Transversity in inclusive DIS

Alberto Accardi Hampton U. and Jefferson Lab

Transversity 2017

Laboratori Nazionali di Frascati, Dec 12th, 2017

Based on: Accardi, Bacchetta, PLB 773 (2017) 632 Accardi, Signori, work in progres

Overview

Inclusive DIS with jet correlators

- Quarks are not asymptotic states
- Cross section & g, revisited

Twist-3 TMD sum rules

- New results, old ones revisited
- Measuring the jet correlator
- Concluding thoughts

Inclusive DIS with jet correlators

Accardi, Bacchetta, PLB 773 (2017) 632

TMDs in spin ¹/₂ targets

 \rightarrow *P. Mulders, QCDev2017*

Integrated (collinear) correlator: only circled ones survive

- Christ-Lee theorem (1970): *h*₁ not observable in inclusive DIS
- Not quite true:
 - Vacuum fluctuations can flip the spin of the struck quark

Large contribution h_1 pops up in the $g_2 - g_2^{WW}$ structure function

Inclusive DIS with jet correlators

AA, Bacchetta, PLB 773 ('17) 632

Jet correlators: \rightarrow non-asymptotic quark states

Factorization

 \square At order 1/Q , neglect k^- compared to q^-

 The cross section only depends on the **integrated jet correlator**

$$\Xi(l^{-}, l_{T}) \equiv \int \frac{dl^{2}}{2l^{-}} \Xi(l) = \frac{\Lambda}{2l^{-}} \xi_{1} + \xi_{2} \frac{\not{n}_{-}}{2} + \text{ twist-4 terms}$$

Coefficients can be interpreted in terms of quark spectral functions:

 $\xi_1 = \int d\mu^2 \frac{\mu}{\Lambda} J_1(\mu^2) \equiv \underbrace{\frac{M_q}{\Lambda}}_{\rightarrow \text{ can couple to transversity!}}^{\text{Spin-flip average "jet" mass}}_{\neq 2} = \int d\mu^2 J_2(\mu^2) = 1 \quad \longleftarrow \quad \text{Exactly}$

Positivity constraints imply

$$0 < M_q < \int d\mu^2 \mu J_2(\mu^2) \quad \Longrightarrow \underbrace{M_q = O(100 \text{ MeV})}_{\text{than } m_q} \underbrace{\text{Much larger}}_{\text{than } m_q} !$$

Jet and TMD sum rules

Utilize the following jet correlator sum rule:

At TMD level, this implies:

$$\sum_{h} \int dz d^{2} p_{hT} z D_{1}^{h}(z, p_{hT}) = \xi_{2} = 1$$

$$\sum_{h} \int dz d^{2} p_{hT} E^{h}(z, p_{hT}) = \xi_{1} = \boxed{\frac{M_{q}}{\Lambda}} \qquad \text{Novel TMD sum rules}$$

$$\sum_{h} \int dz d^{2} p_{hT} \tilde{E}^{q,h}(z, p_{hT}) = \underbrace{\frac{M_{q} - m_{q}}{\Lambda}}_{A} \qquad \text{Novel TMD sum rules}$$
(see later for more...)

Finally, the DIS cross section

Finally, the DIS cross section

	Inclusive D	$\frac{d\sigma}{d\sigma}$	$\propto \left\{ F_T + \varepsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \varepsilon^2} F_L \right\}$		
	Deliverables	Observables	What we learn	n Ion Collider: xt QCD Frontier Understanding the glue that binds us all	
	Sivers &	SIDIS with	Quantum Interference & Spin-Orbital	PIA 2016	
	unpolarized	Transverse	3D Imaging of quark's motion: valence $+$ sea		
[TMD quarks	polarization;	3D Imaging of gluon's motion QCD dynamics in a unprecedented Q^2 (P_{hT}) range		
	and gluon	di-hadron (di-jet)			
ľ	Chiral-odd	SIDIS with	$3^{\rm rd}$ basic quark PDF: valence + sea, tensor charge	ge	
l	functions:	Transverse	Novel spin-dependent hadronization effect		
	Transversity;	polarization	QCD dynamics in a chiral-odd sector	- Leve	
	Boer-Mulders		with a wide Q^2 (P_{hT}) coverage	1000	

Table 2.2: Science Matrix for TMD: 3D structure in transverse momentum space: (up, golden measurements; (lower) the silver measurements.

$$F_{LT}^{\cos\phi_S} = -x_B \sum_{q} e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \frac{M_q - m_q}{M} h_1^q(x_B) \right)$$

Transversity in inclusive DIS!

Transversity 2017 – 12 Dec 2017

g2 structure function revisited

AA, Bacchetta, PLB 773 ('17) 632

Using EOM, Lorentz Invariance Relations, can show that

Consequences:

- h1 accessible in inclusive DIS! \leftrightarrow Potentially large signal
- new background to extraction of qGq effects
- Measuring the tensor charge

$$f^*(x) = -f(x) + \int_x^1 \frac{dy}{y} f(y)$$

g2 structure function revisited

AA, Bacchetta, PLB 773 ('17) 632

Using EOM, Lorentz Invariance Relations, can show that

11

AA, Bacchetta, PLB 773 ('17) 632

 \Box Taking moments of g_2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{``jet''}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow Is BC breaking finite?

Perturbatively, yes (h~x) but...

AA, Bacchetta, PLB 773 ('17) 632

 \Box Taking moments of g_2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow Is BC breaking finite?

Perturbatively, yes (h~x) but...

 $\rightarrow \underline{Small-x asymptotics}: \qquad \rightarrow \underline{Kovchegov}, \underline{Pitonyak}, \underline{Sievert} \\ g_1^{NS} \sim x^{\epsilon_g} \quad \epsilon_g = -\sqrt{\alpha_s N_c/\pi} \approx -0.6 \qquad \underline{PRD(2017)93} \\ \text{But } h_1 \text{ is also non-singlet, expect} \\ h_1 \sim x^{\epsilon_h} \quad \epsilon_h = \epsilon_q < 0!!$

– Is BC badly broken? 1/Nc corrections non negligible? Or ...?

AA, Bacchetta, PLB 773 ('17) 632

 \square Taking moments of g_2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

 \rightarrow unlikely to still be zero!

 \rightarrow Is BC breaking finite?

Perturbatively, yes (h~x) but...

AA, Bacchetta, PLB 773 ('17) 632

] Taking moments of g_2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_0^1 g_2(x) = M_{\text{"jet"}} \int_0^1 dx \, \frac{h_1(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_{0}^{1} x g_{2}^{q-\bar{q}}(x) = 2 M_{"jet"} \underbrace{\int_{0}^{1} dx h_{1}^{q-\bar{q}}(x)}_{\text{Tensor charge } \delta_{T}}$$

 \rightarrow Novel way to measure the tensor charge!

AA, Bacchetta, PLB 773 ('17) 632

16

] Taking moments of g_2 with $M_u \approx M_d \equiv M_{jet}$

Burkardt-Cottingham

$$\int_{0}^{1} g_{2}(x) = M_{\text{"jet"}} \int_{0}^{1} dx \, \frac{h_{1}(x)}{x}$$

Efremov-Teryaev-Leader

$$\int_{0}^{1} x g_{2}^{q-\bar{q}}(x) = 2 M_{"jet"} \underbrace{\int_{0}^{1} dx \, h_{1}^{q-\bar{q}}(x)}_{\text{Tensor charge } \delta_{T}}$$

$$\begin{array}{ll} \textbf{Color polarizability} & \int_{0}^{1} \left[3x^{2}g_{2}(x) - 2x^{2}g_{1}(x) \right] \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \, h_{1}(x) + O(m_{q}) \\ &= d_{2} + 3 M_{"jet"} \int_{0}^{1} dx \, x \,$$

Higher twist and color polarizability

Lattice calcs from Goeckele et al. 2005 – time to revist?

Higher twist and color polarizability

Lattice calcs from Goeckele et al. 2005 – time to revist?

Can one also calculate Mjet on the lattice?

accardi@jlab.org

New TMD sum rules

Accardi, Signori, in preparation

Quark-quark TMD sum rules

AA, Bachetta '17 General jet correlator sum rule: Meissner, Metz, Pitonyak '10 $\sum_{h=1}^{\infty} \int d^2 p_{hT} \frac{dp_h^-}{2p_h^-} p_h^{\mu} \Delta^h(l, p_h) = l^{\mu} \Xi(l) \qquad \mu = \begin{cases} - & \text{longitudinal} \\ \alpha & \text{transverse} \end{cases}$ At TMD level, take suitable traces and find: Longitudinal Transverse Collins-Soper $\sum_h \int dz \, z \, D_{1h}(z) = 1$ Schaefer-Teryaev $\sum_{n} \int dz \, z \, H_{1h}^{\perp(1)}(z) = 0$ Twist-2 $\mathbf{Twist-3} \begin{cases} \sum_{h} \int dz \, E_h(z, p_{hT}) = \frac{M_q}{\Lambda} & \sum_{h} \int dz \, G_h^{\perp(1)}(z) = 0 \\ \sum_{h} \int dz \, H_h(z) = 0 & \sum_{h} \int dz \, D_h^{\perp(1)}(z) = \mathbf{NEW!} \end{cases}$ $\sum \int dz \, D_h^{\perp(1)}(z) = \mathbf{MPROGRAF}$

Quark-gluon-quark TMD sum rules

Combine q-q sume rules using Equation of Motion relations:

$$\begin{split} \sum_{h} \int dz \, \widetilde{E}_{h}(z) &= \frac{M_{q} - m_{q}}{\Lambda_{\text{NEW}}} \implies \text{Transversity in DIS!} \\ \sum_{h} \int dz \, \widetilde{H}_{h}(z) &= 0 \quad \text{NEW!} \implies \int dz \, z \, F_{UT}^{\sin \phi_{S}}(x, z) = 0 \\ \sum_{h} \int dz \, \widetilde{D}^{\perp}(z) &= \text{NEW!} \end{split}$$

Measuring the jet correlator

In collaboration with A.Bacchetta, M.Radici, A.Signori

Needs LT asymmetry in semi-inclusive Lambda production

$$\frac{d\sigma^{L}(e^{+}e^{-} \to \Lambda X)}{d\Omega dz} = \frac{3\alpha^{2}}{Q^{2}} \lambda_{e} \sum_{a} e_{a}^{2} \left\{ \frac{C(y)}{2} \lambda_{h} G_{1} + D(y) \left(\mathbf{S}_{T}\right) \cos(\phi_{S}) \frac{2M_{h}}{Q} \left(\frac{G_{T}}{z} + \underbrace{M_{q} - m_{q}}{M_{h}} H_{1} \right) \right\}$$

Similarly a LU asymmetry in unpolarized dihadron production

Transversity 2017 - 12 Dec 2017

Need polarized e+e- colliders!

Are **existing facilities** enough?

adapted from Paticle Data Book

	BEPC	super KEKB	ILC	JLab/BNL
E beam [GeV]	1.9	4 (e) 7 (e)	250	?
√s [GeV]	3 – 5	10	500	?
polarization	?	maybe	80% e 60% e⁺	YES!

Can we get a (polarized) e+ e- collider at JLab / BNL?

– At JLab12 ? JLEIC ? eRHIC?

What else is interesting to study?

- Factorization tests for FFs (low s, unpol),

Ideas?

Final thoughts

Final thoughts

Jet correlators open up new theory and phenomenology

- Transversity contributes to <u>inclusive</u> g_2
- Extended BC and ETL sum rules
 - New handle on proton tensor charge
- Open question: spin transport to small x !
- <u>New twist-3 TMD sum rules</u>

How to measure jet correlators?

- Polarized e+e- collider
- Observables in p+p ??

How to calculate jet correlators?

- In lattice QCD?
- Any relation to chiral condensate?
- What can we learn from OPE?

Towards "universal" fits

Towards "universal" fits

Masters of the Universe

accardi@jlab.org

Masters of the Universe

accardi@jlab.org

Thank you!