Theory prospects with electroweak physics, Higgs & exotica

Uli Haisch University of Oxford

Beyond the LHCb Phase-I Upgrade, 28-31 May 2017 La Biodola, Isola d'Elba (Italy)

So far ...

while in this talk ...

thanks to Fady Bishara & Mika Vesterinen for brainstorming

Z/W-boson physics at LHCb

LHCb Phase-II Upgrade Eol document mentions 14 studies of electroweak boson production, i.e. 10% of all citations

[11] LHCb collaboration, R. Aaij et al., Measurement of the forward-backward asymmetry in Z/γ* → μ⁺μ⁻ decays and determination of the effective weak mixing angle, JHEP 11 (2015) 190, arXiv:1509.07645.

- • •
- [74] LHCb collaboration, R. Aaij et al., Measurement of forward $W \rightarrow e\nu$ production in pp collisions at $\sqrt{s} = 8 \text{ TeV}$, JHEP 10 (2016) 030, arXiv:1608.01484.
- [75] LHCb collaboration, R. Aaij et al., Measurement of the forward Z^0 boson production cross-section in pp collisions at $\sqrt{s} = 13$ TeV, JHEP **09** (2016) 136, arXiv:1607.06495.
- [76] LHCb collaboration, R. Aaij et al., Measurement of forward W and Z^0 boson production in association with jets in proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$, JHEP **05** (2016) 131, arXiv:1605.00951.
- [77] LHCb collaboration, R. Aaij et al., Measurement of forward W and Z^0 boson production in pp collisions at $\sqrt{s} = 8$ TeV, JHEP **01** (2016) 155, arXiv:1511.08039.
- [78] LHCb collaboration, R. Aaij et al., Measurement of the forward Z^0 boson cross-section in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 08 (2015) 039, arXiv:1505.07024.
- [79] LHCb collaboration, R. Aaij et al., Study of W boson production in association with beauty and charm, Phys. Rev. D92 (2015) 052012, arXiv:1505.04051.
- [80] LHCb collaboration, R. Aaij et al., Measurement of $Z^0 \rightarrow e^+e^-$ production at $\sqrt{s} = 8$ TeV, JHEP **05** (2015) 109, arXiv:1503.00963.
- [81] LHCb collaboration, R. Aaij et al., Measurement of the $Z^0 + b$ -jet cross-section in pp collisions at $\sqrt{s} = 7$ TeV in the forward region, JHEP **01** (2015) 064, arXiv:1411.1264.
- [82] LHCb collaboration, R. Aaij et al., Measurement of the forward W boson production cross-section in pp collisions at $\sqrt{s} = 7$ TeV, JHEP **12** (2014) 079, arXiv:1408.4354.
- [83] LHCb collaboration, R. Aaij et al., Study of forward Z^0 +jet production in pp collisions at $\sqrt{s} = 7$ TeV, JHEP **01** (2014) 033, arXiv:1310.8197.
- [84] LHCb collaboration, R. Aaij et al., Measurement of the cross-section for $Z^0 \rightarrow e^+e^$ production in pp collisions at $\sqrt{s} = 7$ TeV, JHEP **02** (2013) 106, arXiv:1212.4620.
- [85] LHCb collaboration, R. Aaij et al., A study of the Z^0 production cross-section in pp collisions at $\sqrt{s} = 7$ TeV using tau final states, JHEP **01** (2013) 111, arXiv:1210.6289.
- [86] LHCb collaboration, R. Aaij et al., Inclusive W and Z^0 production in the forward region at $\sqrt{s} = 7$ TeV, JHEP 06 (2012) 058, arXiv:1204.1620.

CERN-LHCC-2017-003

Drell-Yan (DY) production

LHCb, 1509.07645

Weak mixing angle

LEP + SLD Phys. Rept. 427 (2006) 257	0	0.2315±0.0002	0.9‰		
LEP A _{FB} (b) Phys. Rept. 427 (2006) 257	ю	Юч 0.2322±0.0003			
SLD A _{LR} ⊦⊖ Phys. Rev. Lett. 84 (2000) 5945	•	0.2310 ± 0.0003			
D0 Phys. Rev. Lett. 115 (2015) 041801	- <mark>0</mark>	¹ 0.2315±0.0005			
CDF Phys. Rev. Lett. D89 (2014) 072005	- <mark>0</mark> i	0.2315±0.0010			
ATLAS		0.2308±0.0012	5.1‰		
CMS Phys. Rev. Lett. D84 (2011) 112002	4	0.2287±0.0032			
LHCb	<mark>0</mark> i	0.2314±0.0011	4.8‰		
LHCb √s=7TeV	<mark>⊢</mark> O'	0.2329±0.0015			
LHCb (s=8TeV	_	0.2307±0.0012			
0.224 0.226 0.228 0.23 0.232 0.234					
sin ² $ heta_{W}^{ ext{eff}}$					

for LHCb Phase-II Upgrade prospects see talk by William Barter

Lepton flavour universality in DY

 $R_Z^{\text{ATLAS}} = 1.0026 \left(1 \pm 5.0\%\right)$ $R_Z^{\text{LEP+SLD}} = 0.9991 \left(1 \pm 2.8\%\right)$

1‰ DY measurements —

Example of light spin-1 di-muon resonance V:

$$\mathcal{L} \supset \left(g_L^{sb} \bar{s}_L V b_L + \text{h.c.} \right) + \bar{\mu} \left(g_V^{\mu} - g_A^{\mu} \gamma_5 \right) V \mu$$

inspired by Sala & Straub, 1704.06188; Bishara, UH & Monni, 1705.03465

With 1‰ precision can test couplings below O(0.1) & can exclude fine-tuned explanations of a_{μ}

Precision on Z/W couplings

 Ze^+e^- couplings
 $(0.1\%)_L, (0.1\%)_R$
 $Zc\bar{c}$ couplings
 $(1.0\%)_L, (3.2\%)_R$
 $Zb\bar{b}$ couplings
 $(0.4\%)_L, (6.5\%)_R$
 $Zt\bar{t}$ couplings
 > 100\%

 WWZ coupling
 2.3\%

 $WW\gamma$ coupling
 3.4\%

Z-boson couplings to heavy flavours & triple-gauge boson couplings are only known at % level

Zbb couplings from AFC at LHCb

Gauld et al., 1505.02429

LHCb has measured forward-central bb asymmetry with O(50%) precision, while theory prediction has uncertainty of O(15%)

Zbb couplings from A_{FC}^{bb} at LHCb

0.11 g0000000 qg $A_{
m FC}^{b\,ar{b}}$ 0.10 0000000 q000000 0.09 g^b_R 0.08 SM 0.07 LEP ZZ68% CL 0.06 95% CL 1% 5% -0.42-0.44-0.40-0.46-0.38 g_L^b

To reach LEP sensitivity need to achieve total relative error on $A_{FC}^{b\overline{b}}$ at % level. Needs dedicated LHCb & theory effort

discussion of Ztt & trilinear gauge couplings in backup

UH with help from Gauld

¹O.5 O.6 /hy tī production at LHCb?

LHCb measurements of tt production will lead to improved understanding of gluon parton distribution function

Why tī production at LHCb?

In new-physics models in which top production proceeds via t-channel exchange, cross section & asymmetry enhanced at large pseudo-rapidities not accessible at ATLAS & CMS

in LHCb context see Kagan, Kamenik, Perez & Stone, 1103.3747

AFB vs. AFB: historical example

 $\mathcal{L} \supset \lambda \left(\phi^0 V_{tb} \bar{t}_L u_R + \phi^- \bar{b}_L u_R \right) + \text{h.c.}$

Blum, Hochberg & Nir, 1107.4350; Grinstein & Murphy, 1302.6995

AFB vs. AFB: historical example

Murphy, 1504.02439

W mass measurement at LHC

ATLAS, 1701.07240

see talk by William Barter for LHCb Phase-II Upgrade prospects

Stop searches at LHC

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

 $\delta M_W = 5 MeV$

W mass provides complementary constraints on stop sector

Higgs couplings after Run I

ATLAS & CMS, 1606.02266

Higgs couplings after Run I

Assortment of Run I bounds on yc

exclusive Higgs decay

Higgs p⊤ spectrum

Vh production

 $|\kappa_c| < 234$

 $\kappa_c \in [-16, 18]$

Perez et al., 1503.00290, 1505.06689; König & Neubert, 1505.03870; Bishara et al., 1606.09253

Run I: Vh production at LHCb

LHCb-CONF-2016-006

Bound is better as recast of ATLAS & CMS Vh analyses

Perez, Soreq, Stamou & Tobioka, 1503.00290

HL-LHC: constraints on κ_c from $p_{T,h}$

	experimental $[\%]$	theoretical $[\%]$	$\kappa_c \in$
S_1	1.5	2.5	[-0.6, 3.0]
S_2	3.0	2.5	[-0.9, 3.3]
S_3	1.5	5.0	[-1.2, 3.6]
S_4	3.0	5.0	[-1.3, 3.7]

Under realistic assumptions about experimental & theoretical progress possible to probe $|\kappa_c| = O(3)$ using $p_{T,h}$ spectrum

LHCb Upgrade II: constraints on Kc

projections taken from talk by Mike Williams

$K_c = O(2)$ bound \rightarrow

allowed by global fits to Run I Higgs data

(Only?) models with Higgsdependent Yukawas allow for $|\kappa_c| = O(2)$. To test such scenarios at LHCb requires dedicated effort

Exotics at LHCb

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html

see talk by Mike Williams & backup for light di-muon resonance searches

Long-lived particles (LLPs)

LHCb looks for LLPs in:

- di-jet events
- muon plus jet events
- rare decays of heavy flavours

In addition searches for charged massive stable particles using RICH are performed

di-jet searches discussed in what follows other topics in backup

Di-jet searches for LLPs

LHCb coverage complementary to ATLAS & CMS: lower lifetimes down to 1ps (excellent vertexing & boost) as well as lower masses down to 25 GeV (soft trigger & forward acceptance)

Triggering on displaced vertex & quality requirements on jets & di-jet pointing. Signature extracted from di-jet mass fit in bins of beam-axis displacement R_{xy} using both 7 TeV & 8 TeV data

Displaced Higgs decay

At low lifetimes & masses, LHCb constraints as good as CMS bounds despite lower luminosity & acceptance

Future: emerging jets

Emerging jets, i.e. jets with many displaced vertices arising from dark parton shower, are smoking gun signals of composite dark matter models

Schwaller, Stolarski & Weiler, 1502.05409

In view of precise jet vertexing & sensitivity to low mediator masses, LHCb has great potential to study emerging jets Displaced Di-Jet

Conclusions

In Run I, LHCb has developed & pursued a wide programme of general physics measurements. Obtained results are often complementary to that of ATLAS & CMS

Potential of general physics programme at LHCb Phase-II Upgrade essentially unexplored. IMHO a lot of interesting physics, great to broaden horizon, plenty room for new & crazy ideas ...

Backup

Ztī couplings from $B_s \rightarrow \mu^+ \mu^-$

Future $B_s \rightarrow \mu^+ \mu^-$ measurements may constrain Ztt couplings at few % level. Direct measurements only able to reach O(30%) precision

WWZ/γ couplings from flavour

Future $B_s \rightarrow \mu^+ \mu^-$ measurements can test WWZ coupling with O(1%) precision. Only O(10%) sensitivity in case of WW γ from $B \rightarrow X_s \gamma$
Axions in di-muon spectrum

LHCb, 1508.04094

LHCb measurement of di-muon spectrum in $B \rightarrow K^* \mu^+ \mu^-$ decay sets strong constraints on axion-top couplings in axion-portal models

Freytsis, Ligeti & Thaler, 0911.5355

Inflatons in di-muon spectrum

LHCb, 1612.07818

38

Di-muon spectrum can also be used to severely constrain GeV-mass scalar particles such as an inflaton if it mixes with SM Higgs boson

Batell, Pospelov & Ritz, 0911.4938; Bezrukov & Gorbunov, 0912.0390; 1303.4395

Majorana neutrinos

LHCb Run I search for B[±]→π[±]µ⁺µ⁻ allows to constrain mass & mixing angle of Majorana neutrinos. How does LHCb Phase-II Upgrade reach compare to SHiP prospects? Are other channels possible?

B flavour bounds from Shuve & Peskin, 1607.04258; see talk by Jessica Prisciandaro for LHCb prospects

LLPs in muon plus jets channel

LHCb, 1612.00945

LLPs in muon plus jets channel

LHCb, 1612.00945

Charged massive stable particles

Charged massive stable particles produced with relatively low velocity & can be identified by their longer time-of-flight, their energy loss (ionisation) & absence of Cherenkov radiation

Select pair of muon-like tracks in mass range [120, 300] GeV. Neural network used to combine RICH information with energy loss from VELO & calorimeters. Existing LHCb limits not competitive with D0 (low mass) & ATLAS (high mass)

Emerging jets: generalities

Requirements for appearance of emerging jets:

- large hierarchy between mediator mass & dark sector masses
- strong coupling in dark sector leading to large particle multiplicity
- macroscopic decay lengths of dark sector to visible particles

Emerging jets: toy model

Field	$SU(3) \times SU(2) \times U(1)$	$SU(3)_{\rm dark}$	Mass	Spin
Q_d	(1, 1, 0)	(3)	$m_d \mathcal{O}(\text{GeV})$	Dirac Fermion
X_d	$(3, 1, \frac{1}{3})$	(3)	$M_{X_d} \mathcal{O}(\text{TeV})$	Complex Scalar

$$\mathcal{L}_{\kappa} = \kappa_{ij} \overline{Q}_{d_i} q_j X_d + \text{h.c.}$$

$$\mathcal{L} \supset \bar{Q}_{d_i}(\not\!\!D - m_{d_i})Q_{d_i} + (D_\mu X_d)(D^\mu X_d)^\dagger - M_{X_d}^2 X_d X_d^\dagger - \frac{1}{4} G_d^{\mu\nu} G_{\mu\nu,d} + \mathcal{L}_\kappa + \mathcal{L}_{SM}$$

Schwaller, Stolarski & Weiler, 1502.05409

Emerging jets: dark pion decays

Dark pions are Goldstone bosons of $n_f \times n_f$ dark flavour symmetry. They decay to down-type quarks with centimeter to meter decay lengths:

$$\Gamma(\pi_d \to \bar{d}d) = \frac{\kappa^4 N_c f_{\pi_d}^2 m_{\text{down}}^2}{32\pi M_{X_d}^4} m_{\pi_d}$$

$$c\tau_0 = \frac{c\hbar}{\Gamma} \approx 80 \,\mathrm{mm} \times \frac{1}{\kappa^4} \times \left(\frac{2 \,\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{100 \,\mathrm{MeV}}{m_{\mathrm{down}}}\right)^2 \left(\frac{2 \,\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{M_{X_d}}{1 \,\mathrm{TeV}}\right)^4$$

Schwaller, Stolarski & Weiler, 1502.05409

Emerging jets: mediator production

Dark pion searches at LHCb

$$\sigma(pp \to \bar{Q}_d Q_d) \approx (8.2 \text{ pb}) \times N_d \times n_f \times \left(\frac{\text{TeV}}{\Lambda}\right)^4$$

Schwaller, Stolarski & Weiler, 1502.05409

Dark pion searches at LHCb

Number of tracks of O(10) for $m_{\pi_d} = 5$ GeV. Events with three or more dark pions may look sufficiently different than background. Assuming a reconstruction efficiency of 10% with 15 fb⁻¹ should be possible to test 10 fb cross sections, corresponding to scales of O(5 TeV)

Fermi-LAT excess

Fermi-LAT observes an excess at a few GeV in γ-ray emission data from galactic center & inner galaxy

Fermi-LAT excess

Simplified model with Dirac dark matter, pseudoscalar mediator & Higgs-like couplings fits excess with reasonable parameters

Fermi-LAT excess

In fact, allowed parameter space can be divided into two parts. One where $m_a < 2m_\chi$ & another one where $m_a > 2m_\chi$

LHC dark matter searches

Simplified model that allows to explain Fermi-LAT excess can be tested by ATLAS & CMS for instance via mono-jet searches

LHC dark matter searches

Existing & future constraints are however only strong in on-shell region (i.e. $m_a > 2m_\chi$), while weak in off-shell region (i.e. $m_a < 2m_\chi$)

LHC standard model searches

ATLAS-CONF-2015-081

For $m_a < 2m_X$, mediators will dominantly decay back to standard model states & searches typically focus on high invariant masses

LHC standard model searches

UH & Kamenik unpublished

If they have masses around [10, 50] GeV, new spin-0 states may have escaped detection even for moderately large couplings g_{SM}

Y production at LHCb

Precision measurement of di-muon spectrum for invariant masses in Υ region with only 3% of 8 TeV data set

Bound on $\sigma_{fid}(pp \rightarrow \phi) \cdot Br(\phi \rightarrow \mu^+\mu^-)$

- Signal: light spin-0 dimuon resonance ϕ
- Acceptances: A = 0.23 for |η| ∈ [2, 4.5] & p_T < 30 GeV independent of φ mass; final acceptance A_f in |η| ∈ [3, 3.5] & p_T ∈ [3, 4] GeV depends mildly on m_φ
- Recast: inject φ signal & refit
 LHCb data on Y production

Type II two-Higgs doublet model

LHCb provides best bound for $m_A \in [8.6, 11]$ GeV. Mass region [11,11.5] GeV remains unexplored, due to strong mixing effects

Charm Yukawa coupling

Literature:

- Bodwin et al., 1306.5770 & 1407.6695
- Perez, Soreq, Stamou & Tobioka, 1503.00290 & 1505.06689
- König & Neubert, 1505.03870
- Brivio, Goertz & Isidori, 1507.02916
- Bishara, UH, Monni & Re, 1606.09253
- Soreq, Zhu & Zupan, 1606.09621
- LHCb collaboration, LHCb-CONF-2016-006
- Tao Han & Xing Wang, 1704.00790

Assortment of bounds on $\kappa_{\rm c}$

Sensitivity of LHC to y_c higher than anticipated. Complementary strategies exit that should be combined to tighten bounds on κ_c

Perez et al., 1503.00290, 1505.06689; König & Neubert, 1505.03870; Bishara et al., 1606.09253

Exclusive Higgs decays: $h \rightarrow J/\psi\gamma$

Br
$$(h \to J/\psi\gamma) = 2.95 \cdot 10^{-6} (1.07 - 0.07 \kappa_c)^2$$

Bodwin et al., 1306.5770 & 1407.6695; König & Neubert, 1505.03870

Exclusive Higgs decays: $h \rightarrow J/\psi\gamma$

 ${
m Br}\left(h o J/\psi\gamma
ight) < 1.5 \cdot 10^{-3}$ atlas, 1501.03276; CMS, 1507.03031

$$\longrightarrow$$
 $|\kappa_c| < 429$

Br
$$(h \to J/\psi\gamma) = 2.95 (1 \pm 0.2) \cdot 10^{-6}$$

By using different working points for heavy-flavour tagging can recast h→bb analyses to constrain h→cc rate

Perez, Soreq, Stamou & Tobioka, 1503.00290

Perez, Soreq, Stamou & Tobioka, 1505.06689

\mathcal{L}	$\sqrt{s} = 14 \mathrm{TeV}$	$\kappa_b @ 95\% \mathrm{CL}$	$ \kappa_c @ 95\% \mathrm{CL}$
$2 \times 300 \mathrm{fb}^{-1}$	correlated c -tagging I	[0.67, 7.07]	< 37
	uncorrelated c -tagging I	[0.69, 7.16]	< 38
	uncorrelated c -tagging II	[0.70, 4.70]	< 21
	uncorrelated c -tagging III	[0.70, 1.90]	< 6.0
$2 \times 3000 \mathrm{fb}^{-1}$	correlated c -tagging I	[0.84, 1.57]	< 5.5
	uncorrelated c -tagging I	[0.85, 1.60]	< 5.6
	uncorrelated c -tagging II	[0.86, 1.30]	< 3.7
	uncorrelated c -tagging III	[0.87, 1.18]	< 2.5

Perez, Soreq, Stamou & Tobioka, 1505.06689

Higgs & charm production

Charm Yukawa from $h \rightarrow c \bar{c} \gamma$

Han & Wang, 1704.00790

Charm Yukawa from $h \rightarrow c \bar{c} \gamma$

A simple observation

ATLAS & CMS, 1606.02266

			Effective	Resolved	
Production	Loops	Interference	scaling factor	scaling factor	
$\sigma(ggF)$	\checkmark	t–b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_t - 0.07 \cdot \kappa_t \kappa_b$	
$\sigma(\text{VBF})$	_	_	2	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$	
$\sigma(WH)$	_	_		κ_W^2	
$\sigma(qq/qg \to ZH)$	_	_		κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	t–Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_K \kappa_t$	
$\sigma(ttH)$	_	_		κ_t^2	
$\sigma(gb \to tHW)$	_	t–W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$	$(-())()7 \cdot K_{4}K_{4}$
$\sigma(qq/qb \to tHq)$	_	t–W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$	$\langle 0.01 $ $\kappa_l \kappa_l$
$\sigma(bbH)$	_	_		κ_b^2	
Partial decay width					
Γ^{ZZ}	_	_		κ_7^2	
Γ^{WW}	_	_		κ_W^2	
$\Gamma^{\gamma\gamma}$	\checkmark	t–W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$	
$\Gamma^{ au au}$	_	_	,	κ_{τ}^2	
Γ^{bb}	_	_		κ_{h}^{2}	
$\Gamma^{\mu\mu}$	_	_		κ_{μ}^2	
Total width ($B_{BSM} =$	0)				
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_q^2 +$	
Γ_H	\checkmark	_	κ_{H}^{2}	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$	
			**	$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{(Z_{\gamma})}^2 +$	
				$0.0001 \cdot \kappa_s^2 + 0.00022 \cdot \kappa_u^2$	
				·	

A simple observation

- In SM, interference between top & bottom loops does not only change total Higgs production cross section but also distributions in pp→hj such as p_{T,h}, y_h, p_{T,j}, ...
- Measurements of shape of distributions at low to moderate p_T should allow to constrain modifications $\kappa_c = y_c/y_c^{SM}$
- At HL-LHC with 3 ab⁻¹ of luminosity, p_{T,h} measurements not statistics limited. Future bounds on κ_c from Higgs spectra thus depend sensitively on size of systematic uncertainties
Charm contributions to $pp \rightarrow hj$

Charm contributions to pp→hj

Bishara, unpublished

For $|\kappa_c| < O(10)$ gg-channel dominates, while for $|\kappa_c| > O(10)$ gq- & qq-production becomes as relevant. For $y_{s,d,u}$ quarkchannels dominate given LHC sensitivities of $|\kappa_{s,d,u}| \gg 10$

Bishara, UH, Monni & Re, 1606.09253; Soreq, Zhu & Zupan, 1606.09621

Charm contributions to $pp \rightarrow hj$

Bishara, unpublished

Top-bottom interference at NLO

NLO corrections of O(50%) but closely track QCD effects to topmediated contribution. For $p_T < 30$ GeV inclusion of NLO effects lead to a O(2) reduction of scheme ambiguity related to m_b

Melnikov, Tancredi & Wever, 1610.03747; 1702.00426; Lindert, Melnikov, Tancredi & Wever, 1703.03886

Normalised p_{T,h} spectra at 8 TeV

O(1) deviations in κ_c lead to few % effects in $p_{T,h}$ distribution

Measured $p_{T,h}$ spectrum at 8 TeV

Statistics limited & not in full agreement with theory predictions

Normalised $p_{T,j}$ spectra at 8 TeV

O(1) deviations in κ_c lead to few % effects in $p_{T,j}$ distribution

Measured $p_{T,j}$ spectrum at 8 TeV

ATLAS, 1504.05833

Statistics limited & in full agreement with theory predictions

Measured $p_{T,h}$ spectra at 13 TeV

ATLAS-CONF-2016-067

pt,h spectra at future LHC runs

Systematic errors of a few % should be achievable at HL-LHC

Constraints on Kc,b: prospects

+95% CL after profiling over κ_b

Impact of theory error at HL-LHC

