

Phase II – Detector summary: Where next?

Chris Parkes

"I have met my destiny in quite a similar way"

"I have met my destiny in quite a similar way"

Could have chosen to rest on his laurels but no he dreams of further triumphs !

Chris Parkes, Elba, May 2017

Phase-II Detector

"So how could I ever refuse ?"

5

HL LHC for LHCb Phase II

Ricardo De Maria

Assume new TCDDM

β* [m] H* [μrad, σ] 1 ±220, 15.5 1.4 ±270, 22.5 2 ±310, 30.9

Challenges in machine parameters

- Reduce β* in IP8 below 3 m
- Reduce crossing angle
- Reduced levelling time

Impressive progress since EOI

- Working point exists to run in nominal scenarios.
- Beam separation and crossing angle of LHCb, have a visible impact on DA therefore lifetime
- Limit in triplet heat load at 1.6 x 10³⁴ cm⁻²s⁻¹

Chris Parkes, Elba, May 2017

HL LHC - questions for us

- Do we want levelling at a maximum luminosity ?
 For discussion: 1.6 x 10³⁴ cm⁻² s⁻¹
- Do we need equal samples of each magnet polarity ?
 - Magnet reversals will be infrequent
 - For discussion:
 - "maximise" integrated Luminosity
 - -Take 300 fb⁻¹ in two LHC runs
 - Retain ability to reverse magnet

-Unfavourable polarity as calibration sample

Need dedicated meeting session with HL LHC

to develop strategy & discuss responses for LHCC

VELO

Challenge A: 10x particle multiplicity Challenge B: 10x vertex multiplicity Challenge C: 10x radiation damage

Small Pixels Timing Replacement

Main modules have two technologies:

Small-r: small pixels, radiation hard, timing information optional

Large-r: larger pixels, fast timing, reduced rad hardness

Minimal RF protection between beam and sensors Automated 'cassette replacement' (?)

At large-z, a few dedicated single-tech modules ensure all particles in acceptance have spatial & timing into

Retractable modules as in current/phase-I VELO

Cooling from evaporative CO₂ in microchannels? (benefit from phase-I experience)

RF Foil

- Advantages:
 - Low Material Budget
 - Highly uniform
 - Easy to construct

– Easy to describe in XML

Alternatives:

- Thinning by etching/polishing
- Soldered 10µm windows
- Metal coating on polymer
- Wire-cage structure

Chris Parkes, Elba, May 2017

Phase 1b Tracker

Expand IT relative to EOI to assist Sci-Fi –O(5)m²

Sci-Fi Fibres order by end 2017 at current price? Construct 2021/2022

Phase II Tracker

• Expand MT relative to EOI to assist Sci-Fi -O(20m²)

Sci-Fi

Neutron "torture"

- Huge dark current rate
- Temperature, shielding
- SiPM E Field, FE shaper

Services constraint

Limited z-space For IT Shared mechanics?

Alternative? Micro Pattern Gas Detectors

attractive features but higher non-uniform material budget

Christian Joram

10

250

Fibres may just survive 300 /fb!

150

Distance from beam plane (cm)

200

100

50

Chris Parkes, Elba, May 2017

Inner Tracker - HVCMOS

- Sensor & Electronics on same chip
- Commercial Foundries
- Low cost (few CHF/cm²)
- High granularity
- High signal/noise
- Low material (50µm)
- Radiation tolerant (>10¹⁴ 1 MeV n_{eq}/cm²)

Support/Cooling Prototype

DNWEI

DP

DP

Themis Bowcock

Magnet-side Stations

Maurizio Martinelli Marcin Chrzaszcz

Prompt charm decays

& Sof

 $\Sigma_b \to \Lambda_b \pi$

Gluon PDF

Spectroscopy

- Route with clear fibres
- Prototype to be tested

Tim

Tracking & Simulation in development

Downstream Tracking Unit

Simone Stracka

For Phase 1b

Without T- and downstream tracks, LHCb is only 50 cm long

- Embedded Tracker Unit
- Algorithms implemented on commercial FPGA boards

RICH

Carmelo d'Ambrosio Sajan Easo

Gianluigi Pessina Rok Pestotnik

The recipe 🙂

Increase granularity Improve optical error, Further reduce chromatic error

- Provide the system with time resolution
- Work on new and specific pattern recognition algorithms
- Perhaps get rid of the magnetic shielding by using B-insensitive photodetectors

- 85ps timing achieved, near to aimed 70ps
- Proposal to mount module in LHCb in 17/18 shutdown

ECAL

Frederic Machefert Alexander Ledovskoy Yury Guz Tommaso Tabarelli De Fatis

One of many options:

- 2x2 cm² cells
- Tungsten
- Hybrid of scintillator/PMT & Silicon
- Replace inner region LS3
 - Cascade replaced modules outwards

ECAL

Frederic Machefert Alexander Ledovskoy Tommaso Tabarelli De Fatis Yury Guz

Radiation hardness

LHCb has unique challenges and finance limits But existing solutions to inspire

50Mrad/0Mrad

100Mrad/0Mrad

50Mrad/0Mrad

200Mrad/0Mrad

140

Muons

Peter Griffiths Giovanni Bencivenni

At 10³⁴ cm⁻²s⁻¹ The problem...

• **µ-RWELL**

- Meet radiation specifications
- Ease of assembly
- Low Cost
- Ease of Operation

Prototypes Tested

• Iron shielding

Effect on Muon ID small

very promising performance:

- gas gain > 10⁴
- safe operation
- ✓ rate capability > 1 MHz/cm²
- \checkmark time resolution \sim 5.7 ns
- \checkmark efficiency/25 ns \sim 90- 95 % (single gap)

LHCC response to EOI

From LHCC minutes:

• The LHCC notes the submission of the EoI for LHCb upgrades beyond Phase-I, and encourages LHCb to pursue the physics studies and collaboration with the LHC experts to motivate these upgrades with a solid physics case, taking into account the expected results from LHCb Phase-I and Belle II, and establish feasible running conditions that do not interfere with other LHC experiments. The LHCC urges the LHCb management to ensure that these activities have no impact on the on-going Phase-I upgrades, which must take priority.

LHCb

LHCb Phase I Upgrade

Expression LOI / Of Interest Design

Framework **Technical** Report

Technical Design **Reports**

LHCb Phase II Upgrade

"The history book on the shelf, is always repeating itself"

Studies for 2018 Physics Case

- At this meeting tremendous progress on:
 - Cataloguing channels for Phase II programme
 - Scaling statistical uncertainties, considering theoretical limits
 - Qualitative statements on detector improvements
- Next we should look to move beyond this:
 - Quantifying alternative detector improvements
 - Parameterized "Fast" **simulations**
 - Allow us to prioritise (see costs slides) improvements in sub-detectors / between subdetectors

Vertex Resolution

Iwan Smith Mark Williams

Important Example Study for 2018 Physics Case Document

Uncertainty on signal yield scales linearly with vertex precision

If secondary vertex resolution scaled like primary:

Removing RF foil equivalent of increasing dataset by factor two!

Prototypes

 Great to see hardware under construction/test TORCH

µ-RWELL

• ECAL

Inner Tracker

Phase II Next Meetings "Knowing my fate is to be with you"

- Lake Placid, LHCb week

 Dedicated session on Phase II Upgrade
 - Please register
 - May become a regular feature of LHCb weeks

- 3rd Meeting in this sequence for 2018
 Proposals to host welcome
 - Voulez-vous ?

"My My, at Waterloo Napoleon did Surrender"

There are always rocky patches but have to take a long view of history

160 years later....

"Waterloo...won the war"

EURODISION

SONG CONTEST

Thanks to Organisers

"I couldn't escape if I wanted to"

INFN-Pisa Staff

- Lucia Lilli
- Claudia Tofani
- Mauro Giannini
- Luca Barraco

plus of course our CERN LHCb secretary

- Cindy Denis

"Promise to love you forever more"

Thanks to all our friends old and new for your participation

Backup

LHCb Statistics- Timeline

LHCb Statistics- Timeline

Adjustment for 7/8/13/14 TeV cross-sections

LHCb Statistics- Timeline

- Indicative of potential only
- Assumptions made on relative trigger efficiencies have significant uncertainty

Matching: Timing Planes in Tracking

- Distance from VELO to main Tracker is ~ 7m
 - Intermediate station before magnet
- VELO will add timing
- Is timing needed in tracker region also to obtain correct matching of track stubs in Phase II?

TORCH would be a candidate technology

Trigger & Data Processing

- Fully software based trigger
 - Efficiency & Flexibility
 - No fundamental change in architecture foreseen
- Software & Computing
 - Strategy will develop from Upgrade I
 - Use of multicore processors, possibly GPUs, accelerators
 - Data volume growth clearly a challenge
 - Beneficial impact of fast timing information in speeding-up reconstruction ?

Detector System Summary

Detector	LS3	Phase-II
VELO	Deployment of prototype modules	New detector with fast timing
Tracking	Insert Silicon IT, modify SciFi; install MS	Silicon UT and IT, SciFi OT
RICH	New photodetectors for selected regions; use of timing information	New optics; full replacement of photodetectors
TORCH	Installation	Higher granularity photodetectors
CALO	Tungsten sampling modules installed in inner region	New modules in middle and outer regions
Muon	Replace HCAL with iron shielding; installation of high-rate chambers	Complete chamber installation
Trigger and data processing	Adiabatic software improvements; review of offline processing; installation of downstream track-finding processor	Expansion/replacement of links, readout boards and servers and servers

• We will not be able to afford all items in LS3 column for LS3

• Prioritisation required but not in Eol