

- Recent studies and technical choices are not all public
- Not the latest snapshot in these slides

Bold aspects of the CMS upgrade for HL-LHC

Track information in HW event selection

Tracker with higher granularity and extended acceptance (|η|<4)

Precision timing of all objects to combat pileup

- New electronics in ECAL barrel
- Dedicated layers for single charged track timing just outside the Tracker

High granularity

of showers

endcap calorimeters

Energy, position

and time mapping

 Goal: be as efficient, and with low background/fake rate, at 200 pileup as we are today and with an extended acceptance

Time-aware reconstruction

If beam-spot *sliced* in successive O(30) ps time exposures, *effective pileup* reduced by a factor 4-5:
~15% merged vertices reduced to 2%
Phase-I track purity of vertices recovered

Luminous region • t_{RMS} ~ 180 ps • z_{RMS} ~ 4.6 cm

VBF H→TT in 200 pp collisions

Track-vertex association – with track timing

INFN

With timing, 'effective vertex density' down to LHC level !

- I. Extend performance at 200 PU
- 2. Strengthen reconstruction at 140 PU
- 3. Provide robustness against adjustment of luminosity scenarios

Recovery from performance degradation in several observables

Example: track isolation efficiencies

- Acceptance gain in searches and precision measurements
 - [Curves are for constant background reject power]
- Performance benefits also in, missing E_{T} resolution, pileup jet rejection, ...

5

Photon timing and association with vertices

t (ns)

Association with vertex requires t₀ information

[i.e. charged track timing]

Single photon:

 early collision + long TOF = late collision + short TOF

Two-photons

- triangulation: vertex spacetime from photon timing
 - For small rapidity gap triangulation breaks down
 - Vertex t₀ to resolve ambiguities

Elements of the timing upgrade of CMS

INFN

Calorimeter upgrades:

Precision timing (~30 ps) of high energy photons in ECAL, photons and high energy hadrons in HGCal

Investigating low energy hadrons in HGCal

Additional (thin) timing layers

- MIP timing with 30 ps precision and almost full efficiency
- Just outside the tracker:
 - Acceptance: IηI<3.0 and p_T>0.7 GeV

Timing tests of the HGCal Si sensors

Timing resolution vs amplitude

Time resolution improves with S/N Constant term: 14 ps, for S > 20 mips

Timing test with 300 μm layer Fast readout 16 ps for 32 GeV electrons

CERN beam tests in November 2016 Up to 250 GeV electrons Analysis ongoing

9

Barrel MIP timing detector

LYSO crystals + SiPM embedded in the Tracker tube

Ready before TK integration

INFN

Maintain performance at radiation levels of 2x10¹⁴ n_{eq}/cm²

Barrel sensors (LYSO + SiPMs)

Nominal geometry: 12 x12 mm² (~ 3 mm thick) + 4x4 mm² SiPMs Production-like geometry qualified in test beams Good radiation hardness of production-ready SiPMs

Operate SiPMs at ~ –35 °C (limit self-heating and dark rate)

Radiation hardness: SiPMs

Radiation fluence is a fierce foe

- SiPMs self-heating ~ 30 mW/channel
- Dark count rate (DCR) a few 1 GHz/mm at -35 °C
- LYSO scintillation to boost signal above dark counts noise
- Optimal SiPMs require balance between photon detection efficiecy (PDE) and DCR to maintain 30 ps at the end of life

LYSO is radiation hard at the required level

Endcap MIP timing detector

Single layer of low gain silicon detectors just outside TK

- Ready at the end of TK or HGCal integration
- Maintain performance at radiation level 2x10¹⁵ n_{eq}/cm²

Silicon detectors with gain

Different gain / E-field geometries under study (RD50)

40 μm avalanche region 110 μm 60 μm 60 μm K-region

n or Charged Part

Low Gain Avalanche Diodes (LGADs) Gain O(10) - Three suppliers (FBK, CNM, HPK)

Ultra Fast Si Detectors - Drift region \sim 50 μ m to limit Landau fluctuations Small pads to limit capacitance

Details on the technology in M.Obertino's talk

Deep Depleted APDs Gain O(500) - one supplier (RMD)

- 15 ps on 1 cm² pads
- Not yet fully qualified at CMS radiation levels

S.White,

Endcap sensors (ultra-fast Si detectors)

INFN

Nominal geometry: 4.8 x 9.6 cm² modules with 1x3 mm² pads

- 16 ASICs bump-bonded to sensors (ASIC being developed)
- 3:1 ganging in the TDC at small η (3x3 mm² granularity)
- Single pads shown to have $\sigma_t \leq 50$ ps up to $10^{15} n_{eq}/cm^2$
 - Compensate gain loss with bulk gain (higher external bias)

Details on the technology and R&D prospects in M.Obertino's talk

Other R&Ds on timing sensors

Micro channel plates:

- not immune to B-field, but might be viable for LHCb
- ~20-30 ps as secondary emission and amplification device
- ~70% efficiency to MIPs, full efficiency to (pre)showers

- Timing resolutions that are a factor 5-10 smaller than the timing spread of the beam spot open up new capabilities
 Possible with both light and charge collection technologies
 - Dimensions matter a lot! Requires the technological capability to cover square meters of surface with small, thin tiles (1-100 mm²)

Options for calorimeters:

- Correct vertex association requires vertex-t₀ information
- Shower Max dedicated layer(s) embedded in the EM calorimeter or from the full longitudinal EM energy profile
 Additional Timing Layer – a low-mass accompaniment to a silicon tracking system situated in front of a calorimeter system
- II. **Pre-shower** front compartment of the electromagnetic calorimeter
 - balancing low occupancy MIP identification with EM showering

Specific choices informed by radiation levels, integration and schedule constraints - make your choice and optimization!

Examples (w/o timing information): the anti-luminosity effect

HGCal front end

Signal after shaper

ADC – ToT

Buffer waiting L1 trigger accept 12.5 µs latency 512 events × 32 bits = 16.4 kb / channel Power consumption: 2 mW / channel

21

non-uniformity (Landau fluctuations)