Theory prospects with $b ightarrow c(u) \ell u$ transitions

Martin Jung

"Beyond the LHCb Phase-1 Upgrade"

La Biodola, Italy, 29th of May 2017

Importance of (semi-)leptonic hadron decays

в

в

 W^{\pm}

W[±]

D(*)

In the Standard Model:

• Determination of $|V_{ij}|$ (7/9)

Beyond the Standard Model:

- Leptonic decays ~ m_l²
 ▶ large relative NP influence possible (e.g. H[±])
- NP in semi-leptonic decays moderate
 Need to understand the SM very precisely!
- NP: Relative to tree, τ least constrained

Key advantages:

- Large rates
- Minimal hadronic input
- This input is systamatically improvable

Additionally: (almost) all flavour anomalies involve leptons

Generalities

If $R(D, D^*)$ are real, they will be established before 2nd upgrade

Consequently the objectives change:

- Differentiation between structures in b
 ightarrow c au
 u
 - **b** Distributions in q^2 + angles, polarization of au, D^*
- Flavour structure on the lepton side (→ μ vs. e)
 ▶ improvements for electrons?
- Flavour structure on the quark side (e.g. $b \rightarrow u$ vs. $b \rightarrow c$)
 - Possibilities in charm decays? (not part of this talk)

A lot of this is not yet done, insufficient data Close collaboration of experiment and theory necessary

Objectives of this talk:

- Examples of challenging systematics (th + exp)
- Status of present tensions
- Identification of "clean" observables with differentiating power

New systematics: BR measurements and isospin violation Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

New systematics: BR measurements and isospin violation Branching ratio measurements require normalization...

- *B* factories: depends on $\Upsilon \to B^+ B^-$ vs. $B^0 \bar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0ar{B}^0)\equiv 1$
 - LHCb: (mostly) assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

New systematics: BR measurements and isospin violation Branching ratio measurements require normalization...

- *B* factories: depends on $\Upsilon o B^+B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0 ar{B}^0)\equiv 1$
 - LHCb: (mostly) assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic: [MJ'16 [1510.03423]]

- Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- Isospin asymmetries test NP with ΔI = 1,3/2 (e.g. b → sūu)
 Isospin asymmetry B → J/ψK: A_I = -0.009 ± 0.024

Affects every percent-level BR measurement $B \rightarrow J/\Psi K$ can be used to determine $f_u/f_d!$

$|V_{xb}|$: inclusive versus exclusive

Long-standing problem:

- Very hard to explain by NP [Crivellin/Pokorski'15] (but see [Colangelo/de Fazio'15])
- Likely experimental/theoretical systematics

$|V_{xb}|$: Recent developments

 V_{ch} : Recent Belle $B \rightarrow D, D^* \ell \nu$ analyses Recent lattice results for $B \rightarrow D$ [FNAL/MILC, HPQCD, RBC/UKQCD (ongoing)] $\blacksquare B \rightarrow D$ between incl. $+ B \rightarrow D^*$ New lattice result for $B \rightarrow D^*$ [HPQCD] \bigvee V_{cb}^{incl} cv, compatible with old result $B \rightarrow D^* \ell \nu$ re-analyses with CLN, $|V_{cb}| = 39.3(1.0)10^{-2}$ [Bernlochner+'17] + BGL [Bigi+,Grinstein+'17] (Belle only), $|V_{cb}| = 40.4(1.7)10^{-2}$ New BaBar analysis of V_{ub} incl.: Dependence on theory treatment! \blacksquare GGOU 2σ lower than WA Compatible w/ PDG exclusive avg

Hints towards resolution, not yet conclusive

Prospects $b ightarrow (u, c)(e, \mu)$ @ LHCb

Potential unambiguous $|V_{xb}|$ determination before phase-II upgrade Measuring $b \rightarrow u, c\ell\nu$ not about this

Instead, model-independent determinations of NP contributions

- If FNU in b
 ightarrow c is confirmed, expect "something" in b
 ightarrow u
- Also, with b
 ightarrow c au
 u affected, μ vs. e important to check
- Universality checks of right-handed currents interesting
- $|V_{ub}/V_{cb}|$ from Λ_b important ingredient right now. . .
 - Tests different NP combinations than mesonic modes
 - Which observables are measurable?
 - How much can we reduce the systematics?
 - FFs need improvement, but not the main issue

 $B_s \to K \ell \nu$ essentially probes the same physics as $B \to \pi \ell \nu$ \blacksquare direct competition with Belle II

- $B
 ightarrow pp\ell \nu$ interesting new idea
- Challenging, qualititative theory progress required!

Experimental Situation for $b \rightarrow c \tau \nu$ 2017

$$R(X) \equiv rac{\mathrm{Br}(B o X au
u)}{\mathrm{Br}(B o X \ell
u)}$$

- $\frac{X\tau\nu}{X\ell\nu}$ 4 recent $R(D^{(*)})$ analyses: • $R(D^*)$ from LHCb [1506.08614]
 - Belle update + new measurement (had./sl tag) [1507.03233,1603.06711], τ -polarization + $R(D^*)(\tau \rightarrow had)$ [1608.06391]
 - •4.0 σ tension [HFAG]

Further $b \rightarrow c \tau \nu$ inputs:

- Differential rates from Belle, BaBar
- Total width of B_c
- $(b \rightarrow X_c \tau \nu \text{ by LEP})$

SM predictions [see also Zoltan's talk]

SI amplitude: kinematics \times FC coupling (SM: CKM) \times form factor

Strategy SM predictions: V_{cb} + leading FF cancels data + theoretical input from LQCD/HQET for FF ratios

- $B \rightarrow D$: 2 form factors $f_{+,0}$
 - Data determines shape of $f_+(q^2)$
 - LQCD required for f_0 : fit HPQCD + FNAL/MILC, use $f_+(0) = f_0(0)$

 $R(D) = 0.301 \pm 0.003$ [Bigi/Gambino'16]

- $B \rightarrow D^*$: 4 form factors $V, A_{0,1,2}$
 - 3/4 \rightarrow data (+HQET, unitarity \rightarrow CLN) ^{addiment}

- HQET for A_0 [Falk/Neubert], enhance uncertainty [Fajfer/Kamenik]
- $P(D^*) = 0.252 \pm 0.003$, (0.257 from re-analysis [Bernlochner+'17])
- LQCD for non-maximal recoil underway (Very) good control, effect too large to be in CLN relations

NP in (semi-)leptonic decays

EFT for $b \to c \tau \nu$ transitions (no light ν_R , SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\mathcal{L}^{b
ightarrow c au
u}_{ ext{eff}} = -rac{4\, {\it G_F}}{\sqrt{2}}\, V_{cb}\sum_j^5\, C_j\mathcal{O}_j\,, \qquad ext{with}$$

 $\mathcal{O}_{V_{L,R}} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\tau}\gamma_{\mu}\nu, \mathcal{O}_{S_{L,R}} = (\bar{c}P_{L,R}b)\bar{\tau}\nu, \mathcal{O}_{T} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\tau}\sigma_{\mu\nu}\nu.$

NP models typically generate subsets; for a charged scalar: NP couplings $C_{S_{L,R}}$ (complex), $C_{V_L} = C_{V_l}^{SM} = 1$, $C_{V_R} = C_T = 0$

- Model-independent subclass as long as $C_{S_{L,R}}$ general
- Phenomenologically $C_{SL,R}^{q_uq_d l} \sim m_{q_{ud}} m_l$ (e.g. Type III)

Used to illustrate here, appearing combinations:

$$R(D): \ \delta^{cbl} \equiv \frac{(C_{S_L} + C_{S_R})(m_B - m_D)^2}{m_l(\bar{m}_b - \bar{m}_c)} \quad R(D^*): \Delta^{cbl} \equiv \frac{(C_{S_L} - C_{S_R})m_B^2}{m_l(\bar{m}_b + \bar{m}_c)}$$

Can trivially explain $R(D^{(*)})!$ Exclusion possible with specific flavour structure or more $b \rightarrow c\tau\nu$ observables!

$R(D), R(D^*)$:

- R(D) compatible with SM at $\sim 2\sigma$
- Preferred scalar couplings from $R(D^*)$ huge $(|C_{S_L} C_{S_R}| \sim 1-5)$
- Can't go beyond circles with just $R(D, D^*)!$

Differential rates:

- compatible with SM and NP
- already now constraining, especially in $B \rightarrow D \tau \nu$
- "theory-dependence" of data needs addressing [Bernlochner+'17]

Total width of B_c :

- $B_c \rightarrow \tau \nu$ is an obvious $b \rightarrow c \tau \nu$ transition
 - not measurerable in foreseeable future
 - can oversaturate total width of $B_c!$ [X.Li+'16]
- Excludes second real solution in Δ_{cb}^{τ} plane (even scalar NP for $R(D^*)$? [Alonso+'16])

 τ polarization:

- So far not constraining (shown: $\Delta\chi^2 = 1$)
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$X_2^{D^{(*)}}(q^2)\equiv extsf{R}_{D^{(*)}}(q^2)\left[extsf{A}_\lambda^{D^{(*)}}(q^2)+1
ight]=X_{2, extsf{SM}}^{D^{(*)}}(q^2)$$

Consistent explanation in 2HDMs possible, flavour structure?

Differentiating models with b ightarrow c au u observables

Large $R(D^*)$ possible with NP in $V_L(\hat{R}(X) = R(X)/R(X)_{SM})$:

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $b\bar{b} o X o au^+ au^-$ [Faroughy+'16]

Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o {\cal K}^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \to \mu \nu \nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+ \tau^-$ [Faroughy+'16]

Fit results for the two scenarios for $B \rightarrow D^{(*)} \tau \nu$:

Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o {\cal K}^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for polarization-dependent $B \to D^*\tau\nu$ observables:

Differentiating models with $b \rightarrow c \tau \nu$ observables

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B o K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation

• issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for $B \to X_c \tau\nu$ and $\Lambda_b \to \Lambda_c \tau\nu$:

NP in $b \rightarrow u \tau \nu$ transitions

b
ightarrow u au
u less explored experimentally, $|V_{ub}/V_{cb}|^2 \lesssim 1\%$:

- $R(\tau) \equiv BR(B
 ightarrow au
 u) / BR(B
 ightarrow \pi \ell
 u)$ about 1.8 σ from SM
- $R(\pi)$ not significantly measured yet
- Data consistent with SM as well as sizable NP

NP in $b \rightarrow u \tau \nu$ transitions

b
ightarrow u au
u less explored experimentally, $|V_{ub}/V_{cb}|^2 \lesssim 1\%$:

- $R(\tau) \equiv BR(B
 ightarrow au
 u) / BR(B
 ightarrow \pi \ell
 u)$ about 1.8 σ from SM
- $R(\pi)$ not significantly measured yet
- Data consistent with SM as well as sizable NP

Analyse $b \rightarrow u \tau \nu$ individually:

 \mathbf{P} $R(\tau)$ yields correlation between $R(\pi)$ and R(p)

More observables needed! Λ_b provides uncommon parameter combinations $B_s \rightarrow K^{(*)} \tau \nu$ decays competitive? Detector requirements? Pionic final states possible?

Conclusions

Excellent physics potential for LHCb beyond Run 4

• Present tensions:

 V_{xb} exclusive vs. inclusive: progress possible/probable

b
ightarrow c au
u: indications of lepton-non-universal NP

- New measurements/observables constrain NP more severely
- Any BR measurement at the (few-)% level requires dealing with production asymmetries @ *B* factories properly
- Should tensions be real, they're established by LS 3
 - Expect smaller deviations anyway (smaller R(D*) would improve most NP interpretations)
 - Need to pin down precise strucure of NP (Dirac, flavour)
 - Clean observables available to differentiate between different NP
 - Need for distributions + polarization measurements
- Chance to constrain b
 ightarrow u transitions like b
 ightarrow c now
 - Experimentally challenging, which detector changes could help?

Conclusions

Excellent physics potential for LHCb beyond Run 4

• Present tensions:

 V_{xb} exclusive vs. inclusive: progress possible/probable

b
ightarrow c au
u: indications of lepton-non-universal NP

- New measurements/observables constrain NP more severely
- Any BR measurement at the (few-)% level requires dealing with production asymmetries @ *B* factories properly
- Should tensions be real, they're established by LS 3
 - Expect smaller deviations anyway (smaller R(D*) would improve most NP interpretations)
 - Need to pin down precise strucure of NP (Dirac, flavour)
 - Clean observables available to differentiate between different NP
 - Need for distributions + polarization measurements
- Chance to constrain b
 ightarrow u transitions like b
 ightarrow c now
 - Experimentally challenging, which detector changes could help?

Thank you for your attention!

Generic features and issues in 2HDMs

Charged Higgs possible as explanation of $b \to c \tau \nu$ data... However, typically expect $\Delta R(D^*) < \Delta R(D)$

Generic feature: Relative influence larger in leptonic decays!

- No problem in $b \rightarrow c \tau \nu$ since $B_c \rightarrow \tau \nu$ won't be measured
- Large charm coupling required for $R(D^*)$
- Embedding $b \rightarrow c \tau \nu$ into a viable model complicated!
- $D_{d,s} \rightarrow \tau, \mu \nu$ kill typical flavour structures with $C_{S_{L,R}} \sim m$
- Only fine-tuned models survive all (semi-)leptonic constraints

 $b \rightarrow s\ell\ell$ very complicated to explain with scalar NP

▶ 2HDM alone tends to predict $b \rightarrow s\ell\ell$ to be QCD-related

 $bar{b} o (H,A) o au^+ au^-$ poses a severe constraint [Faroughy+'16, Admir's talk]

2HDMs strongly prefer a smaller value for $R(D^*)$!

The differential distributions $d\Gamma(B \rightarrow D^{(*)}\tau\nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated): Grey: NP fit including R(D) Red: SM fit (distributions only) Green: Allowed by R(D), excluded by distribution
- Need better experimental precision, ideally $dR(D)/dq^2$
- Parts of NP parameter space clearly excluded

The differential distributions $d\Gamma(B \rightarrow D^{(*)}\tau\nu)/dq^2$

- Data stat. uncertainties only, BaBar rescaled
- Bands 68% CL (bins highly correlated): Grey: NP fit including R(D*) Red: SM fit (distributions only) Green: Allowed by R(D*), excluded by distribution
- Need better experimental precision, ideally $dR(D^*)/dq^2$
- Not very restrictive at the moment

Implications of the Higgs EFT for Flavour: $q ightarrow q' \ell u$

 $b \rightarrow c \tau \nu$ transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\text{eff}}^{b \to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c} \gamma^{\mu} P_{L,R} b) \bar{\tau} \gamma_{\mu} \nu \,, \qquad \mathcal{O}_{S_{L,R}} = (\bar{c} P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c} \sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: *C_{V_R}* is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, *e.g.* Σ_{U=u,c,t} λ_{Us} C^(U)_{S_R} = − ^{e²}/_{8π²}λ_{ts} C^(d)_S [see also Cirigliano+'12,Alonso+'15]

 These relations are again absent in the non-linear EFT

Matching for $b \rightarrow c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\rm CC} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\rm CC} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\rm CC} \left(c'_{S1} + \hat{c}'_{S5} \right) , \\ C_{S_R} &= 2 \,\mathcal{N}_{\rm CC} \left(c_{LR4} + \hat{c}_{LR8} \right) , \\ C_T &= -\mathcal{N}_{\rm CC} \left(c'_{S2} + \hat{c}'_{S6} \right) , \end{split}$$

where $\mathcal{N}_{\rm CC} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

List of minimal χ^2 values

Scenario	$\chi^2_{\rm min}$	# obs.	# pars.	central values $(\delta^{ au}_{cb}, \Delta^{ au}_{cb})$
$R(D^{(*)})$ only				
SM	23.1	2	0	_
S1	0	2	4	(0.2 + 0.7i, 10.0 - 6.3i)
S1 real	0	2	2	(0.4, -3.6)
$g_{L}^{cb\tau}$	0	2	2	$g_L^{cb au} = -1.3 - 0.6i$
$g_R^{cb\tau}$	9.1	2	2	$g_{R}^{cb au} = 0.3 + 0.i$
gv,	0.2	2	1	$ g_{V_l} = 1.12$
$R(D^{(*)}), d\Gamma/dq^2, \Gamma_{B_c}$				
SM	65.9	61	4	_
S1	49.2	61	8	(0.4 + 0.i, -2.4 + 0.i)
S1 real	49.2	61	6	(0.4, -2.4)
$g_{L}^{cb\tau}$	55.4	61	6	$g_L^{cb au} = -0.4 + 0.8i$
$g_R^{cb\tau}$	55.4	61	6	$g_{R}^{cb au} = 0.3 + 0.i$
gv,	42.4	61	5	$ g_{V_l} = 1.12$
$R(D^{(*)}), d\Gamma/dq^2, \Gamma_{B_c}, R(X_c)$				
SM	65.9	62	4	_
S1	50.4	62	8	(0.3 + 0.i, -2.4 + 0.i)
S1 real	50.4	62	6	(0.3, -2.4)
$g_{L_{i}}^{cb au}$	55.4	62	6	$g_L^{cb au} = -0.4 - 0.8i$
$g_R^{cb au}$	56.1	62	6	$g_R^{cb au}=0.2+0.i$
gv _L	46.7	62	5	$ g_{V_L} = 1.10$