)}=T_{\lambda_{V} \lambda_{\gamma}}^{(n)} / T_{0 \frac{1}{2} 0 \frac{1}{2}} \\
& u_{\lambda_{V} \lambda_{\gamma}}^{(n)}=U_{\lambda_{V} \lambda_{\gamma}}^{(n)} / T_{0 \frac{1}{2} 0 \frac{1}{2}}
\end{aligned}
$$

$$
\begin{array}{cc}
n=1 & \lambda_{N}=\lambda_{N}^{\prime} \\
n=2 & \lambda_{N} \neq \lambda_{N}^{\prime}
\end{array}
$$

- SDMEs
$\propto F_{\lambda_{V} \lambda_{N}^{\prime} \lambda_{\gamma} \lambda_{N}} \Sigma_{\lambda_{\gamma} \lambda_{\gamma}^{\prime}}^{\alpha} F_{\lambda_{V}^{\prime} \lambda_{N}^{\prime} \lambda_{\gamma}^{\prime} \lambda_{N}}$

Exclusive ρ^{0} production: angular distribution

$$
\begin{gathered}
e+N \rightarrow e+N+\rho^{0} \\
\rho^{0} \rightarrow \pi^{+}+\pi^{-}
\end{gathered}
$$

Exclusive ρ^{0} production: angular distribution

$$
\begin{gathered}
e+N \rightarrow e+N+\rho^{0} \\
\rho^{0} \rightarrow \pi^{+}+\pi^{-}
\end{gathered}
$$

Fit angular distribution of decay pions $\mathcal{W}(\Phi, \phi, \Theta, \Psi)$ and extract either Spin Density Matrix Elements (SDMEs) or helicity amplitude ratios

Exclusive ρ^{0} production: angular distribution

- transversely polarized H target
- longitudinally polarized $\mathrm{e}^{ \pm}$
- 8741 hard exclusive ρ^{0} events

$$
\begin{gathered}
3.0 \mathrm{GeV} \leq W \leq 6.3 \mathrm{GeV} \\
1.0 \mathrm{GeV}^{2} \leq Q^{2} \leq 7.0 \mathrm{GeV}^{2} \\
0.0 \mathrm{GeV}^{2} \leq-t^{\prime} \leq 0.4 \mathrm{GeV}^{2}
\end{gathered}
$$

$$
\begin{gathered}
e+N \rightarrow e+M^{+}+\rho^{0} \\
\rho^{0} \rightarrow \pi^{+}+\pi^{-}
\end{gathered}
$$

Fit angular distribution of decay pions $\mathcal{W}(\Phi, \phi, \Theta, \Psi)$ and extract either Spin Density Matrix Elements (SDMEs) or helicity amplitude ratios

Results helicity ρ^{0} amplitude ratios

Eur. Phys. J. C 77 (2017) 378

[^0]2\% uncertainty beam polarization
already obtained in EPJ C71 (2011) 1609
extracted for first time

- 5 classes of helicity amplitude ratios

Results helicity ρ^{0} amplitude ratios

Eur. Phys. J. C 77 (2017) 378

already obtained in EPJ C71 (2011) 1609
extracted for first time

- 5 classes of helicity amplitude ratios
- dominant amplitude: natural parity nucleonhelicity non-flip $t_{11}^{(1)}(\neq 0$ by $>5 \sigma)$

Results helicity ρ^{0} amplitude ratios

Eur. Phys. J. C 77 (2017) 378

already obtained in EPJ C71 (2011) 1609
extracted for first time

- 5 classes of helicity amplitude ratios
- dominant amplitude: natural parity nucleonhelicity non-flip $t_{11}^{(1)}(\neq 0$ by $>5 \sigma)$
- Significant nucleon-helicity non-flip $\Re t_{01}^{(1)} \quad(\neq 0$ by $5 \sigma)$

Results helicity ρ^{0} amplitude ratios

Eur. Phys. J. C 77 (2017) 378

already obtained in EPJ C71 (2011) 1609
extracted for first time

- 5 classes of helicity amplitude ratios
- dominant amplitude: natural parity nucleonhelicity non-flip $t_{11}^{(1)}(\neq 0$ by $>5 \sigma)$
- Significant nucleon-helicity non-flip $\Re t_{01}^{(1)} \quad(\neq 0$ by $5 \sigma)$
- unnatural parity nucleon-helicity non-flip
$u_{11}^{(1)} \neq 0$ by 4σ

Results helicity ρ^{0} amplitude ratios

Eur. Phys. J. C 77 (2017) 378
 2\% uncertainty beam polarization

GK model

model for protons - S. Goloskokov and P. Kroll,
Eur. Phys. J. C 50 (2007) 829; 53 (2008) 367, Eur. Phys. J. A 50 (2014) 146

$$
\left.\begin{array}{rl}
F_{\lambda} \frac{1}{2} \lambda & =\lambda_{V} \frac{1}{2}
\end{array} \sum_{q, g} \mathcal{I}\left[\mathcal{A} \times\left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a}\right)+\mathcal{A}^{\prime} \times\left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}} \tilde{E}^{a}\right)\right] .\right]\left(\mathcal{A} \times E^{a}+\mathcal{A}^{\prime} \times \xi \tilde{E}^{a}\right] .
$$

GK model

model for protons - S. Goloskokov and P. Kroll,
Eur. Phys. J. C 50 (2007) 829; 53 (2008) 367, Eur. Phys. J. A 50 (2014) 146

$$
\begin{gathered}
F_{\lambda}\left(\frac{1}{2} \lambda\right)=\lambda_{V} \frac{1}{2}
\end{gathered} \sum_{q, g} \mathcal{I}\left[\mathcal{A} \times\left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a}\right)+\mathcal{A}^{\prime} \times\left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}} \tilde{E}^{a}\right)\right] . \quad \begin{aligned}
& \text { natural parity } \\
& F_{\lambda_{V}-\frac{1}{2} \lambda_{\gamma}}=\lambda_{V} \frac{1}{2}
\end{aligned} \sum_{q, g} \mathcal{I} \mathcal{A} \times E^{a}+\mathcal{A}^{\prime} \times \xi \tilde{E}^{a} \quad \begin{aligned}
& \text { unatural parity }
\end{aligned}
$$

GK model

model for protons - S. Goloskokov and P. Kroll, Eur. Phys. J. C 50 (2007) 829; 53 (2008) 367, Eur. Phys. J. A 50 (2014) 146

$$
\begin{gathered}
F_{\lambda^{\prime}-\frac{1}{2} \lambda}=\lambda_{V} \frac{1}{2} \\
F_{\lambda_{V}-\frac{1}{2} \gamma_{\gamma}=\lambda_{V} \frac{1}{2}} \propto \sum_{q, g} \mathcal{I}\left[\mathcal{A} \times\left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a}\right)+\mathcal{A}^{\prime} \times\left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}} \tilde{E}^{a}\right)\right] \\
\begin{array}{l}
\text { natural parity } \\
\text { unnatural parity }
\end{array}
\end{gathered}
$$

Factorization only proven for $\gamma_{L}^{*} \rightarrow V_{L}$.
Assumed for other transitions.
IR singularities regularised by modified perturbative approach.

GK model

model for protons - S. Goloskokov and P. Kroll, Eur. Phys. J. C 50 (2007) 829; 53 (2008) 367, Eur. Phys. J. A 50 (2014) 146

$$
\begin{gathered}
F_{\lambda} \frac{1}{2} \lambda=\lambda_{V} \frac{1}{2} \\
F_{\lambda_{V}-\frac{1}{2} \lambda_{\gamma}}=\sum_{q, g} \mathcal{I}\left[\mathcal{A} \times\left(H^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a}\right)+\mathcal{A}^{\prime} \times\left(\tilde{H}^{a}, \frac{\xi^{2}}{1-\xi^{2}} E^{a}\right)\right] \\
\mathcal{I} \mathcal{I} \times E^{a}+\mathcal{A}^{\lambda}<\xi \tilde{E}^{a} \quad \begin{array}{l}
\text { natural parity } \\
\text { unnatural parity }
\end{array}
\end{gathered}
$$

Factorization only proven for $\gamma_{L}^{*} \rightarrow V_{L}$.
Assumed for other transitions.
IR singularities regularised by modified perturbative approach.

Pion pole $\left(\propto \frac{1}{t-m_{\pi}^{2}}\right)$ through
one-particle exchange

$\pi \omega$ transition form factor extracted from ω SDMEs

```
u
```

GK, Eur. Phys. J. A 50 (2014) 146 HERMES, Eur. Phys. J. C 74 (2014) 3110

without pion-pole contribution
with pion-pole contribution
pion-pole contribution seems to account completely
for unnatural-parity exchange

$\pi \omega$ transition form factor extracted from ω SDMEs

```
u
```

GK, Eur. Phys. J. A 50 (2014) 146 HERMES, Eur. Phys. J. C 74 (2014) 3110

without pion-pole contribution
Only magnitude of transition
with pion-pole contribution
pion-pole contribution seems to account completely
for unnatural-parity exchange

$\pi \omega$ transition form factor extracted from ω SDMEs

$u_{1}=1-r_{00}^{04}+2 r_{1-1}^{04}-2 r_{11}^{1}-2 r_{1-1}^{1}$

GK, Eur. Phys. J. A 50 (2014) 146 HERMES, Eur. Phys. J. C 74 (2014) 3110

Only magnitude of transition
without pion-pole contribution form factor, not sign
with pion-pole contribution
pion-pole contribution seems to account completely
for unnatural-parity exchange

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

- Only pion pole. Positive form factor.

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

Comparison ρ^{0} helicity amplitude ratios with GK model

- Only pion pole. Positive form factor.

Semi-inclusive DIS single-hadron production

Presented amplitudes

$$
\begin{aligned}
\sigma^{h}\left(\phi, \phi_{S}\right) & =\sigma_{U U}^{h}\left\{1+2\langle\cos (\phi)\rangle_{U U}^{h} \cos (\phi)+2\langle\cos (2 \phi)\rangle_{U U}^{h} \cos (2 \phi)\right. \\
& +\lambda_{l}\left[2\langle\sin (\phi)\rangle_{L U}^{h} \sin (\phi)\right. \\
& +S_{L}\left[2\langle\sin (\phi)\rangle_{U L}^{h} \sin (\phi)+2\langle\sin (2 \phi)\rangle_{U L}^{h} \sin (2 \phi)\right. \\
& \left.+\lambda_{l}\left(2\langle\cos (0 \phi)\rangle_{L L}^{h} \cos (0 \phi)+2\langle\cos (\phi)\rangle_{L L}^{h} \cos (\phi)\right)\right] \\
& +S_{T}\left[2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi-\phi_{S}\right)+2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi+\phi_{S}\right)\right. \\
& +2\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(3 \phi-\phi_{S}\right)+2\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi_{S}\right) \\
& +2\left\langle\sin \left(2 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(2 \phi-\phi_{S}\right) \\
& +\lambda_{l}\left(2\left\langle\cos \left(\phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi-\phi_{S}\right)\right. \\
& \left.\left.\left.+2\left\langle\cos \left(\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi_{S}\right)+2\left\langle\cos \left(2 \phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(2 \phi-\phi_{S}\right)\right)\right]\right\}
\end{aligned}
$$

Presented here

$$
\begin{aligned}
& Q^{2}>1 \mathrm{GeV}^{2} \\
& W^{2}>10 \mathrm{GeV}^{2} \\
& 0.023<x<0.6
\end{aligned}
$$

Presented amplitudes

- Longitudinally polarized $\mathrm{e}^{+} / \mathrm{e}^{-}$beam
- Transversely polarized H target: fit all amplitudes simultaneously
\longrightarrow Results for charged pions, kaons, (anti-)protons, neutral pions

$$
\begin{aligned}
& +S_{T}\left[2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi-\phi_{S}\right)+2\left\langle\sin \left(\phi+\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi+\phi_{S}\right)\right. \\
& +2\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(3 \phi-\phi_{S}\right)+2\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(\phi_{S}\right) \\
& +2\left\langle\sin \left(2 \phi-\phi_{S}\right)\right\rangle_{U T}^{h} \sin \left(2 \phi-\phi_{S}\right) \\
& +\quad \lambda_{l}\left(2\left\langle\cos \left(\phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi-\phi_{S}\right)\right. \\
& \left.\left.\left.+\quad 2\left\langle\cos \left(\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(\phi_{S}\right)+2\left\langle\cos \left(2 \phi-\phi_{S}\right)\right\rangle_{L T}^{h} \cos \left(2 \phi-\phi_{S}\right)\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& Q^{2}>1 \mathrm{GeV}^{2} \\
& W^{2}>10 \mathrm{GeV}^{2} \\
& 0.023<x<0.6
\end{aligned}
$$

Collins amplitudes

$$
\mathcal{C}\left[h_{1 T}^{q} \times H_{1}^{\perp, q}\right]
$$

Phys. Lett. B 693 (2010) 11-16

data from Belle, Babar, COMPASS, HERMES, Jefferson Lab Hall A

Collins amplitudes

$$
\mathcal{C}\left[h_{1 T}^{q} \times H_{1}^{\perp, q}\right]
$$

Collins amplitudes

$$
\mathcal{C}\left[h_{1 T}^{q} \times H_{1}^{\perp,, q}\right]
$$

Phys. Lett. B 693 (2010) 11-16

Collins amplitudes

$$
\mathcal{C}\left[h_{1 T}^{q} \times H_{1}^{\perp, q}\right]
$$

3 D

14
π^{-}amplitudes increasing with x at large $\mathrm{P}_{\mathrm{h} \perp}$, increasing with z .

Collins amplitudes

$$
\mathcal{C}\left[h_{1 T}^{q} \times H_{1}^{\perp, q}\right]
$$

3D

- Other hadrons, no clear kinematic dependencies in 3D
- No 3D for antiprotons

Pretzelosity amplitudes

$$
\mathcal{C}\left[h_{1 T}^{\perp, q} \times H_{1}^{\perp, q}\right]
$$

- Pretzelosity
- requires non-zero orbital angular momentum (model)
- models:

$$
h_{1 T}^{\perp(1), q}(x)=g_{1 L}^{q}(x)-h_{1 T}^{q}(x)
$$

\rightarrow measure for relativistic effects

- suppressed as $1 / P_{h \perp}^{2}$ compared to Collins amplitude

Pretzelosity amplitudes

2009

$$
C\left[h_{1 T}^{\perp, q} \times H_{1}^{\perp}, q\right]
$$

- Pretzelosity
- requires non-zero orbital angular momentum (model)
- models:

$$
h_{1 T}^{\perp(1), q}(x)=g_{1 L}^{q}(x)-h_{1 T}^{q}(x)
$$

\rightarrow measure for relativistic effects

- suppressed as $1 / P_{h \perp}^{2}$ compared to Collins amplitude

Pretzelosity amplitudes

2009

$$
\mathcal{C}\left[h_{1 T}^{\perp, q} \times H_{1}^{\perp, q}\right]
$$

- Pretzelosity
- requires non-zero orbital angular momentum (model)
- models:

$$
h_{1 T}^{\perp(1), q}(x)=g_{1 L}^{q}(x)-h_{1 T}^{q}(x)
$$

\rightarrow measure for relativistic effects

- suppressed as $1 / P_{h \perp}^{2}$ compared to Collins amplitude
C. Lefky and A. Prokudin, PRD 91 (2015) 034010

(a)

(b)
data from Jefferson Lab Hall A preliminary data from COMPASS, HERMES

Pretzelosity amplitudes

2009
$\mathcal{C}\left[h_{1 T}^{\perp, q} \times H_{1}^{\perp, q}\right]$

- Consistent with zero
- No clear kinematic dependencies in 3D
- No 3D for antiprotons

Sivers amplitudes

$$
\mathcal{C}\left[f_{1 T}^{\perp, q} \times D_{1}^{q}\right]
$$

Phys. Rev. Lett. 103 (2009) 152002

Sivers amplitudes

$$
\mathcal{C}\left[f_{1 T}^{\perp, q} \times D_{1}^{q}\right]
$$

Phys. Rev. Lett. 103 (2009) 152002

Positive Sivers amplitude for (anti-)protons, same size as for π^{+}

Sivers amplitudes

3 D
$\mathcal{C}\left[f_{1 T}^{\perp, q} \times D_{1}^{q}\right]$

Largest at large x and z , where purest u-quark probe

Sivers amplitudes

3 D
$\mathcal{C}\left[f_{1 T}^{\perp}, q \times D_{1}^{q}\right]$

Largest at large x and z , where purest u-quark probe

Sivers amplitudes

3 D
$\mathcal{C}\left[f_{1 T}^{\perp}, q \times D_{1}^{q}\right]$

- Other hadrons, no clear kinematic dependencies in 3D
- No 3D for antiprotons

Twist-3: $\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}$

$\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}$

$$
\propto \mathcal{C} f_{T}^{q} \times D_{1}^{q}, h_{1 T}^{q} \times \tilde{H}^{q}, h_{T}^{q} \times H_{1}^{\perp, q}, g_{1 T}^{\perp, q} \times \tilde{G}^{\perp, q} h_{T}^{\perp, q} \times H_{1}^{\perp, q}, f_{1 T}^{\perp, q} \times \tilde{D}^{\perp, q}
$$

Twist-3: $\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}$

$$
\begin{aligned}
& \left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T} \\
& \quad \propto \mathcal{C}\left[f_{T}^{q} \times D_{1}^{q}, h_{1 T}^{q} \times \tilde{H}^{q}, h_{T}^{q} \times H_{1}^{\perp, q}, g_{1 T}^{\perp, q} \times \tilde{G}^{\perp, q} h_{T}^{\perp, q} \times H_{1}^{\perp, q}, f_{1 T}^{\perp, q} \times \tilde{D}^{\perp, q}\right.
\end{aligned}
$$

Twist-3: $\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}$

- Significant non-zero signal for π^{-}, increasing with x, z

Twist-3: $\left\langle\sin \left(\phi_{S}\right)\right\rangle_{U T}$

3D

Presented amplitudes

$$
\begin{aligned}
\sigma^{h}\left(\phi, \phi_{S}\right) & =\sigma_{U U}^{h}\left\{1+2\langle\cos (\phi)\rangle_{U U}^{h} \cos (\phi)+2\langle\cos (2 \phi)\rangle_{U U}^{h} \cos (2 \phi)\right. \\
& +\lambda_{l} 2\langle\sin (\phi)\rangle_{L U}^{h} \sin (\phi)
\end{aligned}
$$

- Longitudinally polarized $\mathrm{e}^{+} / \mathrm{e}^{-}$beam
- Unpolarized H and D target
\longrightarrow Results for charged pions, kaons, (anti-)protons

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

Boer-Mulders PDF

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\begin{aligned}
\langle\sin (\phi)\rangle_{L U}^{h} & \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right] \\
\begin{array}{c}
\text { Chiral-odd T-even } \\
\text { twist-3 PDF }
\end{array} & \text { Collins FF }
\end{aligned}
$$

$$
e(x)=e^{\mathrm{WW}}(x)+\bar{e}(x)
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

Collins FF twist-3 PDF
ininio

$$
e(x)=e^{\mathrm{WW}}(x)+\bar{e}(x)
$$

$$
\begin{array}{r}
e_{2} \equiv \int_{0}^{1} d x x^{2} \bar{e}(x) \\
\rightarrow \text { force on struck quark at } \mathrm{t}=0 \\
\text { M. Burkardt, arxiv:0810.3589 }
\end{array}
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

Sivers PDF

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Only term to survive in TMD single-jet inclusive DIS

$$
e+p \rightarrow e^{\prime}+\text { jet }+X
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

$$
\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]
$$

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

- Agreement H and D data
- Positive results for pions

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

- No clear kinematic dependencies en 3D
- No 3D for anti-protons

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

- Both measurements give compatible results

Twist-3: $\langle\sin (\phi)\rangle_{L U}^{h}$

- Opposite behaviour for π^{-}z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_{1}^{\perp}$?
$\langle\sin (\phi)\rangle_{L U}^{h} \propto \mathcal{C}\left[h_{1}^{\perp} \times \tilde{E}, x e \times H_{1}^{\perp}, x g^{\perp} \times D_{1}, f_{1} \times \tilde{G}^{\perp}\right]$

Summary

Summary

Summary

Summary

Summary

(

Summary

[^0]: 8\% uncertainty target polarization

