Beyond the LHCb Phase-1 Upgrade 28-31 May La Biodola, Isola d'Elba (Italy)

SiPMs for the aerogel RICH at Belle II ?

Rok Pestotnik

Jožef Stefan Institute, Ljubljana, Slovenia

Contents:

- Belle II ARICH
- Sensor candidates
- RICH with SiPMs
- Results
- Summary

Particle identification in Belle II

Two dedicated particle ID devices -

Barrel: imaging Time-Of-Propagation

both RICHes – designed to fit into available space: (TOP)

End-cap: Proximity focusing Aerogel RICH (ARICH)

Proximity focusing Aerogel RICH design

Goals and constraints:

- > 4 σ K/ π separation @ 1-3.5 GeV/c
- operation in magnetic field 1.5T
- limited available space ~280 mm

Selected type: proximity focusing aerogel RICH

- θ(π) ≈ 307 mrad @ 3.5 GeV/c
- $\theta(\pi) \theta(K) = 30 \text{ mrad } @ 3.5 \text{ GeV/c}$
 - pion threshold 0.44 GeV/c,
 - kaon threshold 1.54 GeV/c
- neutron fluence: up to ~10¹² n/cm2
- radiation dose: up to ~1000 Gy

* to increase the number of photons without degrading the resolution

Proof of the principle with MA PMTs 2001

-R1180

123.5.

-R1100

T.lijima, S.Korpar et al. NIMA548 (2005) 383

Choice of the photo sensor: 3 candidates

HAPD

Baseline

S.Nishida et al, NIMA610(2009)65

64 ch. 10 μm MCP PMT

P. Križan et al, NIMA567 (2006) 124 S.Korpar et al, NIMA639 (2011) 162

SiPM + light guide

S.Korpar et al, NIMA613 (2010) 195

SiPM characteristics

- works in magnetic field
- low operation voltage ~ (10-100)V
- peak PDE (= QE x ε_{geiger} x ε_{geo}) up to 65% (@400nm - Hamamatsu data sheet *)
- gain ~ 10⁶
- time resolution ~ 100-200 ps
- dark counts ~ few 100kHz/mm²
- radiation damage (p,n)

Can such a device be used in a RICH?

For detection of single photons:

- linearity is not needed
- larger pixels preferred due to a higher efficiency

*includes afterpulses and cross talk

SiPM characteristics 2

Typical pulse height distribution:

- signal is well separated from pedestal level
- single photon pulses are the same as dark current pulses

Typical timing distribution:

 narrow time window can be used to reduce the contribution of dark current pulses to the Cherenkov image

Expected number of photons

Expected number of photons for aerogel RICH (beam test prototype): multianode PMTs (peak QE ~ 25%, collection eff. ~ 70%) or MPPCs (HC100) aerogel radiator: thickness 1cm, n=1.03 and transmission length 2.5 cm (@400nm) N_{SiPM}/N_{PMT}~4

Signal to noise

Expected number of background hits depends on:

- ring area ~ 2000 mm²
- dark count rate ~ 600kHz/mm²
- coincidence window ~ 5ns

$$N_{dark} \sim 6 \rightarrow N_{ph}/N_{dark} \sim 3.3$$

Ratio can be increased by:

- smaller ring image area
- narrower time window
- use of light collection system (light guides) to increase effective area of the sensor

R. Pestotnik: SiPMs for RICH at Belle II

* Large number of rings in the image comes from photon conversion – not seen by the tracking system

Need > 20 photons per ring for reliable PID

Signal to noise

Expected number of background hits depends on:

- ring area ~ 2000 mm²
- dark count rate ~ 600kHz/mm²
- coincidence window ~ 5ns

$$N_{dark} \sim 6 \rightarrow N_{ph}/N_{dark} \sim 3.3$$

Ratio can be increased by:

- smaller ring image area
- narrower time window
- use of a light collection system to increase effective area of the sensor

R. Pestotnik: SiPMs for RICH at Belle II

Test with cosmic rays

First successful tests with cosmic rays:

Scintillator trigger Aerogel radiator

thickness 1cm, n=1.03 and transmission length 2.5cm (@400nm) 6 SiPMs 1mm2 multi-hit TDC

Impact of timing

NIM A594 (2008) 13

Cherenkov angle [rad]

Signal to noise

Expected number of background hits depends on:

- ring area ~ 2000 mm²
- dark count rate ~ 600kHz/mm²
- coincidence window ~ 5ns

$$N_{dark} \sim 6 \rightarrow N_{ph}/N_{dark} \sim 3.3$$

Ratio can be increased by:

- smaller ring image area
- narrower time window
- use of a light collection system to increase effective area of the sensor

R. Pestotnik: SiPMs for RICH at Belle II

8x8 array of SMD-MPPCs

Detector module with 8x8 array of SMD MPPCs at
2.54 mm pitch

2.4

1.0

9

resin

R. Pestotnik: SiPMs for RICH at Belle II

NIMA 2009

1.0

0.3

MPPC chip

0.85

TDC distributions of MPPC hits for all events

total noise rate ~ 35MHz (~600kHz/MPPC) hits in the time window of 5ns around the peak are selected for Cherenkov angle analysis

Ring images

module was moved to 9 positions to cover the ring area these plots show only superposition of 8 positions (central position is not included)

w/o light guides

Expected number of photons is ~3/full ring, this includes: Hamamatsu PDE aerogel: 1cm thickness, n=1.03, 25mm attenuation length dead time and double hit loss ~10%

Measured (extrapolated to full ring - acceptance corrected): w/o LG ~ 1.6 w/ LG ~ 3.7

Estimated numbers for BelleII ARICH: aerogel with n=1.05 and thickness of 4cm (~5x) and better quality of light guides (surface polishing: ~2x) are w/o LG ~ 8 w/ LG ~ 37

Next step – full module of SiPMs

Module components

Hamamatsu MPPC array S11834-3388DF

Single SiPM: 3600 cells 8 x 8 SiPMs 3x3mm2 pitch size 5 mm

Light concentrators Borosilicate glass

R. Pestotnik: SiPMs for RICH at Belle II

Module: SiPM array Light concentrators Optical grease Al frame

Readout: ASD8 front-end boards (HERA-B RICH) Amplifier/Shaper/Discriminator

Performance of the concentrators

Surface scan with a triggered low intensity point like source

Average number of detected photons/ event

Clear improvement

Beamtest results

Results from the beam tests are encouraging.

We can expect 35 hits per ring with an adequate resolution

The electronics for a RICH made of such SiPM modules can be made without big problems.

Can SiPMs survive radiation environment in Belle II?

Neutron damage

the distance from the beam Time evolution of a SiPM signal 1Mev equiv. neutron flux I.Nakamura, JPS meeting, Sep. 2008 ×10^s 1MeV equiv. neutrons / cm^2 / year Coulomb LER before irrad. 30 Coulomb HER 800 Touschek LER **Touschek HER** 25 3x108 n/cm2 Bhabha LER Bhabha HER 20 1x109 n/cm2 15 600 3x109 n/cm2 10 1x1010 n/cm 400 2 3 5 6 7 HAPD ring # 3x1010 n/cm WW ~10¹¹n/cm²year 1x1011 n/cm 200 Noise hits after one year 3x1011 n/cm 0 Unfortunately due to such a neutron 500 1000 1500 2000 0 Time (ns) load, the detector would not survive long enough.

Expected neutron fluence per

year as a function of

Summary

A photon detector module was constructed using a MPPC array and a light concentrator.

A proximity focusing RICH with 4 cm aerogel radiator (n=1.05/1.06) and the detector module was successfully tested in an electron beam test in DESY.

For β =1 tracks 35 photons can be detected.

We achieved an efficiency increase with light guides of 1.9 (area ratio ~ 2.7)

SiPM can be used as a detector of single photons in RICH counters *

* provided the neutron fluence is low enough