TMD Factorization Theory
 Ted Rogers
 Jefferson Lab/Old Dominion University

Transversity 2017, December 11, Frascati

Outline

- Overview
- Kinematical cartography of a process
- Hadronization and fragmentation
- Evolution and perturbation theory

Example

Collinear Semi-Inclusive DIS

Correlation Function Taxonomy

	Unpolarized	Longitudinally polarized	Transversely polarized
잉 \mathbf{N} \mathbf{c} 0 0 5	$f(x)$		
		$g_{1 L}(x)$	
			$h_{1 T}(x)$

Intrinsic Transverse Momentum

Effect of a Transverse Momentum Distribution in the Parton Model*
C. W. Gardiner and D. P. Majumdar

Physics Department, Syracuse University, Syracuse, New York 13210
(Received 24 June 1970)
"The parton model for the inelastic lepton-nucleon scattering is generalized to include a realistic momentum distribution of the partons. In this formalism each parton is given a component of momentum... to take into account the effect of this orthogonal (transverse) momentum distribution of the partons."

Example

Correlation Function Taxonomy

	Unpolarized	Longitudinally polarized	Transversely polarized
이N \mathbf{N} $\mathbf{0}$ 0 0 5	$f(x)$		
		$g_{1 L}(x)$	
			$h_{1 T}(x)$

TMD Taxonomy

Why Study Transverse Momentum

- Intrinsic Transverse momentum
- Hadron bound state properties in terms of quark and gluon properties
- Very high energies
- Multiple large but widely separated scales

TMD PDFs and Collinear PDFs

- Similarities
- Correlation functions with universal (and np calculable) properties
- Perturbatively calculable hard parts
- Evolution
- Differences
$-m / Q \rightarrow 0$, fixed x, z limit, $m / Q, P_{T} / Q \rightarrow 0$, fixed x, z limit
- Wilson lines and gauge invariance
- Soft factors, etc
- Regions of transverse momentum

$$
\begin{array}{rll}
d \sigma_{\mathrm{SIDIS}} & =\sum_{f} \mathcal{H}_{f, \mathrm{SIDIS}}(Q) \otimes F_{f / H_{1}}\left(x, k_{1 T}, Q\right) \otimes D_{H_{2} / f}\left(z, k_{2 T}, Q\right) & +Y_{\text {SIDIS }} \\
d \sigma_{\mathrm{DY}} & =\sum_{f} \mathcal{H}_{f, \mathrm{DY}}(Q) \otimes F_{f / H_{1}}\left(x_{1}, k_{1 T}, Q\right) \otimes F_{\bar{f} / H_{2}}\left(x_{2}, k_{2 T}, Q\right) & +Y_{\text {Drell }-\mathrm{Yan}} \\
d \sigma_{\mathrm{e}^{+} \mathrm{e}^{-}}=\sum_{f} \mathcal{H}_{f, \mathrm{e}^{+} \mathrm{e}^{-}}(Q) \otimes D_{H_{1} / \bar{f}}\left(z_{1}, k_{1 T}, Q\right) \otimes D_{H_{2} / f}\left(z_{2}, k_{2 T}, Q\right) & +Y_{\mathrm{e}^{+} \mathrm{e}^{-}}
\end{array}
$$

Intrinsic Transverse Momentum

Fermilab (1976)
"There has been much speculation about how much of the dimuon k_{T} spectra shown in Fig. 7 is due to the wave function (Type I) and how wuch is explained by QCD perturbation calculations (Type II)."

- R. Feynman, R. Field, G. Fox

Phys.Rev. D18 (1978) 3320

Cartography of a process

- Example: Semi-inclusive deep inelastic scattering

Cartography of a process

- Example: Semi-inclusive deep inelastic scattering

Cartography of a process

- Example: Semi-inclusive deep inelastic scattering

Cartography of a process

- Example: Semi-inclusive deep inelastic scattering

Current

Cartography of a process

- Example: Semi-inclusive deep inelastic scattering

Current

Hard $\mathbf{P}_{\mathbf{T}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Usual Nucleon } \\
\text { Structure } \\
\text { Region }
\end{array} \\
& \qquad \begin{array}{l}
e^{2 y_{h}}, \frac{m}{Q}, \frac{P_{\mathrm{T}}}{Q} \\
\text { Current Region }
\end{array} \\
& \\
& \qquad \begin{array}{l}
\text { Ren } \\
\hline \mathrm{y}_{\mathrm{h}}
\end{array} \\
&
\end{aligned}
$$

Kinematics of Small $\mathbf{P}_{\mathbf{T}}$

$$
\begin{aligned}
& q_{h}
\end{aligned} \begin{aligned}
& k_{\mathrm{i}}=\left(\frac{M_{\mathrm{iT}}}{\sqrt{2}} e^{y_{\mathrm{i}}},-\frac{M_{\mathrm{iT}}}{\sqrt{2}} e^{-y_{\mathrm{i}}}, \mathbf{k}_{\mathrm{T}}\right) \\
& k_{\mathrm{f}}=\left(\frac{M_{\mathrm{fT}}}{\sqrt{2}} e^{y_{\mathrm{i}}}, \frac{M_{\mathrm{fT}}}{\sqrt{2}} e^{-y_{\mathrm{f}}}, \mathbf{k}_{\mathrm{T}}\right) \\
& P=\left(P^{+}, \frac{M_{p}^{2}}{2 P^{+}}, \mathbf{0}_{\mathrm{T}}\right)=\left(\frac{Q}{x_{\mathrm{n}} \sqrt{2}}, \frac{x_{\mathrm{n}} M_{p}^{2}}{Q \sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right), \\
& q=\left(-x_{\mathrm{n}} P^{+}, \frac{Q^{2}}{2 x_{\mathrm{n}} P^{+}}, \mathbf{0}_{\mathrm{T}}\right)=\left(-\frac{Q}{\sqrt{2}}, \frac{Q}{\sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right), \\
& P_{h}=\left(\frac{M_{h \mathrm{~T}}}{\sqrt{2}} e^{y_{\mathrm{h}}}, \frac{M_{h \mathrm{~T}}}{\sqrt{2}} e^{-y_{\mathrm{h}}}, \mathbf{P}_{h \mathrm{~T}}\right),
\end{aligned}
$$

Quantify proximity to collinear regions

$$
R\left(y_{\mathrm{h}}, z_{\mathrm{h}}, x_{\mathrm{bj}}, Q\right) \equiv \frac{P_{h} \cdot k_{\mathrm{f}}}{P_{h} \cdot k_{\mathrm{i}}}, \quad \stackrel{\frac{m}{Q} \rightarrow 0}{=} e^{2 y_{h}}
$$

Effect of target, final state masses?

Quantify proximity to collinear regions

$$
R\left(y_{\mathrm{h}}, z_{\mathrm{h}}, x_{\mathrm{bj}}, Q\right) \equiv \frac{P_{h} \cdot k_{\mathrm{f}}}{P_{h} \cdot k_{\mathrm{i}}}, \quad \stackrel{\frac{m}{Q} \rightarrow 0}{=} e^{2 y_{h}}
$$

Effect of target, final state masses?

- Need estimates of non-perturbative scales:

$$
\begin{gathered}
y_{i}=\ln \frac{Q}{M_{i, \mathrm{~T}}} ; \quad y_{f}=-\ln \frac{Q}{M_{f, \mathrm{~T}}} \\
M_{i, \mathrm{~T}} \approx M_{f, \mathrm{~T}} \approx 0.5 \pm 0.3 \mathrm{GeV}
\end{gathered}
$$

Rapidity Regions

Rapidity Regions

Hadronization

- Example: Spin in a MC event generator
(Matevosyan, Kotzinian, Thomas, Phys.Rev. D95 (2017) no.1, 014021)

(Bentz, Matevosyan, Kotzinian, Ninomiya, Thomas, Yazaki, Phys.Rev. D94 (2016) no.3, 034004)
(Ito, Bentz, Cloët, Thomas, Yazaki, Phys.Rev. D80 (2009))
(A. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, E. Redouane Salah, arXiv:1701.08543)
- More dynamics
- Interface with factorization theory?

TMD Factorization and Evolution

- Many results exist, but in different languages
- Resummation in collinear factorization
- CSS
- SCET
- Sudakov Factors
- Results can appear different on the surface
- Map old style to new
- Is there convergence toward a standardized set of definitions?
- Bring all results together in TMD-style language
- Nonperturbative parts?

Older Language: Examples

- CSS1 - Multiple redefinitions of factors (starting from TMD definitions) No explicit hard part. (Collins, Soper, Sterman (1981-1985))
- Match to collinear for $\Lambda_{\mathrm{QCD}} \ll \mathrm{q}_{\mathrm{T}} \ll \mathrm{Q}$ and $\mathrm{q}_{\mathrm{T}} \approx \mathrm{Q}$.
- Catani, de Florian, Grazzini et al.
(Catani, de Florian, Grazzini (2001))
- Resummation scheme dependence; no uniquely defined hard part.

Newer (TMD) methods: Examples

- Improved TMD functions: Eg:
- Definitions (e.g., CSS2) (J. Collins textbook, (2011))
- SCET-based approaches
- Main differences from CSS2: Implementation of regulators.
- At least two are equivalent to CSS2
(Echevarria, Idilbi, Scimemi (2012); Collins, TCR (2013))
(Li, Neill, Zhu, (2016); Collins, TCR (2017) App. B)
- Structurally matches TMD phenomenology

$$
H_{f} \int \mathrm{~d}^{2} \boldsymbol{k}_{\mathrm{T}} F_{f / p}\left(x, \boldsymbol{k}_{\mathrm{T}}-\boldsymbol{q}_{\mathrm{T}}\right) D_{h / f}\left(z, z \boldsymbol{k}_{\mathrm{T}}\right)
$$

- Well-oriented for NP hadron structure studies (e.g. lattice QCD)
- Hard parts are fixed by factorization of operator structures.

$$
\frac{\text { Cross Section }}{\int \mathrm{d}^{2} \boldsymbol{k}_{\mathrm{T}} F_{f / p}\left(x, \boldsymbol{k}_{\mathrm{T}}-\boldsymbol{q}_{\mathrm{T}}\right) D_{h / f}\left(z, z \boldsymbol{k}_{\mathrm{T}}\right)}=H_{f}
$$

New (i.e., TMD-based) methods

- TMD parton model structure + evolution equations.

Ex: CSS2

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}= & \frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j} \xlongequal{H_{j \bar{\jmath}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right)} \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \underline{\tilde{f}_{j / A}\left(x_{A}, b_{\mathrm{T}} ; Q^{2}, \mu_{Q}\right)} \underline{\tilde{f}_{\bar{\jmath} / B}\left(x_{B}, b_{\mathrm{T}} ; Q^{2}, \mu_{Q}\right)} \\
& + \text { suppressed corrections, }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \ln \tilde{f}\left(x, b_{T} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{T} ; \mu\right) \tilde{f}_{j / H}\left(x, b_{\mathrm{T}} ; \zeta ; \mu\right)=\sum_{r} \int_{x-}^{1+} \frac{\mathrm{d} \xi}{\xi} \tilde{C}_{j / k}^{\mathrm{PDF}}\left(x / \xi, b_{\mathrm{T}} ; \zeta, \mu, a_{s}(\mu)\right) f_{k / H}(\xi ; \mu)+O\left[\left(m b_{\mathrm{T}}\right)^{p}\right] \\
& \\
& \frac{\mathrm{d} \tilde{K}\left(b_{T} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}\left(a_{s}(\mu)\right) \mu_{Q} \equiv C_{2} Q \\
& \frac{\mathrm{~d} \ln \tilde{f}\left(x, b_{T} ; \mu, \zeta\right)}{\mathrm{d} \ln \mu}=\mu_{b}\left(a_{s}(\mu)\right)-\frac{1}{2} \gamma_{K}\left(a_{s}(\mu)\right) \ln \frac{\zeta}{\mu^{2}} \mu_{b_{*}} \equiv C_{1} / b_{\mathrm{T}} \\
&
\end{aligned}
$$

Translation to new TMD methods

(J. Collins, TCR (2017))

$$
\begin{aligned}
& A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu_{b_{*}}\right) ; C_{1}\right)=-\frac{\mathrm{d} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)}{\mathrm{d} \ln b_{*}^{2}}+\frac{1}{2} \gamma_{K}\left(a_{s}\left(\mu_{b_{*}}\right)\right)=-\left.\frac{\partial \tilde{K}\left(b_{*} ; \mu\right)}{\partial \ln b_{*}^{2}}\right|_{\mu \mapsto \mu_{b_{*}}} \\
& B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\left(\mu_{Q}\right) ; C_{1}, C_{2}\right)=-\tilde{K}\left(C_{1} / \mu_{Q} ; \mu_{Q}\right)-\frac{\partial \ln H_{j \bar{j}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right)}{\partial \ln Q^{2}} \\
& g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right)=g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \quad \gamma_{\mathrm{PDF}}=\gamma_{\mathrm{FF}} \\
& \begin{array}{c}
\left|e_{j}\right| \tilde{C}_{j / k}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
\quad=\tilde{C}_{j / k}^{\mathrm{PDF}}\left(\frac{x}{\xi}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*},}, a_{s}\left(\mu_{b_{*}}\right)\right) \sqrt{H_{j_{j}}^{\mathrm{DY}}\left(\mu_{b_{*}} / C_{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right)} \exp \left[-\tilde{K}\left(b_{*} ; \mu_{b_{*}}\right) \ln C_{2}\right]
\end{array} \\
& g_{j / H}^{\mathrm{CSS} 1}\left(x, b_{\mathrm{T}} ; b_{\mathrm{max}}\right)=g_{j / H}\left(x, b_{\mathrm{T}} ; b_{\max }\right)
\end{aligned}
$$

Combining Results in TMD Factorization, order $\approx \alpha_{s}{ }^{3}$ (Drell-Yan)

Sudakov Form Factor: (Moch,Vermaseren (2005), Vogt, Gehrmann et al (2014))
α_{s}^{2} Wilson Coefficients from Collinear Factorization: (Catani et al, (2012)), and SCET (Echevarria, Scimemi, Vladimirov (2016))

Summary/Conclusions

- Unify Pictures
- Large and small P_{T} (Gamberg talk)
- Hadron masses, etc (Accardi talk)
- Theory of non-perturbative physics
- Lattice (Qiu talk)
- Fragmentation and Hadronization
- Input for evolution

Summary/Conclusions

- Unify Pictures

Thank you!

- rragmentation ana Haaronization
- Input for evolution

Backup

Effect of restricting data

- Colored points: $\mathrm{R}<.25$
- Transition to gray needs large q_{T}, central, target...

Hadronization

(J. Collins, TCR: In preparation)

Where are the dominant momentum regions?

Hadronization

(J. Collins, TCR: In preparation)

Where are the dominant momentum regions?

Hadronization \& Factorization Proofs

(J. Collins, PoS QCDEV2016, 003 (2017), arXiv:1610.09994)

Factorization
Derivation Diagrams

Blobs widely separated in rapidity

Hadronization Models

Blobs close in rapidity

Drell-Yan

CSS1

$$
\begin{aligned}
& \mu_{Q} \equiv C_{2} Q \\
& \frac{\mathrm{~d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2} s} \sum_{j, j_{A}, j_{B}} e_{j}^{2} \int \frac{\mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \\
& \mu_{b} \equiv C_{1} / b_{\mathrm{T}} \\
& \mu_{b_{*}} \equiv C_{1} / b_{*} \\
& \times \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \tilde{C}_{j / j_{A}}^{\mathrm{CSS} 1, \mathrm{DY}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \int_{x_{B}}^{1} \frac{\mathrm{~d} \xi_{B}}{\xi_{B}} f_{j_{B} / B}\left(\xi_{B} ; \mu_{b_{*}}\right) \tilde{C}_{\bar{\jmath} / j_{B}}^{\mathrm{CSS}, \mathrm{DY}}\left(\frac{x_{B}}{\xi_{B}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}\left(\mu_{b_{*}}\right)\right) \\
& \times \exp \left\{-\int_{\mu_{b_{*}}^{2}}^{\mu_{Q}^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}}\left[\underline{A_{\mathrm{CSS} 1}\left(a_{s}\left(\mu^{\prime}\right) ; C_{1}\right)} \ln \left(\frac{\mu_{Q}^{2}}{\mu^{\prime 2}}\right)+\underline{\left.\underline{B_{\mathrm{CSS} 1, \mathrm{DY}}\left(a_{s}\right.}\left(\mu^{\prime}\right) ; C_{1}, C_{2}\right)}\right]\right\} \\
& \times \exp \left[-g_{j / A}^{\mathrm{CSS} 1}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)-g_{\bar{j} / B}^{\mathrm{CSS} 1}\left(x_{B}, b_{\mathrm{T}} ; b_{\max }\right)-g_{K}^{\mathrm{CSS} 1}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(Q^{2} / Q_{0}^{2}\right)\right] \\
& + \text { suppressed corrections. }
\end{aligned}
$$

No explicit hard part here

Old Schemes and New Schemes

- Questions:
- CSS1 involves " A " and " B " functions not explicit in CSS2.
- Non-perturbative parts in CSS1 and in TMD functions? Where do they go?
- Anomalous dimension of PDFs vs. FFs?
- Higher order calculations in, for example, old resummation, SCET, etc... how to utilize in, for example, CSS2?

Fast translation to new TMD methods

- CSS1 and CSS2 drop same subleading powers:

$$
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{DY}} ^{\mathrm{CSS} 1}=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{DY}} ^{\mathrm{CSS} 2} \quad ;\left.\quad \frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{SIDIS}} ^{\mathrm{CSS} 1}=\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}\right|_{\mathrm{SIDIS}} ^{\mathrm{CSS} 2}
$$

- Derivatives given by evolution equations.
(anomalous dimensions)
- $b_{\text {max }}$ independence.
- Charge conjugation invariance.

Very Large Transverse Momentum

- Merging large and small transverse momenta

Very Large Transverse Momentum

- Merging large and small transverse momenta

Very Large Transverse Momentum

- Merging large and small transverse momenta

Very Large Transverse Momentum

$$
W\left(x, b_{T}, k_{T}\right)
$$

Wigner distributions

inclusive and semi-inclusive processes

Need to address

- Large transverse momentum.

Daleo, de Florian, Sassot (2005)
Phys.Rev. D71 (2005) 034013

Data: H1 (2004)
Eur.Phys.J.C36:441-452,2004

