

Prospects for fare W_{Here} $b \rightarrow (s,d)\ell^+\ell^-$ transitions

T. Blake for the LHCb collaboration

Beyond the LHCb Phase-1 Upgrade workshop

Prospects

- With the phase II upgrade (and 300fb⁻¹), we will have large samples of "rare" $b \rightarrow (s,d)\ell^+\ell^-$ decays.
- Assuming a naive scaling with \sqrt{s} and luminosity + factor of two improvement in the electron modes after removing the hardware trigger.

Decay	run 1	$300 \mathrm{fb}^{-1}$
$B^0 \to K^{*0} \mu^+ \mu^-$	2400	432000
$B^+ \to K^+ \mu^+ \mu^-$	4 700	846000
$\Lambda_b \to \Lambda^0 \mu^+ \mu^-$	300^{\ddagger}	54000
$B^0 o ho^0 \mu^+ \mu^-$	40*	7200
$B^+ \to \pi^+ \mu^+ \mu^-$	90	16200
$B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$		4300^\dagger
$B^0 \to K^{*0} e^+ e^- \ (q^2 \in [1, 6])$	110	39600
$B^+ \to K^+ e^+ e^- \ (q^2 \in [1, 6])$	250	90000

*assuming the ρ^0 dominates the $\pi\pi$ spectrum †scaled from f_s/f_d and $|V_{td}/V_{ts}|^2$ ‡signal only observed at large q^2 in run 1 dataset

Branching fraction measurements

 We already have precise measurements of branching fractions in the run1 dataset with at least comparable precision to SM expectations:

SM predictions have large theoretical uncertainties from hadronic form factors (3 for B→K and 7 for B→K* decays). For details see [Bobeth et al JHEP 01 (2012) 107] [Bouchard et al. PRL111 (2013) 162002]
 [Altmannshofer & Straub, EPJC (2015) 75 382]. Expect improvements from Lattice on timescale of phase II upgrade.

Systematic uncertainty on branching fraction measurements

• Use $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ as an example to understand what systematic uncertainties are important:

	D-PAPER-2016-025, JHEP 12 (2016) 065			
Source	$ F_{\rm S} _{644}^{1200}$	$\mathrm{d}\mathcal{B}/\mathrm{d}q^2 \times 10^{-7} (c^4/\mathrm{GeV}^2)$		
Data-simulation differences	0.008-0.013	0.004-0.021		
Efficiency model	0.001-0.010	0.001 - 0.012		
S-wave $m_{K\pi}$ model	0.001-0.017	0.001 – 0.015		
$B^0 \to K^*(892)^0$ form factors	_	0.003 - 0.017		
$\mathcal{B}(B^0 \to J/\psi (\to \mu^+ \mu^-) K^{*0})$	_	0.025 - 0.079		
	1			

Uncertainty on $\mathcal{B}(B \to J/\psi X)$ normalisation modes is already a limiting factor. Encourage Belle 2 to update these measurements!

Systematic uncertainty on branching fraction measurements

• Use $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ as an example to understand what systematic uncertainties are important:

Resonant contributions

- With a 50-300 fb⁻¹ dataset we will have much better control of the shape of $d\mathcal{B}/dq^2$ than its absolute normalisation.
- Can make precise measurements of the q² spectrum (including resonant contributions) and test formfactor dependences → feedback to theory.

- We can exploit the data to search for new light GeV-scale particles, e.g. narrow resonant contributions in [LHCb, PRL 115 (2015)161802] and [LHCb, PRD 95 (2017) 071101].
- Should be able to exclude models proposing new GeV-scale particles as an explanation for $R_{\rm K}/R_{\rm K^*}$. [F. Sala & D. Straub, arXiv: 1704.06188]

Angular observables

- Multibody final-states:
 - Angular distribution provides many observables that are sensitive to BSM physics.
 - Constraints are orthogonal to branching fraction measurements, both in their impact in global fits and in terms of experimental uncertainties.
- eg $B \rightarrow V\ell^+\ell^-$ system described by three angles and the dimuon invariant mass squared, q^2 .

(c) ϕ definition for the $\overline{B}{}^0$ decay

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

- Overlaying results for F_L and A_{FB} from LHCb [JHEP 02 (2016) 104], CMS [PLB 753 (2016) 424] and BaBar [PRD 93 (2016) 052015] + measurements from CDF [PRL 108 (2012) 081807] and Belle [PRL 103 (2009) 171801].
- SM predictions based on
 [Altmannshofer & Straub, EPJC 75 (2015) 382]

 [LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534]
 Joint fit
 [Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

Form-factor "free" observables

- - One is associated with A₀ and the other A_∥ and A_⊥.
- Can then construct ratios of observables which are independent of these soft formfactors at leading order, e.g.

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

 P'₅ is one of a set of so-called form-factor free observables that can be measured [Descotes-Genon et al. JHEP 1204 (2012) 104].

Systematic uncertainty on angular observables

• Using $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ as an example:

Source	$F_{\rm L}$	$S_3 - S_9$	$A_3 - A_9$	$P_1 - P_8'$	q_0^2 GeV ² / c^4
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	< 0.04	0.01 – 0.03
Data-simulation differences	0.01-0.02	< 0.01	< 0.01	< 0.01	< 0.02
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01	—
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01
Background model	< 0.01	< 0.01	< 0.01	< 0.02	0.01 – 0.05
Peaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01	0.01 - 0.04
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01
Det. and prod. asymmetries	_	_	< 0.01	< 0.02	—

- Expect many sources of systematic uncertainty to scale as \sqrt{N} with increased luminosity.
- We will likely reach systematic uncertainties of ≤0.01 on the angular observables.

Systematic uncertainty on angular observables

• Using $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ as an example:

Source	$F_{\rm L}$	$S_3 - S_9$	$A_3 - A_9$	$P_1 - P_8'$	q_0^2 GeV ² / c^4
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Acceptance polynomial order	< 0.01	< 0.02	< 0.02	< 0.04	0.01 - 0.03
Data-simulation differences	0.01 - 0.02	< 0.01	< 0.01	< 0.01	< 0.02
Acceptance variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01	—
$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01
Background model	< 0.01	< 0.01	< 0.01	< 0.02	0.01 – 0.05
Peaking backgrounds	< 0.01	< ^ ^ 1	- 0 01	- 0 01	0.01.0.04
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	> ncy	+		
Det. and prod. asymmetries	_	ficie	┝ ╽┝╾┎╼╩╹┱┯╖╾ᠮ	╻ ╺╼╼┺╌╼╸	╤╶╤╤╤

Relative e

0.5

LHCb

simulation

-0.5

Need to understand what the detector acceptance, reconstruction and selection do to the angular distribution of our signal. This is dictated by the MC sample size ⇒ fast MC.

 $\cos \theta_1$

 $0.1 < q^2 < 0.98 \text{ GeV}^2/c^4$

 $17.0 < q^2 < 19.0 \text{ GeV}^2/c^4$

0

0.5

Systematic uncertainty on angular observables

• Using $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ as an example:

	Source	$F_{ m L}$	$S_3 - S_9$	$A_3 - A_9$	$P_1 - P_8'$	q_0^2 GeV ² / c^4	
Acceptance	ce stat. uncertainty	< 0.01	< 0.01	< 0.01	< 0.01	0.01	
Acceptance	e polynomial order	< 0.01	< 0.02	< 0.02	< 0.04	0.01 – 0.03	
Data-sin	nulation differences	0.01 - 0.02	< 0.01	< 0.01	< 0.01	< 0.02	
Acceptance	ce variation with q^2	< 0.01	< 0.01	< 0.01	< 0.01	—	
Combinatorial	$m(K^+\pi^-)$ model	< 0.01	< 0.01	< 0.01	< 0.03	< 0.01	
background	Background model	< 0.01	< 0.01	< 0.01	< 0.02	0.01 - 0.05	
Physics Pe	eaking backgrounds	< 0.01	< 0.01	< 0.01	< 0.01	0.01 - 0.04	
background $m(P$	$K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	
Det. and	prod. asymmetries	_	—	< 0.01	< 0.02	—	

- Receive contributions from $\Lambda_b \to \Lambda^* \mu^+ \mu^-$, $\bar{B}_s \to K^{*0} \mu^+ \mu^-$, hadronic backgrounds etc.
 - ➡ PID performance is critical for controlling the background level.
- Can improve the systematic uncertainty by studying the angular distribution of the backgrounds in the data with a larger dataset.

Angular analyses with 300fb⁻¹?

- Can update our existing measurements in the same binning.
- eg Scaling statistical uncertainty to 300fb⁻¹ with a systematic uncertainty of 0.01.
- For *CP* averaged observables, we will have similar precision to SM predictions after run 2.

 CP asymmetries will remain clean up-to large luminosities. We have already demonstrated that we can control detector/production asymmetries to <1%.

Angular analyses with 300fb⁻¹

- We can also choose to bin much more finely to probe the shape of the distribution.
- eg Scaling uncertainty on run 1 analysis to 300fb⁻¹ with input on dΓ/dq² (to subdivide dataset within the existing bins).
- Finer binning allows for precise tests of zerocrossing point and endpoint relationships [G. Hiller & R. Zwicky, JHEP 03 (2014) 042]

Fitting for amplitudes

- Can also fit directly for q² dependent amplitudes.
 - Exploited to determine the zero-crossing point of A_{FB}, S₄ and S₅ in run 1.

- Or be even more ambitious, e.g. perform a full amplitude analysis of the $K\pi\mu\mu$ final-state taking into account resonant contributions.
 - We can try to fit directly for hadronic contributions to reduce theoretical uncertainties.

Lepton universality tests

• We have interesting hints of non-universal lepton couplings in LHCb run 1 dataset (2.6 σ in $R_{\rm K}$ and 2.4-2.5 σ in RK* in 1< q^2 <6 GeV²/ c^4)

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 , \\ 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \text{ GeV}^2/c^4 . \\ \text{[LHCb, LHCb-PAPER-2017-013]} \end{cases}$$

 $R_{K^+} = 0.745^{+0.09}_{-0.07}(\text{stat}) \pm 0.04(\text{syst}) \text{ for } 1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$. [LHCb , PRL113 (2014) 151601]

where
$$R_M = \frac{\int d\Gamma[B \to M\mu^+\mu^-]/dq^2 dq^2}{\int d\Gamma[B \to Me^+e^-]/dq^2 dq^2}$$

NB We are statistically limited in the run 1 dataset but systematic uncertainties could become important after run 2.

Lepton universality tests

• We have interesting hints of non-universal lepton couplings in LHCb run 1 dataset (2.6 σ in $R_{\rm K}$ and 2.4-2.5 σ in RK* in 1< q^2 <6 GeV²/ c^4)

[LHCb, PRL113 (2014) 151601], [LHCb, LHCb-PAPER-2017-013], [BaBar, PRD 86 (2012) 032012], [Belle, PRL 103 (2009) 171801]

Experimental challenges

- Main experimental challenges related to energy loss by electrons by Bremsstrahlung in the detector.
 - → Recover energy loss using clusters with $E_T > 75$ MeV in ECAL.
- Can we improve?
 - Reduce Bremsstrahlung by reducing material before the magnet.
 - Finer granularity ECAL or ECAL with better energy resolution.

R_{K*} systematic uncertainty

R_{K*} systematic uncertainty

	For LOE category	$low-q^2$	central- q^2
Ę.	Corrections to simulation	2.5	2.2
	Trigger efficiency	0.1	0.2
-P	Particle identification	0.2	0.2
PE	Kinematic selection	2.1	2.1
ק	Residual background	_	5.0
201	Mass fits	1.4	2.0
7-0	Bin migration	1.0	1.6
13]	$r_{J/\psi}$ flatness	1.6	0.7
	Total	4.0	6.4

- Related to how well we can model Bremsstrahlung in the detector/FSR and how well we know the shape of ${\rm d}\Gamma/{\rm d}q^2$

R_{K*} systematic uncertainty

		$low-q^2$	$central-q^2$
	Corrections to simulation	2.5	2.2
5	Trigger efficiency	0.1	0.2
Į	Particle identification	0.2	0.2
	Kinematic selection	2.1	2.1
j	Residual background	—	5.0
	Mass fits	1.4	2.0
1	Bin migration	1.0	1.6
	$r_{J/\psi}$ flatness	1.6	0.7
	Total	4.0	6.4

Rely on data driven corrections. Expect these uncertainties to scale with increased luminosity.

- Ultimately we will probably reduce our systematic uncertainty to the level of 1-2% (caveats obviously apply).
- Can try to improve further by being smarter e.g. binning more finely and unfolding.

R_K and R_{K*}

- Assuming an irreducible systematic uncertainty of 1% for *R_{K*}* in the range 1<*q*²<6 GeV²/*c*⁴.
- For comparison Belle 2 expects to reach a precision of 4-5% with a systematic uncertainty of 0.4% with a 50ab⁻¹ dataset [From talk by S. Sandilya at CKM 2016]

Angular analyses with electrons

- We have demonstrated that we can perform angular analyses with electrons in the run 1 data (at least at low-q²).
- In $B^0 \rightarrow K^{*0}e^+e^-$ measure:

 $A_{\rm T}^{(2)} = -0.23 \pm 0.23 \pm 0.05$

 $A_{\rm T}^{\rm Re} = 0.10 \pm 0.18 \pm 0.05$

 $F_{\rm L} = 0.16 \pm 0.06 \pm 0.03$

in the range $0.002 < q^2 < 1.120$ GeV²/ c^4 .

• Measurements are statistically limited. Systematic uncertainties are similar in size to the dimuon mode. Note, resolution in θ_1 and q^2 becomes important for moderate q^2 values.

Angular analyses with electrons

- Expect to have good sensitivity to differences in the angular distribution between electron/muon final-states with 50 - 300 fb⁻¹.
- Important caveat: we need to have good control over systematic uncertainties and background contamination.

Expected difference between S_5 and S_6 (A_{FB}) between muons and electrons in NP model with non-universal couplings (at the level seen in R_K).

$b \rightarrow d\ell^+ \ell^- \text{transitions}$

- We already have access to b→dµ+µprocesses in the run 1 dataset.
- With a 50 300fb⁻¹ dataset, we will also be able to access b→de⁺e⁻ processes e.g. expect O(1000) B⁺ → π⁺e⁺e⁻ signal candidates in 1<q²<6 GeV²/c⁴ range with 300fb⁻¹.

Events/(20 MeV/c²)

40

30

20

10

 $B_s^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

 $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

 $B^0_s \to \eta' \ \mu^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle -}$

--- Combinatorial

Total fit

LHCb

 $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$

PLB

743

(2015)

46

 $b \rightarrow d\ell^+ \ell^- \text{transitions}$

• With lattice input $b \rightarrow d\ell^+ \ell^-$ processes can provide measurements of $|V_{td}/V_{ts}|$, see e.g. [Du et al. PRD 93 (2016) 034005]

• Requires improvements from Lattice to get a dramatic improvement in precision on $|V_{td}/V_{ts}|$.

Global analysis of $b \rightarrow d\ell^+\ell^-$ transitions?

- With 300fb⁻¹ we will have precise measurements of
 - → $\mathcal{B}(B^0 \to \mu^+ \mu^-)$, $\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)$, $\mathcal{B}(B^0 \to \rho^0 \mu^+ \mu^-)$
- Have seen in $b \rightarrow s\ell^+\ell^-$ processes how important angular measurements can be. What can we do for $b \rightarrow d\ell^+\ell^-$ processes?
 - → Angular analysis of $B^0 \to \rho^0 \mu^+ \mu^-$ requires flavour tagging to have access to full set of observables. Effective tagging power is O(5%) in run 1. Limits sensitivity even with phase II dataset.
 - → Angular analysis of $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$ is possible. Depends critically on our mass resolution to separate B^0 background from B_s^0 signal.
 - → Angular analysis of $\Lambda_b \rightarrow p\pi \mu^+ \mu^-$ (we might need to consider a large number of $p\pi$ resonance contributions).
 - → Angular analysis of $B^+ \rightarrow \rho^+ \mu^+ \mu^-$? Flavour-tagging is not necessary and would enable a test of isospin symmetry.

$b \rightarrow s \tau^+ \tau^- decays$

- Small SM branching fractions due to limited phasespace (consequence of large τ mass).
- eg Accessible branching fraction in high q^2 region is: $\mathcal{B}(B^0 \to K^{*0}\tau^+\tau^-) \approx 2 \times 10^{-7}$ $\mathcal{B}(B^+ \to K^+\tau^+\tau^-) \approx 1 \times 10^{-7}$
- Only existing limit of the rate of $b \rightarrow s\tau^+\tau^-$ decays gives $\mathcal{B}(B^+ \rightarrow K^+\tau^+\tau^-) \approx 2.3 \times 10^{-3}$ at 90% CL. [BaBar, PRL 118 (2017) 031802]

 $B \rightarrow K^* \tau^+ \tau^-$

1.5

0.5

 $dB/dq^2 [10^7 \times c^4 \text{ GeV}^2]$

 $B \rightarrow K^* \mu^+ \mu^-$

[EOS, https://eos.github.io/]

• In contrast to dimuon and dielectron final-states, need to use $\psi(2S)$ for normalisation.

$b \rightarrow s \tau^+ \tau^- decays$

- Assuming the SM branching fraction, in 300fb⁻¹ expect to reconstruct:
 - → 30 events with $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \nu$
 - 3 500 events with $\tau^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \nu_{\tau}$

 Need to reconstruct 4 extra tracks but can exploit *B*/r lifetimes to constrain the system.

- Backgrounds are more complicated to estimate and will be large (studies are ongoing).
- It will be tough to reach the SM branching fraction but we can be sensitive to large branching fraction enhancements, e.g. [Alonso et al. JHEP 10 (2015) 184] where enhancements of 10³ are possible.

Summary

- We will have very large samples of b→(s,d)ℓ+ℓ⁻ processes in a 300fb⁻¹ dataset.
- Branching fraction and angular observables might reach current SM precision by the end of run 2.
 - ➡ Focus on null tests of SM, measurements of $b \rightarrow d\ell^+\ell^$ processes.
 - Feedback to improve SM predictions.

Dilepton mass spectrum

Ditau decays

• Consider two different final-states:

- ✓ Can exploit lifetime of the B and taus to constrain the system.
- Need to reconstruct an 8 track (hadronic) final-state.

- ✓ Dilepton final-state.
- Large missing mass/energy and background from semileptonic decays.

R_{K*} backgrounds

• It is much more difficult to separate dielectron final-state from physics backgrounds.

Angular analyses with 300fb⁻¹

- Finer binning allows for precise tests of zero-crossing point and end-point relationships [G. Hiller & R. Zwicky, JHEP 03 (2014) 042]
- Toy experiment with 300fb-1 dataset, assuming SM and scaling uncertainties based on our existing measurement in $1 < q^2 < 6 \text{ GeV}^2/c^4$.

 $\rightarrow K^+\ell^+\ell^-$

• Angular distribution of $B^+ \rightarrow K^+ \ell^+ \ell^-$ is a null test of SM, but can be sensitive to new scalar/pseudoscalar/tensor contributions, e.g.

R_K and R_{K*}

Assuming an irreducible systematic uncertainty of 1% for *R_{K*}* in the range 1<*q*²<6 GeV²/*c*⁴.

 For comparison Belle 2 expects to reach a precision of 2-3% with a systematic uncertainty of 0.4% with their full dataset [From talk by S. Sandilya at CKM 2016]

$B \rightarrow \tau^+ \tau^-$

- Reconstructing $\tau^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}\nu$ set limit on: $\mathcal{B}(B_{s}^{0} \rightarrow \tau^{+}\tau^{-}) < 6.8 \times 10^{-3} (95\% \text{ CL})$
- Due to missing neutrinos there is only weak separation between signal and backgrounds hadronic *B* meson decays (and no separation between *B*⁰ and *B*_s)

Reminder: Rare FCNC decays

 Flavour changing neutral current transitions only occur at loop order (and beyond) in the SM.

SM diagrams involve the charged current interaction.

• New particles can also contribute:

Enhancing/suppressing decay rates, introducing new sources of *CP* violation or modifying the angular distribution of the final-state particles.

Ditau decays

• Estimate expected yields for $K^* \tau \tau$:

$$\tau^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-} \nu$$

$$\frac{N_{\tau\tau}}{N_{\mu\mu}} \sim \frac{2.1 \times 10^{-7}}{7.5 \times 10^{-7}} \times (9.4\%)^{2} \times (50\%)^{4} \approx 1.5 \times 10^{-4}$$

$$\Rightarrow 60 \text{ events in } 300 \text{ fb}^{-1}$$

Need to select/reconstruct

$$\begin{aligned} \tau^{\pm} &\to \mu^{\pm} \nu_{\mu} \nu_{\tau} \\ &\frac{N_{\tau\tau}}{N_{\mu\mu}} \sim \frac{2.1 \times 10^{-7}}{7.5 \times 10^{-7}} \times (17.\%)^2 \approx 8 \times 10^{-3} \\ &\Rightarrow 3\ 500 \text{ events in } 300 \text{ fb}^{-1} \end{aligned}$$

- Backgrounds are more complicated to estimate and could be large.
- It will be tough to reach the SM branching fraction but we can be sensitive to large branching fraction enhancements, e.g. [Alonso et al. JHEP 10 (2015) 184] where enhancements of 10³ are possible.