TMD Factorization Theory

Ted Rogers

Jefferson Lab/Old Dominion University

Transversity 2017, December 11, Frascati

• Overview

• Kinematical cartography of a process

- Hadronization and fragmentation
- Evolution and perturbation theory

Example

Collinear Semi-Inclusive DIS

Correlation Function Taxonomy

Proton Quark	<u>Unpolarized</u>	<u>Longitudinally</u> polarized	<u>Transversely</u> polarized
Unpolarized	f(x)		
<u>Longitudinally</u> polarized		$g_{1L}(x)$	
<u>Transversely</u> polarized			$h_{1T}(x)$

Intrinsic Transverse Momentum

PHYSICAL REVIEW D

VOLUME 2, NUMBER 9

1 NOVEMBER 1970

Effect of a Transverse Momentum Distribution in the Parton Model*

C. W. GARDINER AND D. P. MAJUMDAR

Physics Department, Syracuse University, Syracuse, New York 13210

(Received 24 June 1970)

"The parton model for the inelastic lepton-nucleon scattering is generalized to include a realistic momentum distribution of the partons. In this formalism each parton is given a component of momentum... to take into account the effect of this orthogonal (transverse) momentum distribution of the partons."

Correlation Function Taxonomy

Proton Quark	<u>Unpolarized</u>	<u>Longitudinally</u> polarized	<u>Transversely</u> polarized
Unpolarized	f(x)		
<u>Longitudinally</u> polarized		$g_{1L}(x)$	
<u>Transversely</u> polarized			$h_{1T}(x)$

Why Study Transverse Momentum

- Intrinsic Transverse momentum
 - Hadron bound state properties in terms of quark and gluon properties

• Very high energies

Multiple large but widely separated scales

TMD PDFs and Collinear PDFs

- Similarities
 - Correlation functions with universal (and np calculable) properties
 - Perturbatively calculable hard parts
 - Evolution
- Differences
 - m/Q \rightarrow 0, fixed x,z limit, m/Q, P_T/Q \rightarrow 0, fixed x, z limit
 - Wilson lines and gauge invariance
 - Soft factors, etc
 - Regions of transverse momentum

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}^+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}^+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q) + Y_{\text{e}^+\text{e}^-}$$

Intrinsic Transverse Momentum

Kinematics of Small P_T

 $\begin{array}{c} k_{\mathrm{i}} = \left(\frac{M_{\mathrm{iT}}}{\sqrt{2}}e^{y_{\mathrm{i}}}, -\frac{M_{\mathrm{iT}}}{\sqrt{2}}e^{-y_{\mathrm{i}}}, \mathbf{k}_{\mathrm{T}}\right)\\ M_{\mathrm{f}} & k_{\mathrm{f}} = \left(\frac{M_{\mathrm{fT}}}{\sqrt{2}}e^{y_{\mathrm{i}}}, \frac{M_{\mathrm{fT}}}{\sqrt{2}}e^{-y_{\mathrm{f}}}, \mathbf{k}_{\mathrm{T}}\right)\end{array}$

$$P = \left(P^+, \frac{M_p^2}{2P^+}, \mathbf{0}_{\mathrm{T}}\right) = \left(\frac{Q}{x_{\mathrm{n}}\sqrt{2}}, \frac{x_{\mathrm{n}}M_p^2}{Q\sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right),$$
$$q = \left(-x_{\mathrm{n}}P^+, \frac{Q^2}{2x_{\mathrm{n}}P^+}, \mathbf{0}_{\mathrm{T}}\right) = \left(-\frac{Q}{\sqrt{2}}, \frac{Q}{\sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right),$$
$$P_h = \left(\frac{M_{h\mathrm{T}}}{\sqrt{2}} e^{y_{\mathrm{h}}}, \frac{M_{h\mathrm{T}}}{\sqrt{2}} e^{-y_{\mathrm{h}}}, \mathbf{P}_{h\mathrm{T}}\right),$$

Quantify proximity to collinear regions

$$R(y_{\rm h}, z_{\rm h}, x_{\rm bj}, Q) \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}, \qquad \stackrel{\frac{m}{Q} \to 0}{=} e^{2y_h}$$

Effect of target, final state masses?

M. Boglione, J. Collins, L. Gamberg, J. O. Gonzalez-Hernandez, TCR, N. Sato (2017)

Quantify proximity to collinear regions

$$R(y_{\rm h}, z_{\rm h}, x_{\rm bj}, Q) \equiv \frac{P_h \cdot k_{\rm f}}{P_h \cdot k_{\rm i}}, \qquad \stackrel{\underline{m}}{=} 0 e^{2y_h}$$

Effect of target, final state masses?

• Need estimates of non-perturbative scales:

$$y_i = \ln \frac{Q}{M_{i,T}};$$
 $y_f = -\ln \frac{Q}{M_{f,T}}$
 $M_{i,T} \approx M_{f,T} \approx 0.5 \pm 0.3 \text{ GeV}$

M. Boglione, J. Collins, L. Gamberg, J. O. Gonzalez-Hernandez, TCR, N. Sato (2017)

Rapidity Regions

25

Hadronization

• Example: Spin in a MC event generator

(Matevosyan, Kotzinian, Thomas, Phys.Rev. D95 (2017) no.1, 014021)

(Bentz, Matevosyan, Kotzinian, Ninomiya, Thomas, Yazaki, Phys.Rev. D94 (2016) no.3, 034004) (Ito, Bentz, Cloët, Thomas, Yazaki, Phys.Rev. D80 (2009)) (A. Kerbizi, X. Artru, Z. Belghobsi, F. Bradamante, A. Martin, E. Redouane Salah, arXiv:1701.08543)

- More dynamics
- Interface with factorization theory?

(J. Collins, TCR: In preparation)

TMD Factorization and Evolution

- Many results exist, but in different languages
 - Resummation in collinear factorization
 - CSS
 - SCET
 - Sudakov Factors
- Results can appear different on the surface
- Map old style to new
 - Is there convergence toward a standardized set of definitions?
 - Bring all results together in TMD-style language
- Nonperturbative parts?

Older Language: Examples

 CSS1 - Multiple redefinitions of factors (starting from TMD definitions) No explicit hard part. (Collins, Soper, Sterman (1981-1985))

- Match to collinear for $\Lambda_{QCD} \ll q_T \ll Q$ and $q_T \approx Q$.

• Catani, de Florian, Grazzini et al.

(Catani, de Florian, Grazzini (2001))

Resummation scheme dependence; no uniquely defined hard part.

Newer (TMD) methods: Examples

- Improved TMD functions: Eg:
 - Definitions (e.g., CSS2) (J. Collins textbook, (2011))
 - SCET-based approaches
 - Main differences from CSS2: Implementation of regulators.
 - At least two are equivalent to CSS2 (Echevarria, Idilbi, Scimemi (2012); Collins, TCR (2013)) (Li, Neill, Zhu, (2016); Collins, TCR (2017) App. B)
 - Structurally matches TMD phenomenology f_{c}

 $H_f \int d^2 \boldsymbol{k}_T F_{f/p}(x, \boldsymbol{k}_T - \boldsymbol{q}_T) D_{h/f}(z, z \boldsymbol{k}_T)$

- Well-oriented for NP hadron structure studies (e.g. lattice QCD)
- Hard parts are fixed by factorization of operator structures. Cross Section $\frac{\int d^2 \mathbf{k}_{\mathrm{T}} F_{f/p}(x, \mathbf{k}_{\mathrm{T}} - \mathbf{q}_{\mathrm{T}}) D_{h/f}(z, z\mathbf{k}_{\mathrm{T}})}{\int d^2 \mathbf{k}_{\mathrm{T}} F_{f/p}(x, \mathbf{k}_{\mathrm{T}} - \mathbf{q}_{\mathrm{T}}) D_{h/f}(z, z\mathbf{k}_{\mathrm{T}})} = H_f$

New (i.e., TMD-based) methods

TMD parton model structure + evolution equations.

Ex: CSS2

 $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} = \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j} H_{j\bar{j}}^{\mathrm{DY}}(Q,\mu_Q,a_s(\mu_Q)) \int \frac{\mathrm{d}^2\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \underbrace{\tilde{f}_{j/A}(x_A,b_{\mathrm{T}};Q^2,\mu_Q)}_{+ \text{ suppressed corrections,}} \underbrace{\tilde{f}_{j/B}(x_B,b_{\mathrm{T}};Q^2,\mu_Q)}_{+ \text{ suppressed corrections,}}$

$$\frac{\partial \ln \tilde{f}(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T; \mu) \qquad \qquad \tilde{f}_{j/H}(x, b_T; \zeta; \mu) = \sum_{\nu} \int_{x-1}^{1+1} \frac{\mathrm{d}\xi}{\xi} \, \tilde{C}_{j/k}^{\mathrm{PDF}}(x/\xi, b_T; \zeta, \mu, a_s(\mu)) \, f_{k/H}(\xi; \mu) + O[(mb_T)^p]_{x-1}^{p} \, \frac{\partial \ln \sqrt{\zeta}}{\langle \xi \rangle} = 0$$

$$\frac{\mathrm{d}\tilde{K}(b_T;\mu)}{\mathrm{d}\ln\mu} = -\gamma_K(a_s(\mu)) \qquad \qquad \mu_Q \equiv C_2 Q \\ \mu_b \equiv C_1/b_T \\ \frac{\mathrm{d}\ln\tilde{f}(x,b_T;\mu,\zeta)}{\mathrm{d}\ln\mu} = \gamma_j(a_s(\mu)) - \frac{1}{2}\gamma_K(a_s(\mu))\ln\frac{\zeta}{\mu^2} \qquad \qquad \mu_{b_*} \equiv C_1/b_*$$

Translation to new TMD methods

(J. Collins, TCR (2017))

$$A_{\text{CSS1}}(a_s(\mu_{b_*}); C_1) = -\frac{\mathrm{d}\tilde{K}(b_*; \mu_{b_*})}{\mathrm{d}\ln b_*^2} + \frac{1}{2}\gamma_K(a_s(\mu_{b_*})) = -\frac{\partial\tilde{K}(b_*; \mu)}{\partial\ln b_*^2}\bigg|_{\mu \mapsto \mu_{b_*}}$$

$$B_{\text{CSS1, DY}}(a_s(\mu_Q); C_1, C_2) = -\tilde{K}(C_1/\mu_Q; \mu_Q) - \frac{\partial \ln H_{j\bar{j}}^{\text{DY}}(Q, \mu_Q, a_s(\mu_Q))}{\partial \ln Q^2}$$

$$g_K^{\text{CSS1}}(b_{\text{T}}; b_{\text{max}}) = g_K(b_{\text{T}}; b_{\text{max}}) \qquad \gamma_{\text{PDF}} = \gamma_{\text{FF}}$$

$$|e_{j}|\tilde{C}_{j/k}^{\text{CSS1, DY}}\left(\frac{x}{\xi}, b_{*}; \mu_{b_{*}}^{2}, \mu_{b_{*}}, C_{2}, a_{s}(\mu_{b_{*}})\right)$$
$$= \tilde{C}_{j/k}^{\text{PDF}}\left(\frac{x}{\xi}, b_{*}; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}(\mu_{b_{*}})\right) \sqrt{H_{j\bar{j}}^{\text{DY}}(\mu_{b_{*}}/C_{2}, \mu_{b_{*}}, a_{s}(\mu_{b_{*}}))} \exp\left[-\tilde{K}(b_{*}; \mu_{b_{*}}) \ln C_{2}\right]$$

 $g_{j/H}^{\text{CSS1}}(x, b_{\text{T}}; b_{\text{max}}) = g_{j/H}(x, b_{\text{T}}; b_{\text{max}})$ ³²

Combining Results in TMD Factorization, order $\approx \alpha_s^3$ (Drell-Yan)

Summary/Conclusions

- Unify Pictures
 - Large and small P_T (Gamberg talk)
 - Hadron masses, etc (Accardi talk)

- Theory of non-perturbative physics
 - Lattice (Qiu talk)
 - Fragmentation and Hadronization
 - Input for evolution

Summary/Conclusions

• Unify Pictures

Thank you!

Fragmentation and Hadronization

Input for evolution

Colored points: R < .25

Transition to gray needs large q_T , central,

Hadronization

(J. Collins, TCR: In preparation)

Where are the dominant momentum regions?

V

Hadronization

(J. Collins, TCR: In preparation)

Where are the dominant momentum regions?

V

Hadronization & Factorization Proofs

(J. Collins, PoS QCDEV2016, 003 (2017), arXiv:1610.09994)

Factorization Derivation Diagrams

in rapidity

in rapidity

Drell-Yan

CSS1

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2} &= \frac{4\pi^2\alpha^2}{9Q^2s} \sum_{j,jA,jB} e_j^2 \int \frac{\mathrm{d}^2 \mathbf{b}_{\mathrm{T}}}{(2\pi)^2} e^{i\mathbf{q}_{\mathrm{T}}\cdot\mathbf{b}_{\mathrm{T}}} \\ &\times \int_{x_A}^1 \frac{\mathrm{d}\xi_A}{\xi_A} f_{jA/A}(\xi_A;\mu_{b_*}) \ \tilde{C}_{j/jA}^{\mathrm{CSS1,\ DY}} \left(\frac{x_A}{\xi_A}, b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \int_{x_B}^1 \frac{\mathrm{d}\xi_B}{\xi_B} f_{jB/B}(\xi_B;\mu_{b_*}) \ \tilde{C}_{\bar{j}/\bar{j}B}^{\mathrm{CSS1,\ DY}} \left(\frac{x_B}{\xi_B},b_*;\mu_{b_*}^2,\mu_{b_*},C_2,a_s(\mu_{b_*})\right) \\ &\times \exp\left\{-\int_{\mu_{b_*}^2}^{\mu_Q^2} \frac{\mathrm{d}\mu'^2}{\mu'^2} \left[\underline{A}_{\mathrm{CSS1}}(a_s(\mu');C_1)\ln\left(\frac{\mu_Q^2}{\mu'^2}\right) + \underline{B}_{\mathrm{CSS1,\ DY}}(a_s(\mu');C_1,C_2)\right]\right\} \\ &\times \exp\left[-g_{j/A}^{\mathrm{CSS1}}(x_A,b_{\mathrm{T}};b_{\mathrm{max}}) - g_{\bar{j}/B}^{\mathrm{CSS1}}(x_B,b_{\mathrm{T}};b_{\mathrm{max}}) - g_{K}^{\mathrm{CSS1}}(b_{\mathrm{T}};b_{\mathrm{max}})\ln(Q^2/Q_0^2)\right] \\ &+ \text{suppressed corrections.} \end{split}$$

No explicit hard part here

Old Schemes and New Schemes

- Questions:
 - CSS1 involves "A" and "B" functions not explicit in CSS2.
 - Non-perturbative parts in CSS1 and in TMD functions?
 Where do they go?
 - Anomalous dimension of PDFs vs. FFs?
 - Higher order calculations in, for example, old resummation, SCET, etc... how to utilize in, for example, CSS2?

Fast translation to new TMD methods

• CSS1 and CSS2 drop same subleading powers:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2}\Big|_{\mathrm{DY}}^{\mathrm{CSS1}} = \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2}\Big|_{\mathrm{DY}}^{\mathrm{CSS2}} \quad ; \quad \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2}\Big|_{\mathrm{SIDIS}}^{\mathrm{CSS1}} = \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}y\,\mathrm{d}q_{\mathrm{T}}^2}\Big|_{\mathrm{SIDIS}}^{\mathrm{CSS2}}$

- Derivatives given by evolution equations. (anomalous dimensions)
- b_{max} independence.
- Charge conjugation invariance.

• Merging large and small transverse momenta

• Merging large and small transverse momenta

• Merging large and small transverse momenta

Need to address

• Large transverse momentum.

Daleo, de Florian, Sassot (2005) Phys.Rev. D71 (2005) 034013

Data: H1 (2004) Eur.Phys.J.C36:441-452,2004