

TENSOR CHARGE AND PHYSICS BEYOND THE STANDARD MODEL

AURORE COURTOY

Instituto de Física, UNAM, Mexico

How can hadronic physics help BSM search?

Hadronic observables extraction

Impact on β -decay observables

in collaboration with S. Liuti, S. Baessler, M. González Alonso, A. Bacchetta and M. Radici

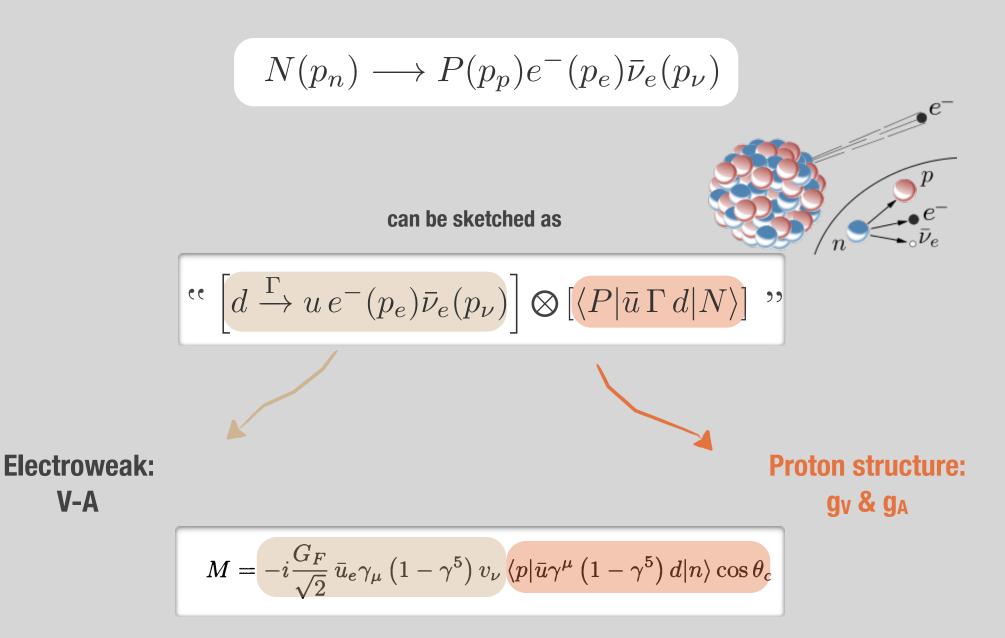
Creation of a working group on Theory and Experiment Analysis of Hadronic Matrix elements (TEAHM)

- ***** Direct search
 - * Large-x PDF
 - * α_s
- ***** Indirect search
 - * Parity Violating DIS
 - * Beyond V-A interactions

QCD FOR BSM

- ***** Direct search
 - * Large-x PDF
 - * **α**s
- ***** Indirect search
 - * Parity Violating DIS
 - * Beyond V-A interactions

QCD FOR BSM


 $N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$

 e^{-}

can be sketched as

$${}^{\boldsymbol{\prime}\boldsymbol{\prime}} \left[d \xrightarrow{\Gamma} u \, e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \bigotimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] \, {}^{\boldsymbol{\prime}\boldsymbol{\prime}}$$

BETA DECAY IN SM

BETA DECAY IN SM

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- **\star** Effective Hamiltonian for β -decay
 - Lorentz low energy constants C_{S,P,V,A,T}
 - SM 1param $\lambda = -C_A/C_V$
 - a(λ), A (λ), B (λ)

BETA DECAY OBSERVABLES

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- * Effective Hamiltonian for β -decay
 - Lorentz low energy constants C_{S,P,V,A,T}
 - SM 1param $\lambda = -C_A/C_V$
 - $a(\lambda), A(\lambda), B(\lambda)$
- * b=0 in SM

- sensitivity of neutron beta decay to new physics

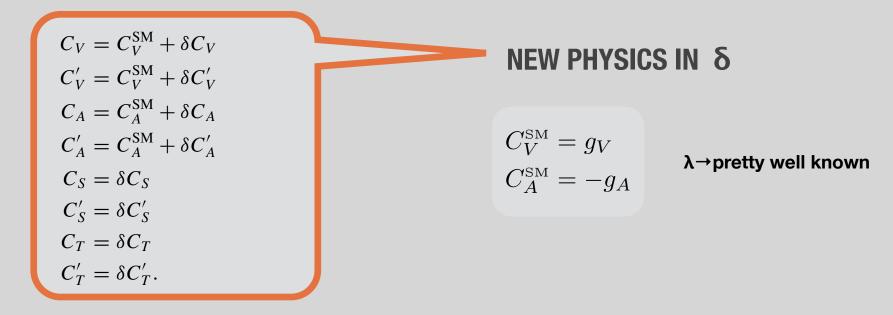
 $\star \qquad B \subset b_\nu = 0 \text{ in SM}$

BETA DECAY OBSERVABLES

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

* b=0 in SM

- sensitivity of neutron beta decay to new physics


 $\star \qquad B \subset b_\nu \, \text{=} 0 \text{ in SM}$

$$b = \frac{2\sqrt{1-\alpha^2}}{1+3\lambda^2} \left[\operatorname{Re}\left(\frac{C_{\rm S}}{C_{\rm V}}\right) + 3\lambda^2 \operatorname{Re}\left(\frac{C_{\rm T}}{C_{\rm A}}\right) \right]$$

- b sensitive to scalar and tensor LEC
- same for b_v

BETA DECAY OBSERVABLES

*** Extract LEC**

- ***** from various processes
 - * decay rate for super allowed $0^+ \rightarrow 0^+$
 - * decay rate for beta decay (total, angular correlation in unpolarized & polarized parts)
 - ***** radiative pion decay

SCALAR & TENSOR INTERACTIONS

*** Extract LEC**

$$C_{V} = C_{V}^{\text{SM}} + \delta C_{V}$$

$$C_{V}' = C_{V}^{\text{SM}} + \delta C_{V}'$$

$$C_{A} = C_{A}^{\text{SM}} + \delta C_{A}$$

$$C_{A}' = C_{A}^{\text{SM}} + \delta C_{A}'$$

$$C_{S} = \delta C_{S}$$

$$C_{S}' = \delta C_{S}'$$

$$C_{T} = \delta C_{T}$$

$$C_{T}' = \delta C_{T}'.$$

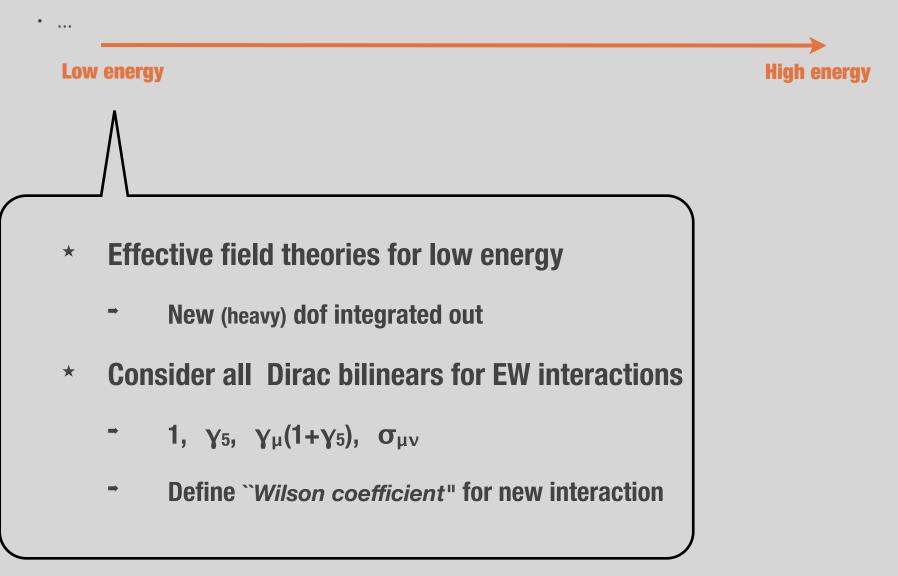
* from various processes

- decay rate for super allowed $0^+ \rightarrow 0^+$ \star
- decay rate for beta decay (total, angular correlation in unpolarized & polarized \star
- radiative pion decay

NEW PHYSICS IN δ

 $C_V^{\rm SM} = g_V$ $C_A^{\rm SM} = -g_A$

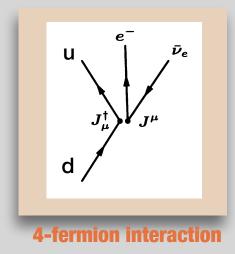
 $\lambda \rightarrow$ pretty well known

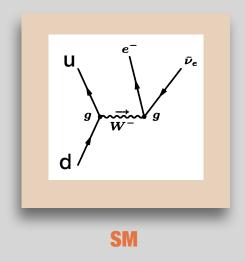

Best constraints so far $C_S/C_V = 0.0014(13)$ **@1**σ [Hardy et al., PRC91] $-0.0026 < C_T/C_A < 0.0024$ @95%CL

[Pattie et al., PRC88]

SCALAR & TENSOR INTERACTIONS

New particles hints

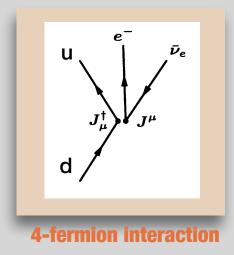

- in loops
- mediators of interaction

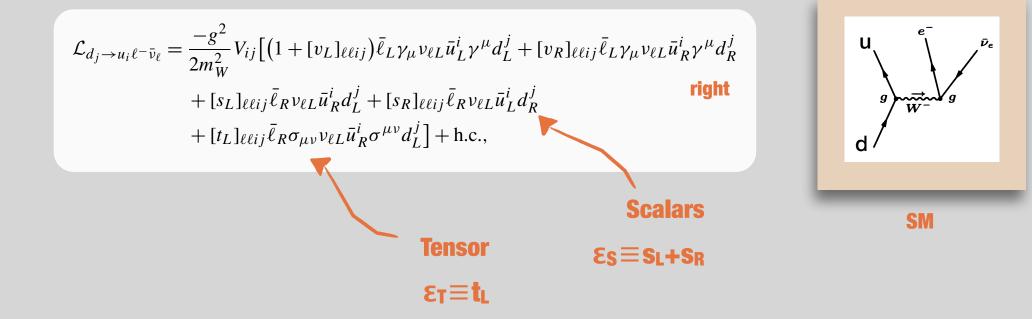


NEW FUNDAMENTAL INTERACTIONS

$$\mathcal{L}^{(\mathrm{eff})} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} rac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i}$$

 $d_j \to u_i l^- \nu_l$


BETA DECAY IN EFT


[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

EFT AT THE QUARK LEVEL

$$\mathcal{L}^{(\text{eff})} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i}$$

 $d_i \rightarrow u_i l^- \nu_l$

BETA DECAY IN EFT

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \otimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} V_{ud} (g_V - g_A)$$
$$C_{\rm S} = \frac{G_F}{\sqrt{2}} V_{ud} g_S \epsilon_S$$
$$C_{\rm T} = \frac{G_F}{\sqrt{2}} V_{ud} 4 g_T \epsilon_T$$

STANDARD MODEL

NEW BSM S & T INTERACTIONS

[Pattie et al, Phys.Rev. C88] [Wauters et al, Phys.Rev. C89]

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \otimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} V_{ud} (g_V - g_A)$$
$$C_{\rm S} = \frac{G_F}{\sqrt{2}} V_{ud} g_S \epsilon_S$$
$$C_{\rm T} = \frac{G_F}{\sqrt{2}} V_{ud} 4 g_T \epsilon_T$$

STANDARD MODEL

NEW BSM S & T INTERACTIONS

[Pattie et al, Phys.Rev. C88] [Wauters et al, Phys.Rev. C89]

New LEC factorized into hadronic contribution & new EW interaction

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \bigotimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} \, V_{ud} \left(g_V - g_A \right)$$

$$C_{\rm s} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, g_S \epsilon_S$$

 $C_{\rm T} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, 4 \, g_T \epsilon_T$

$$|g_S \epsilon_S| = 0.0014 \pm 0.0013$$
 @10
 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$
NEW BSM S & T^{@95%CL}
INTERACTIONS

[Pattie et al, Phys.Rev. C88] [Wauters et al, Phys.Rev. C89]

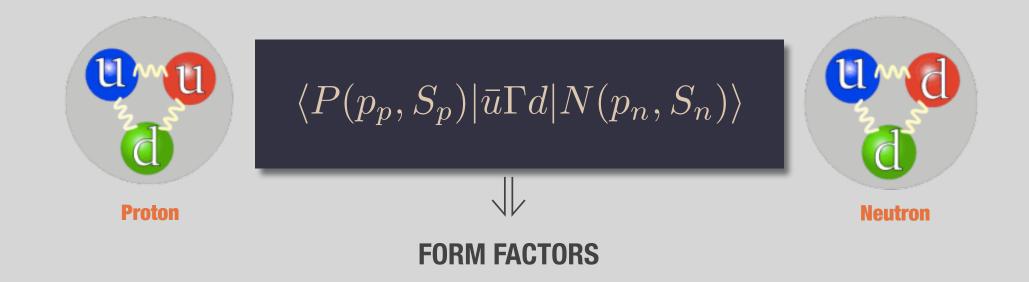
New LEC factorized into hadronic contribution & new EW interaction

$$" \left[d \xrightarrow{\Gamma} u e^{-}(p_e) \bar{\nu}_e(p_\nu) \right] \bigotimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] "$$

$$C_{\rm SM} = \frac{G_F}{\sqrt{2}} \, V_{ud} \left(g_V - g_A \right)$$

$$C_{\rm s} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, g_S \epsilon_S$$

$$C_{\rm T} = \frac{G_F}{\sqrt{2}} \, V_{ud} \, 4 \, g_T \epsilon_T$$

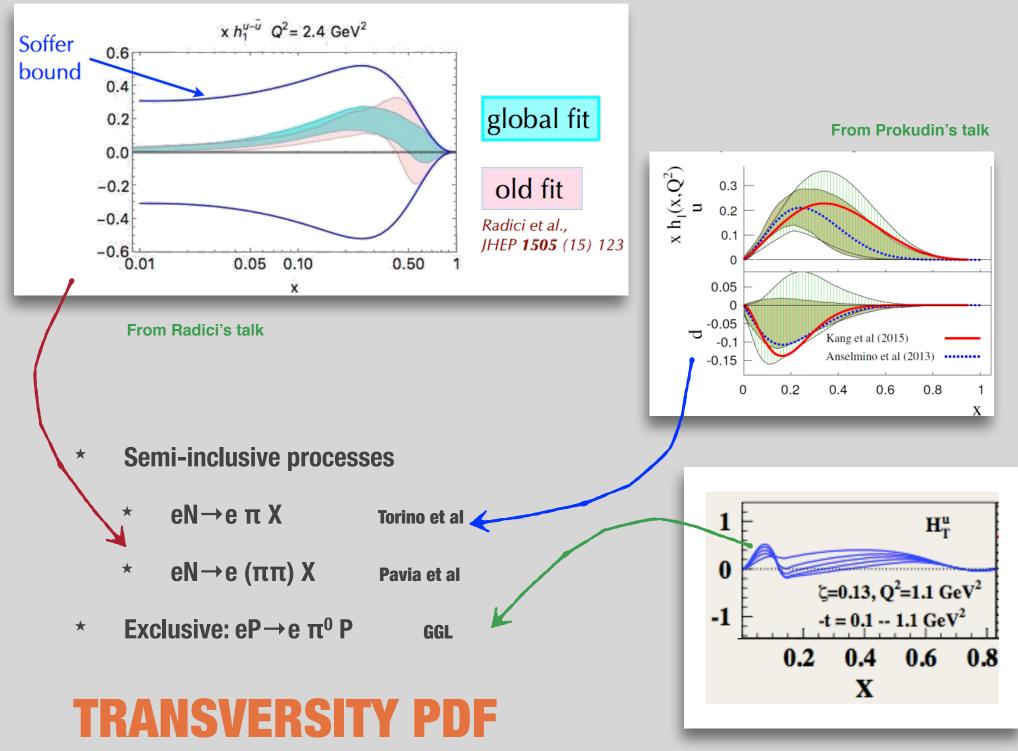

STANDARD MODEL

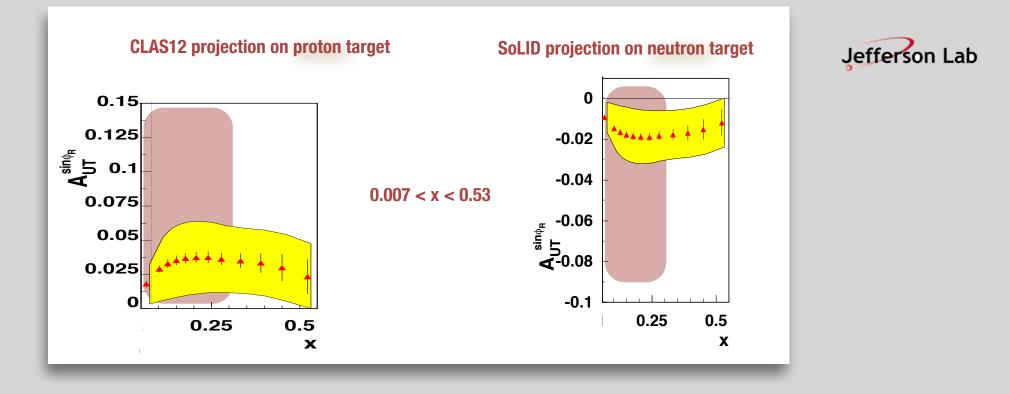
$$|g_S \epsilon_S| = 0.0014 \pm 0.0013$$
 @10
 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$
NEW BSM S & T^{@95%CL}
INTERACTIONS

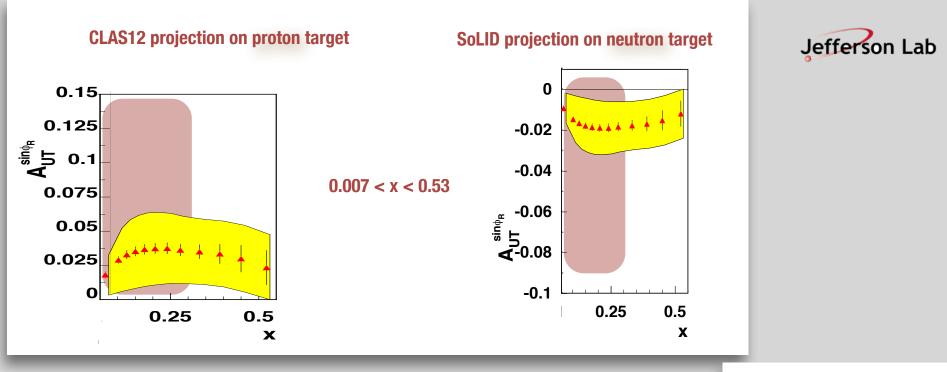
[Pattie et al, Phys.Rev. C88] [Wauters et al, Phys.Rev. C89]

Precision with which the NEW COUPLINGS can be measured depend on the knowledge of hadronic charges

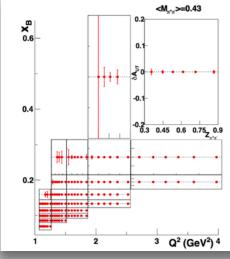
New LEC factorized into hadronic contribution & new EW interaction

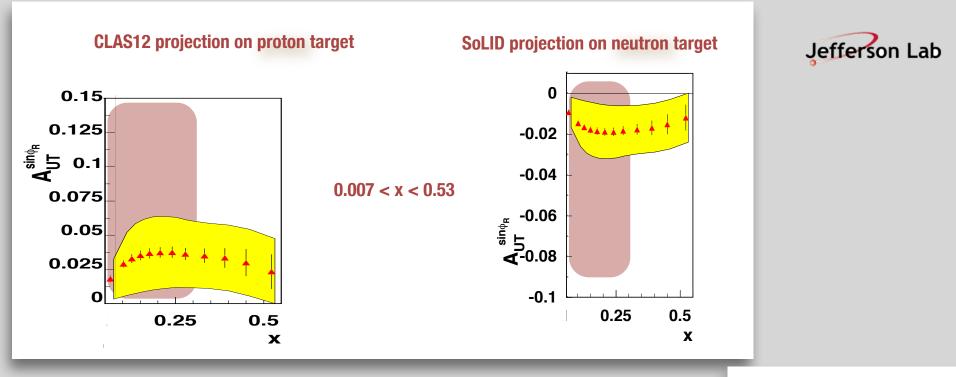


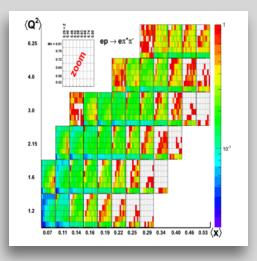

$$\langle P(p_p, S_p) | \bar{u} \gamma_{\mu} d | N(p_n, S_n) \rangle = g_V(t) \ \bar{u}_P \gamma_{\mu} u_N + \mathcal{O}(\sqrt{t}/M)$$
 Isovector vector FF
$$\langle P(p_p, S_p) | \bar{u} \sigma_{\mu\nu} d | N(p_n, S_n) \rangle = g_T(t, Q^2) \ \bar{u}_P \sigma_{\mu\nu} u_N$$
 Isovector tensor FF

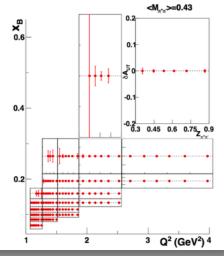

nsor FF

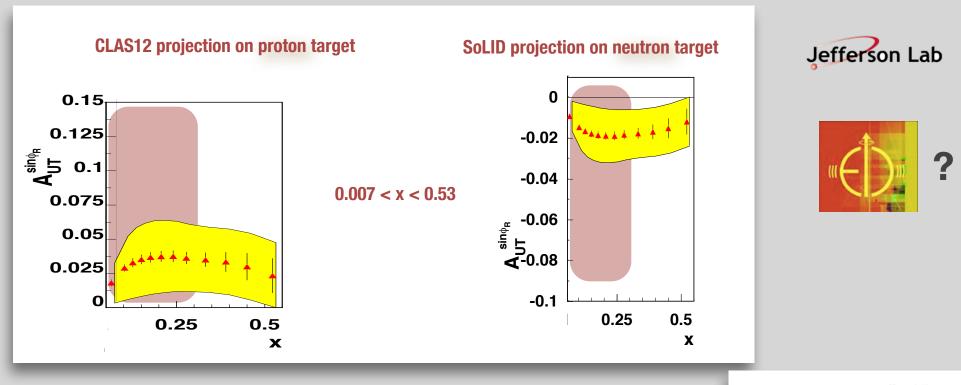
When $t \rightarrow 0$, $g(0) \equiv charge$


MATCHING AT HADRONIC LEVEL



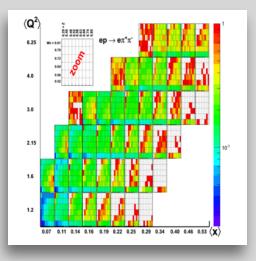

SoLID: about 1000 unprojected bins on 3He target

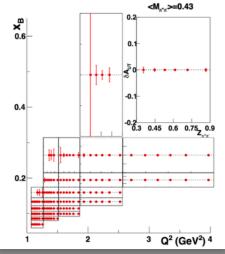


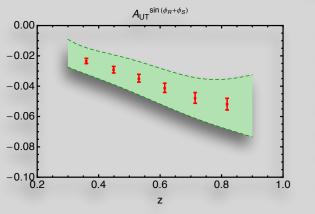


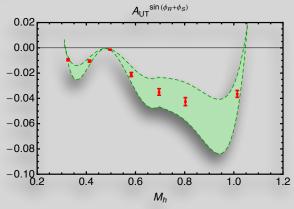
SoLID: about 1000 unprojected bins on 3He target

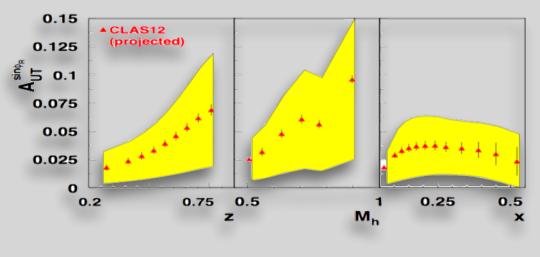
CLAS12: about 1000 unprojected bins on 1H target

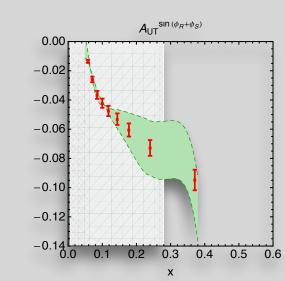





SoLID: about 1000 unprojected bins on 3He target


CLAS12: about 1000 unprojected bins on 1H target



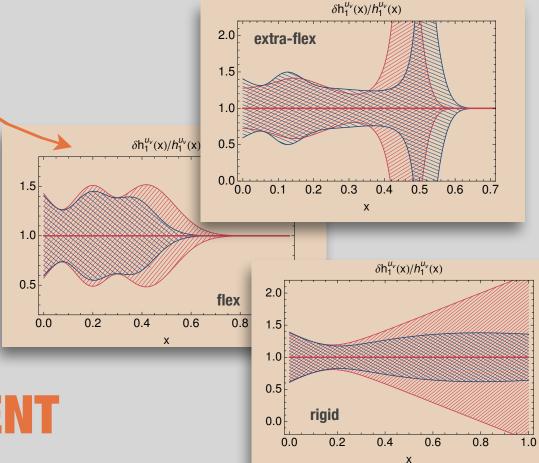

TRIPTIC PROJECTIONS

functional forms using the replica method for the error analysis. As for future extractions, the dihadron SIDIS will be studied in CLAS12 at JLab on a proton target and in SoLID on a neutron target [21] that will give both an improvement of ~10% in the ratio $\Delta g_T/g_T$ thanks to a wider kinematical coverage and better measurement of the contribution of the *d* quark. The results from this extraction are shown in Fig. 1.

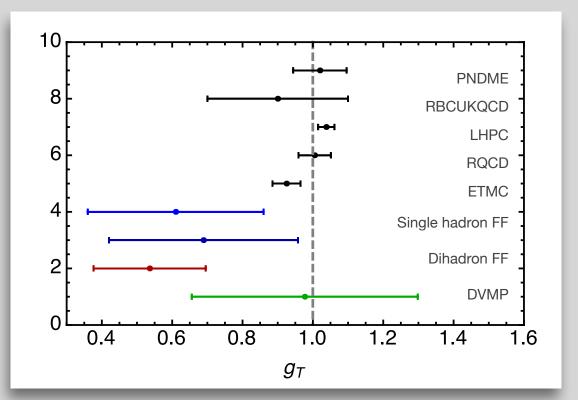
Deeply virtual exclusive pseudoscelor meson production

- * GGL with new JLab data
- Pavia with on new JLab data from both CLAS12 & SoLID

JLAB12 IMPROVEMENT

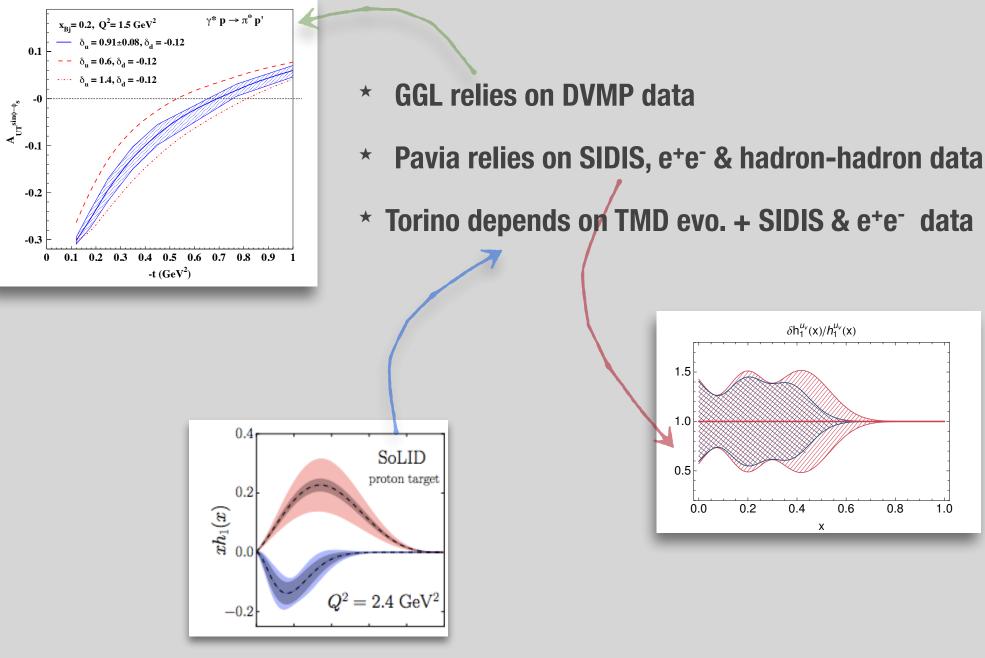

Courtoy, Baessler, González-Alonso and Liuti, PRL 115 (2015)

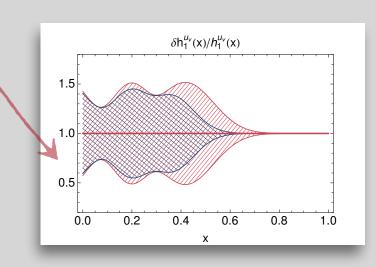
functional forms using the replica method for the error analysis. As for future extractions, the dihadron SIDIS will be studied in CLAS12 at JLab on a proton target and in SoLID on a neutron target [21] that will give both an improvement of ~10% in the ratio $\Delta g_T/g_T$ thanks to a wider kinematical coverage and better measurement of the contribution of the *d* quark. The results from this extraction are shown in Fig. 1.


Deeply virtual explusive pseudoscelor meson production

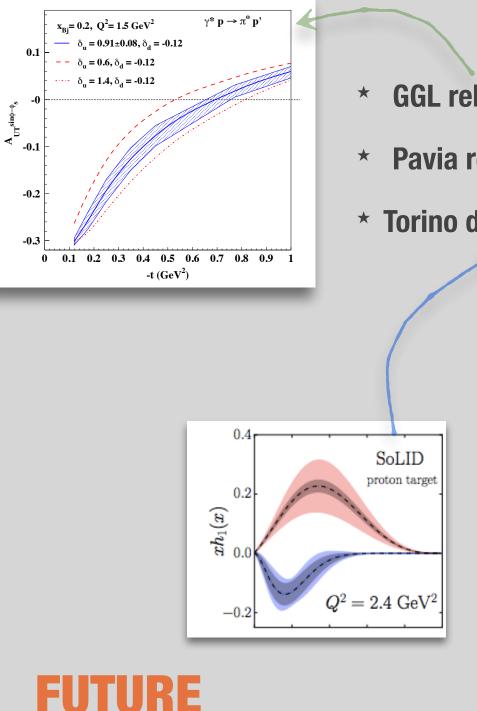
- *** GGL with new JLab data**
- * Pavia with on new JLab data from both CLAS12 & SoLID

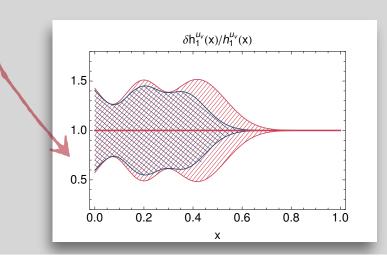
Transversities		$\delta g_T/g_T$	$\left(\delta g_T/g_T ight)^{ m future}$
Pavia	rigid	0.599	0.518
	flexible	0.696	0.639
	extra-flexible	1.007	0.865
Pavia average		0.767	0.674


JLAB12 IMPROVEMENT

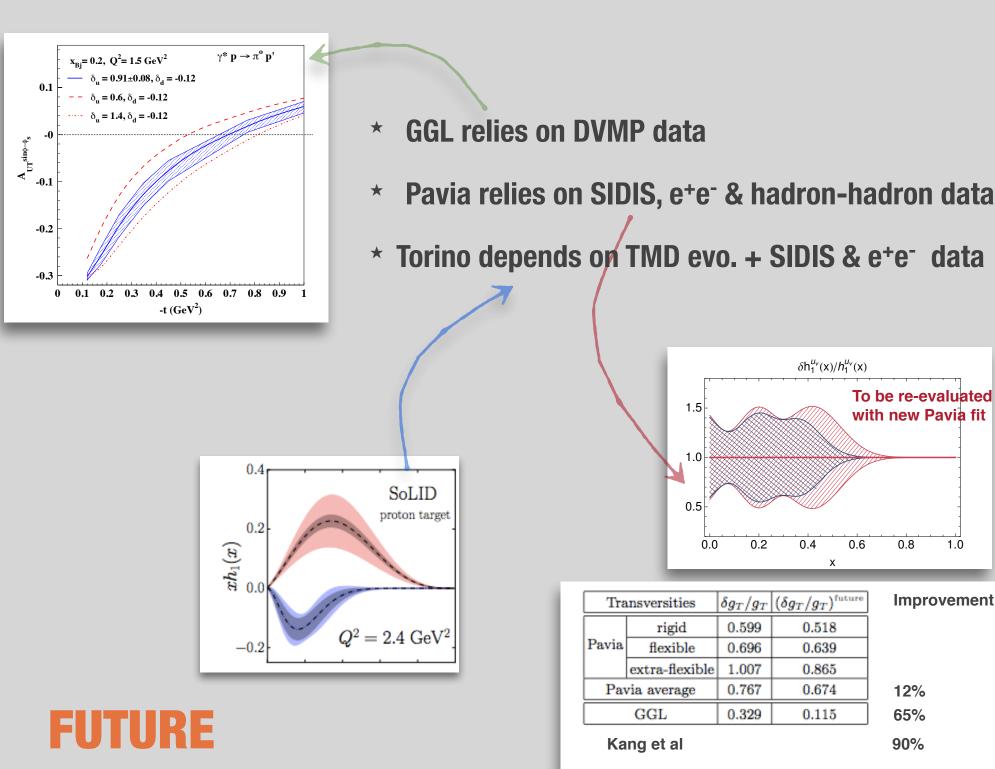

ISOVECTOR TENSOR CHARGE

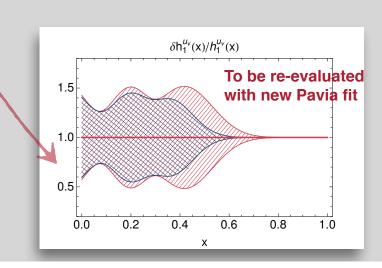
LATTICE RESULTS PRESENT TINY ERRORS W.R.T. HADRONIC EXTRACTIONS


HERE TESTING GROUND FOR LATTICE QCD CALCULATIONS



- ***** Torino depends on TMD evo. + SIDIS & e^+e^- data
- **GGL relies on DVMP data**




- Pavia relies on SIDIS, e⁺e⁻ & hadron-hadron data
- * Torino depends on TMD evo. + SIDIS & e^+e^- data

Transversities		$\delta g_T/g_T$	$(\delta g_T/g_T)^{ m future}$	Impr
Pavia	rigid	0.599	0.518	
	flexible	0.696	0.639	
	extra-flexible	1.007	0.865	
Pavia average		0.767	0.674	12%
GGL		0.329	0.115	65%
Ka	ng et al			90%

Improvement

Transversities		$\delta g_T/g_T$	$\left(\delta g_T/g_T ight)^{ m future}$	Impro
Pavia	rigid	0.599	0.518	
	flexible	0.696	0.639	
	extra-flexible	1.007	0.865	
Pavia average		0.767	0.674	12%
GGL		0.329	0.115	65%
Ka	ng et al			90%

mprovement

EXOTIC TENSOR INTERACTION

$$|g_T \epsilon_T| < 6 \cdot 10^{-2}$$

@95%CL

*** HESSIAN PROPAGATION**

- Usual error propagation

$$\sigma_f^2 = \sum_{a,b \,\in\, \text{params}} \frac{\partial f}{\partial a} \operatorname{cov}_{ab} \frac{\partial f}{\partial b} \quad \text{ with here } \quad \Delta \chi^2 = 1$$

- ***** MONTE CARLO APPROACH
 - N replicas of data within xo gaussian noise

$$f \pm \sigma_f = X\% CL \times f_i, \qquad i = 1, \dots N$$

 $X = 68, 90, 95, \dots$

★ SCATTER PLOT

- 1+ D
- Random generation of allowed values within $\boldsymbol{x}\sigma$

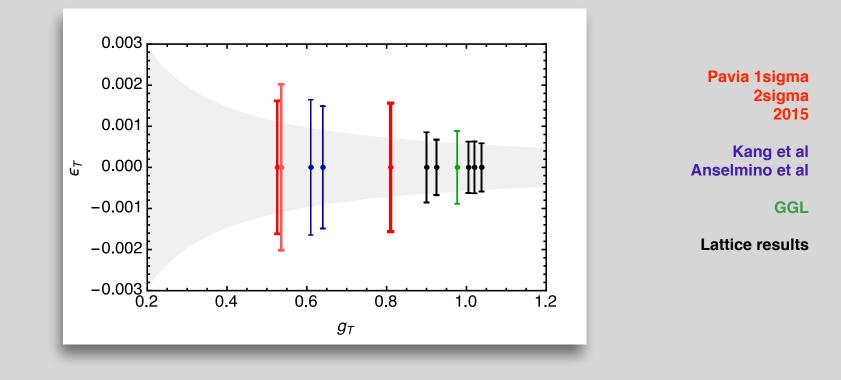
★ RFIT METHOD

*....

- Theoretical param anywhere within [a- σ_a , a+ σ_a] only
- other params as usual

$$-2\ln\mathcal{L}_{calc}(\{y_{calc}\}) \equiv \begin{cases} 0, \\ \infty, \end{cases}$$

$$\forall y_{\text{calc},i} \in [y_{\text{calc},i} \pm \delta y_{\text{calc},i}]$$
otherwise

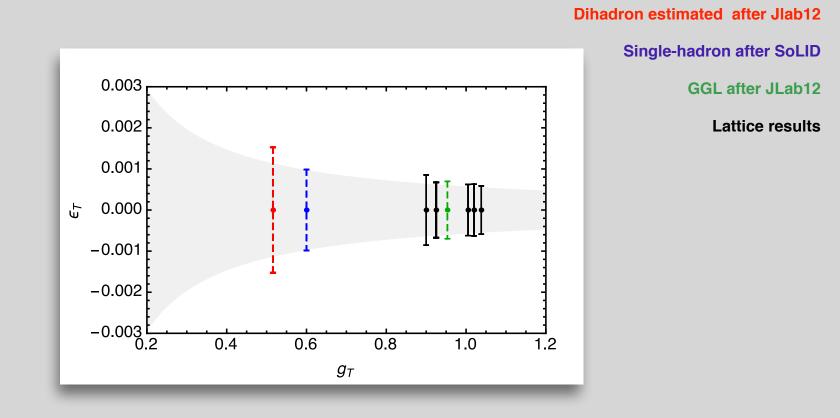

ERROR TREATMENT

NOW WITH $g_T \pm \sigma_{gT}$

AND

 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

scatter plot evaluation

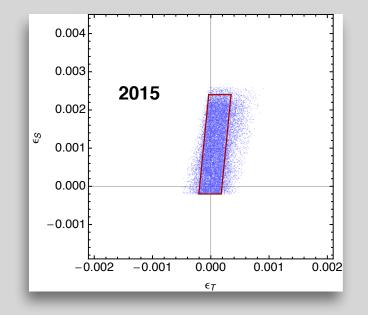

TENSOR INTERACTION 2017

NOW WITH $g_T \pm \sigma_{gT}$

AND

 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

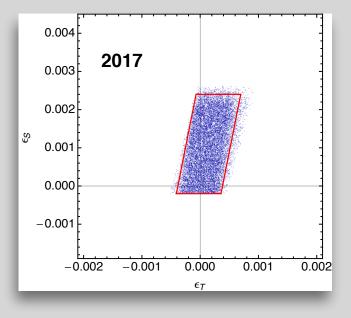
scatter plot evaluation



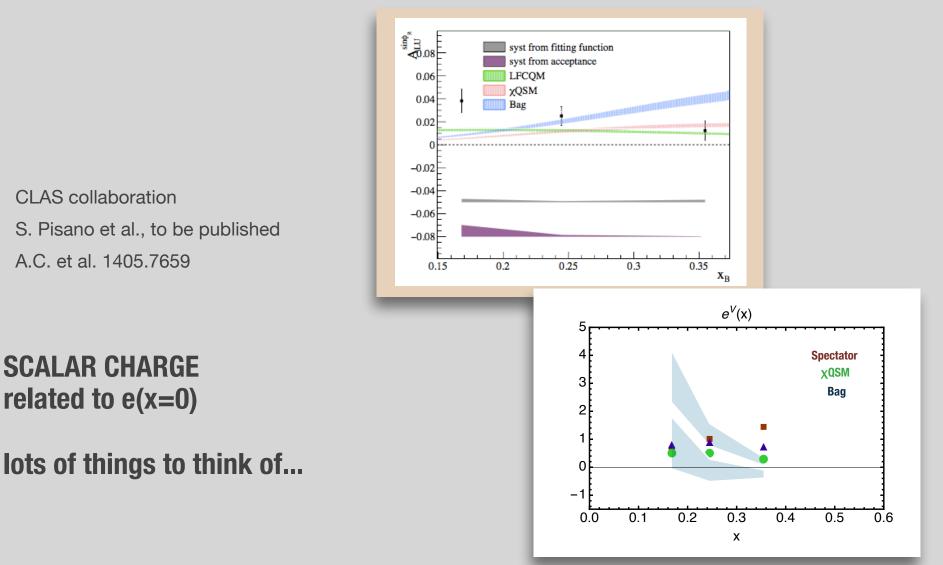
TENSOR INTERACTION IN THE NEXT YEARS

ϵ_T vs. ϵ_S plane from $b_0{}^+$ and b

Warning: not a global fit


- with g_S = 1.02 ± 0.11 from González-Alonso and Martin Camalich, PRL 112
- gT from Pavia 2015 vs. 2017

 1σ errors


Limit given central value red Scatter plot in blue

NEW SCALAR-TENSOR

DIHADRON ASYMMETRY FOR UNPOLARIZED TARGET INVOLVING SCALAR PDF (subleading)

CAN WE DO THE SAME FOR SCALAR CHARGE?

- ***** Evaluation of bounds for BSM tensor interaction
 - from hadronic matrix elements extracted from experiments
 - as opposed to lattice calculations
- ***** Hadronic uncertainties are still very large
- * However, competitive results expected from future hadronic experiments
- * Complementarity +testing of lattice results

CONCLUSIONS

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- * Nab collaboration plans to measure b, term sensitive to C_S and C_T with precision of 10^-3
- * **abBA** collaboration (and others) plans to measure A and B angular coefficients for polarized neutrons, B is also sensitive to C_S and C_T with precision of 10^-3

FUTURE OF BETA DECAY OBSERVABLES

- * Redefinition of "new" scale
- * effective coupling (rescaled) $\epsilon_{
 m i} \propto m_{
 m W}^2/\Lambda_{
 m i}^2$

where m_W enters through

$$\mathbf{G_F} = \mathbf{g^2}/(4\sqrt{2}\mathbf{m^2_W})$$

* but underlying mechanism not known

SCALE OF NEW PHYSICS