

Beyond the LHCb Phase-1 Upgrade Elba, 30/5/2017

Magnet Stations Overview and Tracking Studies Active, P. Billott¹, M. Chraszez², C. Da Silva⁴, M. Martinelli² Active, ¹CORS, CU2H, ¹LANL, ²EFFL

Outline

Physics Motivation

Reminder

- Low-momentum tracks reconstruction
- Proposed Implementation

New Ideas

A slightly different implementation

Performance

- Momentum resolution
- Pattern Recognition

Outline

Potential

 There are many physics channels that could benefit of an improved resolution on the momentum of soft tracks

Multi-Body decays: $B_s^0 \rightarrow D_s^+ D_s^-$, $D \rightarrow hhhh$

- Charm Physics: $D^{*+} \rightarrow D^0 \pi^+$
- b-baryons: $\Sigma_b^+ \rightarrow \Lambda_b^0 \pi^+$

Spectroscopy: $B \rightarrow D\overline{D}K$, $B_c^* \rightarrow B_c\pi\pi$

• Such tracks could also pave avenue to completely new topics for LHCb Search for gluon saturation transition (needs soft particles from small Q²)

Follow next talk from Marcin for further details

In a nutshell

The Problem

Low-Momentum Tracks

- A lot of low-momentum tracks get lost in the internal sides of the magnet
- The current (Upgrade) tracking uses residual magnetic field in UT to guess momentum with ~20% uncertainty for VeloUT tracks
 Not enough for most physics analyses
- Tracks are substantially lost

Problem

The Solution

Instrument the Internal Sides of the Magnet

- Adding a measurement after the magnet bending will improve momentum resolution
- A large fraction of the otherwise lost tracks will be recovered
- Possibly further widening LHCb physics program (see next talk)

Requirements

- Preliminary tracking studies demonstrated that $\sigma_z \sim 1 mm \Longrightarrow \sigma_p/p < 1\%$
- Also σ_y~10mm is needed to reduce candidates in pattern recognition
- Furthermore, a second station separated by few mm would greatly benefit ghost rejection
- Operate in large magnetic field

Detector options

- Considered different options
 Strawfibres, GEM, MWPC, Silicon, Fibres
- Fibres

Extensive R&D in LHCb for FT Resolution requirements (~1mm) achievable Y segmentation with stereo arrangements SiPM insensitive to magnetic field

Requirements

Implementation - Readout

SiPM

- Benefit from FT R&D
- Insensitive to magnetic field
- ... but sensitive to radiation damage Estimated $5x10^{12}$ neq/cm² inside magnet \rightarrow would require shielding and cooling
- Need to be placed outside the magnet behind iron yoke $\sim 2x10^{10} \text{ neq/cm}^2 \rightarrow \text{need to route photons with clean fibres}$

Dosimetry

Installed Dosimeters Inside Magnet

- The numbers we used to estimate the dose have large uncertainty
- Installed dosimeters in the magnet during winter shutdown to obtain precise measurements

Dosimetry

Costs

	1mm fibres (2)	1mm fibres (3)	2mm fibres (2)	
# channels	[48, 64] k	[72, 96] k	[24, 32] k	
Scintillating fibres	[104, 138] kCHF	[156, 208] kCHF	[262, 348] kCHF	
Clear fibres	[446, 595] kCHF	[670, 892] kCHF	[1400, 1500] kCHF	
SiPM (assuming same price for 2mm)	[396, 492] kCHF	[554, 739] kCHF	~[184, 246] kCHF	
Electronics PACIFIC, Tell40, others (10CHF/channel from SciFi TDR)	[480, 640] kCHF	[720, 960] kCHF	[240, 320] kCHF	
infrastructure, cooling	200kCHF	200kCHF	200kCHF	
total total (no clear fibres)	1.6 - 2.1 MCHF 1.2 - 1.4 MCHF	2.3 - 3 MCHF 1.6 – 2.1 MCHF	2.8 -3.2 MCHF 1 – 1.1 MCHF	
Cb (P4) Costs	Outline	Maurizio Martinelli - Magnet S	Stations Overview And Tracking 30.5.2017	

1/3 cost from clear fibres

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

1mm fibres (2)	1mm fibres (3)	2mm fibres (2)
[48, 64] k	[72, 96] k	[24, 32] k
[104, 138] kCHF	[156, 208] kCHF	[262, 348] kCHF
[446, 595] kCHF	[670, 892] kCHF	[1400, 1500] kCHF
[396, 492] kCHF	[554, 739] kCHF	~[184, 246] kCHF
[480, 640] kCHF	[720, 960] kCHF	[240, 320] kCHF
200kCHF	200kCHF	200kCHF
1.6 - 2.1 MCHF 1.2 - 1.4 MCHF	2.3 - 3 MCHF 1.6 – 2.1 MCHF	2.8 -3.2 MCHF 1 – 1.1 MCHF
	1mm fibres (2) [48, 64] k [104, 138] kCHF [446, 595] kCHF [396, 492] kCHF [480, 640] kCHF 200kCHF	1mm fibres (2) 1mm fibres (3) [48, 64] k [72, 96] k [104, 138] kCHF [156, 208] kCHF [446, 595] kCHF [670, 892] kCHF [396, 492] kCHF [554, 739] kCHF [480, 640] kCHF [720, 960] kCHF 200kCHF 200kCHF 1.6 - 2.1 MCHF 2.3 - 3 MCHF 1.6 - 2.1 MCHF 1.6 - 2.1 MCHF

Costs

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

1/3 cost from clear fibres -25% with less chambers

	1mm fibres (2)	1mm fibres (3)	2mm fibres (2)	
# channels	[48, 64] k	[72, 96] k	[24, 32] k	
Scintillating fibres	[104, 138] kCHF	[156, 208] kCHF	[262, 348] kCHF	
Clear fibres	[446, 595] kCHF	[670, 892] kCHF	[1400, 1500] kCHF	
SiPM (assuming same price for 2mm)	[396, 492] kCHF	[554, 739] kCHF	~[184, 246] kCHF	
Electronics PACIFIC, Tell40, others (10CHF/channel from SciFi TDR)	[480, 640] kCHF	[720, 960] kCHF	[240, 320] kCHF	
infrastructure, cooling	200kCHF	200kCHF	200kCHF	
total total (no clear fibres)	<u>1.6</u> - 2.1 MCHF 1.2 - 1.4 MCHF	<u>2.3</u> - 3 MCHF 1.6 – 2.1 MCHF	<u>2.8</u> -3.2 MCHF 1 - 1.1 MCHF	
Cb (1)4 Costs	Outline	Maurizio Martinelli - Magnet S	tations Overview And Tracking 30.5.2017 11	

A Slightly Different Implementation

Cesar Da Silva (Los Alamos) recently joined the collaboration to study QGP notably using the Magnet Station

Too Many Channels?

Alternatives

 Previously shown costs could be greatly reduced with fewer channels (=less fibres and SiPMs)

DO R&D - Comparison and Light Yield

Comparison with Magnet Stations Option

COLE POLYTECHNIQUE Édérale de Lausanne

	DO		Magnet Station	
Triangular bar side	5.8mm - 5.9mm		5mm	
Bar length	CPS:2.4/2 m, FPS:10-30cm		30cm-70cm	
N planes	CPS: 1, FPS: 2(uv stereo)		3 xuv	
Light guide	11m - 13m		<6m	
photodetection	VLPC (at 9K 80% QE)		SiPM (room T 40% QE)	
) CPS 11m $\Box Q_{clr} \cos\theta$ $\Box singlet doublet UY(MS/D0) = \frac{0.4QE}{0.8QE} \frac{e^{-6m/10m}}{e^{-11m/10m}} = 82\sim 9-11 p.e.$			
Cb (Pf D0 R&D	Light Yield	Maurizio M	artinelli - Magnet Stations Overview And Tracking 30.5.2017	

DO R&D - Efficiency, Noise and Resolution

- Depend on cluster amplitude cut
- Expect larger noise in MS due to SiPM at room temperature
- But efficiency can be > 95%
- Resolution: $\sigma_z \sim 0.6 \text{mm} \rightarrow \sigma_y \sim 3 \text{mm} (\theta = 12^\circ)$

Extruded Scintillators Costs

Quantities for $\Delta Z=2m$ MS

- 200 cm * 4 bars/cm * 4 y segments * 6 planes * 2 magnet sides = 38.4K channels Main proposal: 2
- Expected 64K channels if using 1mm fiber
- Uses 1mm clear fiber and 1.3*1.3 cm² SiPM
- Will contact Fermilab fabric for cost and feasibility of 5mm triangular bars
- Each 1m bar was ~US\$3 for a recent project our team just • finished

Prototyping Plans (@LANL)

Cosmic Tests

- 20cm wide, 1m long station with 6 planes
- Purchased 600 2mm*2mm SiPMs
- Obtaining bars from Fermilab factory
- May need 1/4 of a readout board developed for FT or ~3-10 PACIFIC4 chips
- GEANT detector simulation ongoing gives resolution consistent with DØ R&D

Beam Tests / Irradiation

- Likely one day of beam time at LANSCE
- UC Davis another option

Los Alamos Neutron Science Center (LANSCE)

800 MeV proton beam, variable pulses around 10^11p/cm2/s, and spallation neutron beamlines

University of California at Davis

76 inch cyclotron, 67 MeV protons up to ~10^13

20 cm

100 cm

Tracking Studies

Simulation

• Minimum Bias in Upgrade conditions

Tracking Studies

COLE POLYTECHNIOUE

Magnet stations simulated as planes of fibres
 Interaction with the detector and multiple scattering between the stations

Outline

Missing proper detector description Α1 $\mathbf{1}$ Will wait for final decision (mm) y (mm) **Studies** 500 Momentum resolution Pattern recognition -50**Used VeloUT tracks as** -100-100starting point 6500 7000 6000 6500 z (mm) Δ Ͻ (mm) / (mm) / 1000 **One random Minimum** -100**Bias event** 5500 6000 6500 7500 4500 5000 5500 6000 6500 7000 7500 z (mm) z (mm)

A: Access (x>0) C: Cryo (x<0)

Extrapolation

- Start from VeloUT track state at last point and magnetic field
- Multiple scattering simulated with a numerical approach
- Error matrices based on (x,y,t_x,t_y) at z_{ls} and (z,y,t_z,t_y) at magnet station plane
- Uncertainties on z increase with z and decrease with p

1s

 \vec{z}

Tracking Studies

Х

Prediction

- With the first station extrapolation one can predict the position on the second layer within 1mm
- With two points, the uncertainty on the momentum becomes < 1%

Tracking Studies

Start from Velo Tracks

- Assuming the pattern is correctly found, similar results are possible by starting from a Velo track
- One could think of a search algorithm that starts from Velo tracks and some assumption based on t_x and t_y
- This could be run after running the algorithm that starts from VeloUT

Velo + MS

Pattern Recognition

Clustering

- We don't have a real clustering yet We miss the a proper detector description within LHCb framework
- Used energy deposit from MC particles as a starting point
- Planes divided in 1mm² bins in z-y

Strategy

- Extrapolate VeloUT to stations
- Open a window to collect matching clusters
- Fit q/p using z from each cluster
- With updated q/p open another window in the second station

Pattern Recognition

Build a track candidate

Pattern Recognition

Clustering

- We don't have a real clustering yet We miss the a proper detector description within LHCb framework
- Used energy deposit from MC particles as a starting point
- Planes divided in 1mm² bins in z-y

Strategy

- Extrapolate VeloUT to stations
- Open a window to collect matching clusters
- Fit q/p using z from each cluster
- With updated q/p open another window in the second station

Pattern Recognition

Build a track candidate

Track Fit

Very Simple

- Using the Jacobian of the extrapolation to correct q/p until d(q/p)/(q/p) < 0.001
 z and q/p are the most correlated terms in the extrapolation
- Not perfect, but good starting point
- Also rather effective

Simulation

- We need proper simulation and clustering
- LANL already has something for plain GEANT and is working to port it to LHCb simulation

Tracking

- Encouraging results obtained from VeloUT extrapolation
- Studies to be repeated with Velo extrapolation
- Some candidates may be eliminated by a detailed fitter

To do

Detector Prototype

- New ideas to reduce the costs
- A prototype of the detector will soon be tested

Tracking

- We are developing the necessary tools and preliminary results are encouraging
- Plan to extend studies to Velo+MS candidates

Simulation

- Work is needed, in particular for defining the detector in LHCb framework
- Any contribution is welcome!

Spares

Resolution Expectations - Results

Scenarios

- Most likely scenario: red σ_z=1mm, σ_y=1cm
- Very good y-res: black σ_z =1mm, σ_y =1mm
- Effect of direction angle: blue σ_z=1mm, σ_y=1mm, σ_{ty}=1mrad, σ_{tz}=1mrad
- Effect of direction angle (realistic): green σ_z =1mm, σ_y =1mm, σ_{ty} =10mrad, σ_{tz} =10mrad
- "Poor" z-resolution: magenta σ_z=1cm, σ_y=1mm

Even assuming the estimate wrong by 100%, <1% uncertainty seems possible!

Multiple Scattering

extrapolation of multiple scattering errors (with $u = t_y = dy/dx$, $v = t_z = dz/dx$)

fully numerical approach:

06/03/17

P. Billoir, magnet chambers

CHCP CHCP ÉCOLE POLYTECHNIQU ÉCOLE POLYTECHNIQU

Outline

2